Текст книги "Луна. История будущего"
Автор книги: Оливер Мортон
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 20 страниц)
Почему такое представление об освещении Луны пепельным светом вписывалось в одну модель Вселенной, но не вписывалось в другую? Ответ таков: чтобы понять, что Луна и Земля обладают одинаковыми отражающими способностями, нужно было признать, что они принадлежат к одному классу объектов. Для сторонников системы Коперника Луна и Земля были планетами, как и другие планеты, которые обращались вокруг Солнца. Всем остальным это казалось чепухой. Средневековый мир вслед за Аристотелем полагал, что Земля по составу радикально отличается от Луны и любых других тел, которые обращаются вокруг нее. Земля состоит из прозаической материи, а небесные тела – из хрусталя, огня или других изысканных веществ. Земля меняется, а они остаются неизменными. Они двигаются, а Земля стоит на месте.
Представление о том, что Луна освещается Землей, как Земля освещается Луной, шло вразрез с такими идеями. Как выразился Галилей, оно втягивало Землю “в танец звезд”. Эта хореография была частью коперниковской революции, как и сведения о том, что обращается вокруг чего. Земля стала планетой – в изначальном смысле звезды, которая движется по небу, – а планеты стали землями, то есть такими же реальными телами, как мир вокруг. Возможно, на них жили люди, которые считали их своими мирами, а Землю – далекой движущейся точкой. Казалось, их существование почти неизбежно: какой смысл Богу создавать необитаемые миры? Как пишет историк искусства и науки Эйлин Ривз, “по крайней мере, в массовом сознании [появилась] почти самоочевидная связь между теорией вторичного света, коперниковской картиной мира и верой во внеземную жизнь”.
* * *
С тех пор вопрос о внеземной жизни кружится в танце с астрономией, как Земля кружится в танце с Луной и Солнцем: порой идеи противостоят друг другу, а порой выстраиваются в одну линию. В последние двадцать лет в этой сфере наблюдается удивительный консенсус: сегодня люди видят смысл в астрономии, с готовностью оплачивая исследования, посвященные поиску жизни в других мирах.
Именно поэтому в начале XXI века астрономы из Прованса и Аризоны, которые многие годы не придавали Луне значения, вдруг стали так внимательно вглядываться в ее отраженный пепельный свет. Они смотрели на него, чтобы понять, как признаки жизни на Земле выглядят издалека.
В 1995 году, после многих десятилетий ложных тревог, астрономы начали находить планеты вокруг других звезд. Свет таких “экзопланет” был столь слабым, что обнаружить их сами не получалось – можно было заметить лишь их тени, скользившие по поверхности звезд, или вызываемые ими крошечные колебания в спектре звездного света. Но ученые, заинтересованные жизнью во Вселенной – их уже начинали называть астробиологами, – полагали, что со временем телескопы станут больше и лучше и позволят им непосредственным образом увидеть ряд экзопланет. После этого они примутся искать на них признаки жизни.
Свет экзопланеты – это свет далекой звезды, который прошел сквозь атмосферу вращающейся вокруг нее экзопланеты, был отражен обратно в космос и добрался до Земли. Многие годы, ушедшие на последний отрезок пути, никак не меняют свет, но доля секунды, которая требуется ему, чтобы пройти сквозь атмосферу экзопланеты и отразиться от облаков или от поверхности, оставляет на нем свой след. Молекулы атмосферы экзопланеты поглощают свет с одними длинами волн лучше, чем с другими. Если астрономы сумеют разложить свет экзопланеты по длинам волн на спектрограмме, как банкомет раскладывает колоду карт на зеленом сукне, они смогут выявить эти эффекты: некоторых карт в колоде не обнаружится, потому что свет с некоторыми длинами волн поглотила атмосфера экзопланеты.
Как химический состав атмосферы может свидетельствовать о наличии жизни на планете? Рассмотрим атмосферу Земли и других ближайших планет. На Марсе и Венере химический состав атмосферы определяется исключительно солнечным светом, потому что на поверхности ничто не высвобождает в атмосферу газы, которые могли бы вступать во взаимодействие друг с другом. На Земле жизнь неутомимо выделяет новые и новые газы, в связи с чем атмосфера полнится газами, взаимодействующими друг с другом, такими как метан и аммиак, угарный газ и кислород и так далее. В 1960-х годах британский ученый и изобретатель Джеймс Лавлок назвал это основополагающим признаком жизни на планете. Такая жизнь, как на Земле, не может не использовать атмосферу планеты в качестве источника сырья и мусорной свалки. Забирая одно, она неизменно возвращает в атмосферу другое, потому что она берет лишь то, что ей необходимо, а затем меняет вещества в процессе использования. Таким образом, жизнь не позволяет атмосфере войти в равновесие, наблюдаемое в безжизненных мирах. Метан, аммиак и кислород в атмосфере Земли свидетельствуют о функционировании биосферы, которая использует энергию Солнца, чтобы трансформировать проходящие через нее вещества, то есть поддерживает биогеохимические циклы, связывающие одушевленные и неодушевленные объекты в живом мире. Мысль о том, что жизнь выступает источником подобного беспорядка в атмосфере, стала одним из первых шагов к впоследствии выдвинутой Лавлоком гипотезе Геи – предположению, что посредством создания такого неравновесия жизнь играет фундаментальную роль в поддержании обитаемости планет, подобно тому как езда на велосипеде не позволяет ему упасть.
Не все идеи Джеймса Лавлока о Гее получили широкое признание, но идея о том, что жизнь создает химическое неравновесие в атмосферах планет, быстро прижилась. К началу XXI века теоретики пришли к выводу, что это и есть наиболее вероятный критерий для обнаружения жизни на астрономических расстояниях. Но никто не знал, помогут ли такие наблюдения на практике. В конце концов, для изучения доступна всего одна наверняка обитаемая планета – Земля, – а за пределами Земли нет обсерваторий, которые могут провести спектроскопию пепельного света.
Поэтому астрономы из Прованса и Аризоны и занялись наблюдениями сразу после летнего солнцестояния 2001 года. За неимением возможности посмотреть на другой живой мир в небесах нам остается смотреть на наш, отражающийся в далеком зеркале темной ночной Луны.
* * *
Представление о том, что в зеркале Луны отражается не только солнечный свет, но и очертания земных континентов и окружающего их огромного океана, восходит к Древней Греции, где так считали некоторые последователи Пифагора. Аргументы против этой точки зрения почти столь же стары. В сочинении “О лике, видимом на диске Луны”, первом трактате о Луне, к которому будут обращаться на протяжении более тысячи лет, живший в I веке нашей эры платоник Плутарх утверждал, что видимый на Луне рельеф – это рельеф самой Луны, а не отражение земной географии. Различимые на Луне моря не соответствуют по форме великому океану, омывающему земную сушу. Более того, Луна – в отличие от зеркального отражения – под любым углом смотрится одинаково.
Тем не менее представление о Луне как отражении Земли сохранялось. В начале XVII века покровитель Кеплера Рудольф II, очевидно, считал его истинным – не в последнюю очередь потому, что ему казалось, будто он различает на поверхности Луны очертания Италии, Сицилии и Сардинии. Почти два столетия спустя Александр фон Гумбольдт записал, что такого мнения по-прежнему придерживаются образованные персы: “Это карта Земли… на Луне мы видим самих себя”.
Никакой карты нет, но при взгляде на Луну люди и правда в основном видят свое отражение – отражение своих забот и теорий, надежд и страхов. Луну использовали для таких размышлений – или проекций – и в науке, и в литературе. История Луны – это история представлений о Луне. На основе этих представлений и сложится ее будущее. Луна всегда остается на втором плане, а потому сложно наделить ее собственным смыслом. Она нужна, чтобы отражать заботы большого и светлого мира, который сияет на иссиня-черном небе.
Во второй половине XX века, когда над миром нависла угроза войн, обещавших стать смертоноснее, чем когда-либо, из-за развития технологий, Луна отражала конфликты и соперничество: в ней видели и поле битвы, и приз, который получит победитель гонки. Но десятилетия конфликтов и соперничества также сделали ее в буквальном смысле отражателем.
Незадолго до полудня 10 января 1946 года трехкиловаттный радиолокационный передатчик, который использовался для дальнего обнаружения самолетов противника, отправил радиоимпульс из Форт-Монмута в Нью-Джерси на восходящую Луну. Через две с половиной секунды – время, необходимое свету, или в этом случае радиоволне, чтобы преодолеть 380 тысяч километров туда и обратно, – сигнал вернулся. Инженерам показалось, что они первыми из людей дотронулись до Луны.
Когда ослепительный свет атомной бомбы отбросил новую тень на будущее, знатоки сочли это замечательным событием. В специализированном журнале Radio News вышла восторженная статья:
Радиолокационный передатчик вывел нас за пределы этого мира, погрузил нас в бесконечность, бросил Вселенной вызов копьями радиоимпульсов, которые коснулись Луны и вернулись открыть новые двери мысленной деятельности человека. Пораженцы больше не могут утверждать, что человечество должно ограничиться скучными планами выжать максимум из своего маленького мира… то же самое радио, которое сыграло не последнюю роль в процессе сжатия нашего мира, теперь разрывает оковы и выводит нас в иные миры.
По обыкновению оставаясь на втором плане, Луна сыграла побочную роль в так называемом армейском проекте “Диана”. Для передачи сигнала на дальние расстояния радисты использовали ионосферу – слой заряженных частиц в верхней части атмосферы Земли, который искажает и отражает радиоволны. С практической точки зрения было выгодно как можно лучше изучить ионосферу, а прохождение радиоимпульса сквозь нее и обратно могло существенно расширить представления о ней. Более того, если в перспективе были космические путешествия – а появление ракет большой дальности и ядерной энергетики наталкивало некоторых на мысль, что они не за горами, – важно было знать, что путешественники смогут оставаться на связи с планетой, которую они покинули.
Вполне вероятно, что радиосвязь могла не только обеспечить поддержку полетов в космос, но и стать их целью. Незадолго до запуска проекта “Диана” молодой британский радиоинженер Артур Кларк, во время войны работавший на радаре, написал статью, в которой рассказал, какую роль “внеземные ретрансляторы” – спутники связи, в частности находящиеся на “геостационарных” орбитах и обращающиеся вокруг Земли за 24 часа, то есть зафиксированные в одной точке неба, – могут сыграть в обеспечении всего мира радио– и телевизионным покрытием. “У нас пока нет непосредственных свидетельств перемещения радиоволн между поверхностью земли и космосом, – отметил он, – [однако] при наличии достаточно мощного передатчика мы можем получить необходимые свидетельства, проверив эхо с Луны”. Не знаю, было ли участникам проекта “Диана” известно о новаторской работе Кларка, но их коллеги из ВМФ США явно успели познакомиться с ней, как и некоторые представители прессы. 3 февраля 1946 года на первой полосе Los Angeles Times была опубликована заметка, где описывалась предложенная Кларком проверка отражения от лунной поверхности, которую “только что провели войска связи Армии США”.
Таким образом, проект “Диана” доказал и техническую реализуемость спутников связи, и способность Луны выступать в этой роли. Первое было особенно важно. В ряде последующих военных проектов сигналы обширного аппарата холодной войны отражались от Луны, а не от ионосферы. Однако когда был реализован предложенный Кларком проект спутников связи, они потеснили естественный спутник Земли.
Не все радиоотражения от Луны были умышленными. В 1960 году возникло замешательство, когда на мониторах американского радара раннего предупреждения в Гренландии вдруг отобразились неожиданные отраженные сигналы – их отражала Луна, которая восходила прямо перед радиолокационным лучом. Вопреки некоторым сообщениям это не было в достаточной степени похоже на ракетный удар, чтобы вызвать настоящую ложную тревогу. Но после этого случая ВВС перепрограммировали свои компьютеры таким образом, чтобы впредь они игнорировали любые радиолокационные отражения с задержкой более двух секунд, не позволяя Луне вносить смуту в будущие операции.
Ученые, в свою очередь, использовали эти отражения, чтобы расширить свои представления о поверхности Луны. Но не вся последующая работа с радарами была научной. В 1960-х Советский Союз специально нацеливал на Луну лучи новейших и мощнейших радиолокационных станций сопровождения ракет и спутников под предлогом их калибровки – иногда на целых полчаса. Это давало США прекрасную возможность для небесного шпионажа. Инженер-электрик Уильям Перри, позже ставший министром обороны США, возглавил секретную программу, в рамках которой советский радар изучался с помощью расположенной в Стэнфорде радиоастрономической тарелки, принимавшей сигналы, отраженные от Луны. Отсеивать сигналы диспетчеров местного таксопарка, которые использовали ту же частоту, было хлопотно, зато ученые выяснили, что радар по своим характеристикам недостаточно совершенен, чтобы противостоять противовоздушной обороне противника.
Насколько мне известно, разведчики больше не используют Луну таким образом. Искусственные спутники предоставляют нам более эффективные каналы связи, чем естественные, а потому, вероятно, лучше подходят для такой разведки. Радиолокационные лучи по-прежнему время от времени отражаются от Луны в научных целях. Туда-обратно путешествует и другое излучение: миссии “Аполлона” оставили там маленькие зеркала, и разные обсерватории регулярно направляют в них лазерные лучи, чтобы точно измерить расстояние до Луны и понять, с какой скоростью оно увеличивается.
Хотя спутники лишили Луну профессиональной позиции в радиоотражательном деле, на любительской основе она по-прежнему в игре. У радиолюбителей нет возможности отправить сигнал дальше, чем на Луну и обратно на Землю, а поскольку некоторые из них оценивают свое мастерство дальностью дистанций связи, умение устанавливать коммуникацию в технике ЗЛЗ (Земля – Луна – Земля), которая требует больших антенн, хорошего оборудования и огромного терпения, служит предметом гордости для части сообщества[3]3
При этом любителям не под силу направлять лазерные лучи на уголковые отражатели “Аполлона”. В серии “Теории Большого взрыва” под названием “Лунное возбуждение” в этом отношении искажают истину.
[Закрыть].
Отражения от Луны используют и артисты. В 1980-х годах авангардный композитор и музыкант Полин Оливерос провела в ряде мест мероприятие под названием “Эхо с Луны”. Она отправляла издаваемые на сцене звуки по телефону радиолюбителю, который передавал их на Луну, а затем принимала и проигрывала их отражения. После нескольких экспериментов Оливерос пришла к выводу, что особенно хорошо получаются звуки тромбона и тибетских цимбал, но на более поздних концертах играла через Луну на аккордеоне. Иногда зрители отражали от Луны свои голоса (на одном из концертов для этого использовалась та же самая стэнфордская тарелка, с помощью которой Билл Перри шпионил за русскими). Зрителям нравилось.
В 2007 году художница Кэти Патерсон перевела ноты первой части бетховенской сонаты № 14 в до-диез миноре – “Лунной сонаты” – на азбуку Морзе. Она отправила получившиеся точки и тире на Луну и перевела отраженный сигнал на нотный язык для механического пианино. В результате получилась великолепная инсталляция “З. М. З.”. Многие писатели-фантасты ранее представляли, как “Лунную сонату” исполняют на Луне, но ни один из них не мог вообразить, что ее сыграют через Луну – и переосмыслят благодаря несовершенствам лунного отражения. Одни ноты потерялись, другие изменились. Величественное развитие и ровный темп музыки подчеркивают пробелы на месте нот, потерянных при передаче, и эта прерывистость придает индивидуальности в остальном совершенной технологии фортепиано, которому не нужен исполнитель. Технологии дотрагиваются до поверхности Луны, и она проявляет себя набором случайных отсутствий. Идеальных отражений не бывает.
* * *
Астронавты “Аполлона-8” не взяли с собой никакой музыки и не привезли музыку обратно на Землю. Брать кассетные магнитофоны на борт космических кораблей разрешили лишь на следующий год[4]4
По словам Брайана Ино, записавшего альбом Apollo, который стал саундтреком к фильму “Для всего человечества” и явил собой великолепный образчик размышлений о познании Луны, из тех астронавтов, кто вообще брал аудиозаписи на Луну, все, за исключением одного, предпочитали кассеты с музыкой в стилях кантри и вестерн. В том числе поэтому при записи альбома Ино использовал стил-гитару.
[Закрыть]. Кроме того, “Аполлон-8” не коснулся Луны. Однако на Рождество 1968 года Фрэнк Борман, Джим Ловелл и Билл Андерс стали первыми, кто последовал за пепельным светом и проектом “Диана” и долетел до Луны и обратно в командном модуле из ячеистого алюминия и стали, питаясь фасованной пищей и глотая воздух из баллонов, делая записи на магнитофон, испытывая перегрузки, паря в невесомости, порой страдая космической болезнью, порой мучаясь от бессонницы, неукоснительно следуя инструкциям, выполняя свою работу, в одиночестве, в тесноте, не покладая рук, переживая. Наблюдая. Меняя.
Более поздние командные модули программы “Аполлон” получили собственные имена: “Гамдроп”, “Чарли Браун”, “Колумбия”, “Янки Клипер”, “Одиссей”, “Китти Хок”, “Индевор”, “Каспер” и, наконец, “Америка”. Космический корабль “Аполлон-8” не имел другого имени за исключением названия миссии. Он взлетел с космодрома Космического центра Кеннеди 21 декабря, в 07:49 по местному времени. Двигатели ракеты-носителя “Сатурн-5” подняли его на орбиту менее чем за 12 минут. Экипаж стал проверять системы корабля.
– Итак, проверяем звукозапись: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.
Земля удалялась от них со скоростью чуть меньше восьми километров в секунду – огромная, сине-зелено-белая.
– Думаю, стоит устроиться поудобнее. Путешествие будет долгим.
Три часа спустя.
– Билл, ты проверил резервные компоненты?
Снова включился двигатель третьей ступени ракеты-носителя “Сатурн-5”, к которой был подсоединен командный модуль.
– Три, два, один. ЗАЖИГАНИЕ.
Корабль полетел прочь от Земли. Три дня спустя он пересек орбиту Луны чуть раньше самой Луны, как мышь, которая перебегает железнодорожные пути перед несущимся экспрессом. Когда Луна прошла в нескольких сотнях километров за ними, ее громада отрезала астронавтов от Центра управления полетами. Они подготовили двигатель корабля, который должен был проработать четыре минуты,
– Боже, четыре минуты?
чтобы вывести их на окололунную орбиту. Гелий вытолкнул топливо и окислитель из топливных баков в двигатель. Ждать с Земли команды зажигания не было смысла. В тот момент Земли для астронавтов не существовало. Вокруг была лишь пустота, и единственный двигатель не позволял им провалиться в нее еще глубже.
– Самые долгие четыре минуты в моей жизни.
До этого момента они не видели Луну. Корабль смотрел в другую сторону. Оказавшись на ее орбите, они развернули судно и увидели темную стену, окруженную звездами. Десять минут они летели в темноте, пока
– Я сейчас отвернусь, потому что солнце может выглянуть в любую секунду.
горизонт не слился с границей света и тьмы и свет не вернулся в мир.
Три раза они обогнули Луну, которая проносилась под их окнами со скоростью два километра в секунду,
– Кажется, там внизу… Кажется, там внизу огромный пляж.
подозрительно настоящая, но удивительно неразличимая. В 60-минутные дни они пытались – и часто не справлялись с задачей – различить рельеф
– Знаете что? Она серая.
странным образом освещенной, видимой под углом громады, тот самый рельеф, который через несколько месяцев поможет их товарищам на борту лунного модуля “Орел” корабля “Аполлон-11” совершить первую посадку на Луну. В 60-минутные ночи они занимались своими делами и делами корабля.
Только на четвертом обороте ориентация корабля в пространстве изменилась, и астронавты увидели то, чем навсегда запомнится их миссия. Вскоре после смены ночи днем из-за лимба Луны появилась яркая, цветастая форма,
– О господи! Вы только посмотрите на это! Земля восходит. Какая красота!
и жизнь вернулась в мир.
Астронавты спешили запечатлеть это зрелище – счастливые, как туристы, но не только. Борман утверждал, что сделал снимок первым, на черно-белую пленку, когда терминатор Земли только вышел из-за лимба Луны. Андерс
– Дай-ка мне цветную пленку!
поймал ее уже выше, когда она отошла от лимба чуть дальше, чем на собственную ширину, играя синими, белыми, зелеными и коричневыми красками и контрастируя с серой почвой под нею.
Этот снимок назвали
– Ого, как здорово получилось!
самой важной фотографией XX века. Если у вас есть глаза и вы живете в мире книг и экранов, я нисколько не сомневаюсь, что вы его видели, как не сомневаюсь и в том, что вы видели Луну в небесах.
* * *
Отражать – значит, отклонять. Снимок на цветной пленке показал: важность миссии не в том, куда она направлялась, как казалось изначально, а в том, откуда она прибыла. Беспрецедентное достижение дало возможность взглянуть на главный приз – отправную точку путешествия.
Когда снимок был представлен прессе, лунная поверхность стеной возвышалась в его правой части, а Земля висела в темноте слева. В такой ориентации оба небесных тела были явно коперниковскими – и именно этот ракурс девять лет спустя использует Джордж Лукас в “Звездных войнах”, показывая появление Звезды Смерти у планеты Явин. Отчасти его выразительность объяснялась необычностью.
К тому времени как снимок попал на обложку журнала Time, подталкивая к размышлениям всевозможных писателей, его развернули на 90°. Луна стала пейзажем с горизонтом, а чернота космоса – небом, в котором восходила Земля. Годом ранее Стэнли Кубрик использовал такой ракурс для подобных кадров “2001: Космической одиссеи”. Делая снимок более величественным и личным, чем вертикальная расстановка, этот ракурс вызывает ассоциации со знакомым восходящим Солнцем – или Луной – и помогает наблюдателю найти свое место и фактически оказаться на снимке[5]5
Разница впечатлений от разных ракурсов отчасти объясняется синтаксисом кинематографа. Как правило, драма движется горизонтально – перемещение от одной стороны экрана к другой ведет зрителя во времени. Снятое слева направо появление Звезды Смерти (космической станции, которую легко спутать с Луной), выплывающей из-за планеты Явин, служит развитию сюжета: прибегая к этому приему, Лукас усиливает напряжение. При вертикальном движении камеры возникает пауза, или безвременье: взгляд вверх выводит повествование на новый уровень. Таким образом, расположение Земли, Луны и Солнца у Кубрика позволяет режиссеру выйти за границы сюжета и драмы и показать величие бескрайнего космоса, определяемого лишь перспективой.
[Закрыть]. В докоперниковском смысле можно даже сказать, что он помещает наблюдателя в центр.
Показанный таким образом, “Восход Земли” имеет три элемента. Чтобы разглядеть непревзойденную пустоту черного фона, лишенного цвета и характерных черт, не обязательно считать его эхом легендарного “Черного квадрата” Казимира Малевича (1915), который сам художник провозгласил первой картиной, не связанной ни с одним объектом реального мира.
В нижней части снимка находится словно бы наложенное на него светлое горизонтальное поле, имеющее скорее текстуру, чем рельеф. В 1969 году, когда “Восход Земли” уже укоренился в культурном сознании, Марк Ротко использовал такую же рассеченную надвое конструкцию – черное вверху, текстурированное серое внизу – на одной из своих последних картин без названия. Он сказал, что на этой картине изобразил смерть. Но где именно – в сером, черном или их противопоставлении? Этого он не уточнил.
Третий элемент “Восхода Земли” расположен в черной верхней части и служит вторым светлым пятном на снимке. Свет во тьме – это убывающая Земля, чуть больше половины которой освещено Солнцем. Ее граница света и тьмы прогибается над лимбом серой, неприветливой Луны. Это не смерть. Не ничто. Это жизнь – яркая и величественная.
Над границей света и тьмы, почти по центру диска (а следовательно, в той части Земли, которая ближе всего к камере) находится остров Вознесения, невидимая с такого расстояния точка вулканической скалы, где в тот самый момент, когда делалась фотография, антенна станции слежения, известной под названием “Дьявольское поддувало”, ловила радиопередачи с “Аполлона-8”.
Люди и раньше представляли себе подобное. Однако, создавая такие картины, почти все художники ошибались. На ранних изображениях видимая с Луны Земля почти всегда напоминала школьный глобус с очертаниями знакомых континентов: изученный людьми и известный людям мир. Но оказалось, что это не мир, а планета, странная и изменчивая. Ее черты едва узнаваемы, но характер не перепутать ни с чем. Она стала уже не образом, а данностью.
На “Восходе Земли” Северный полюс находится справа, ниже границы света и тьмы, невидимый в зимнее солнцестояние. Южный полюс прекрасно различим в верхней левой части лимба. Весь лимб сияет белизной. Облако, зависшее над морями и скрывающее побережье Бразилии, кажется ярким, как льды Антарктиды. Контраст с окружающей чернотой разителен.
Внутри четкой белой границы самыми яркими чертами диска стали изогнутые погодные фронты. Они закручиваются по часовой стрелке над Южным океаном и против часовой стрелки над Атлантикой на севере. Их непрерывное движение выражается в напряжении их изгибов. Более постоянные черты различить труднее. Слева, прямо над границей света и тьмы, находится залитое солнцем побережье пустыни Намиб, но найти ее непросто, если не знать, что именно искать. Справа лучше видны яркие пески Западной Сахары. Единственный хорошо различимый элемент рельефа – небольшой изгиб четко видимого побережья Северной Африки, называемый полуостровом Рас-Нуадибу. В 1441 году – на заре европейских исследовательских экспедиций, которые должен был в некотором роде превзойти проект “Аполлон”, – португальский мореплаватель Нуну Триштан, служивший при дворе Генриха Мореплавателя, первым из португальцев проплыл мимо этого мыса. В ходе той же экспедиции он первым из европейцев взял рабов с берегов Западной Африки. Сегодня бухта за полуостровом стала кладбищем покинутых кораблей[6]6
По странному совпадению это также одно из лучших в мире мест для покупки лунной породы. Официально ни один из образцов породы, привезенных на Землю более поздними миссиями программы “Аполлон”, не находится в частных руках, но примерно 1 из 1000 метеоритов, падающих на Землю, имеет лунное происхождение, а метеориты, как правило, легче всего найти в пустынях: в сухом климате они не выветриваются и не сливаются с окружающим пейзажем, они хорошо видны на открытом просторе, а обитатели пустынь обычно внимательны и зорки. Рынки Нуадибу – в числе лучших мест для покупки метеоритов, найденных кочевниками Сахары. Среди этих метеоритов попадаются и лунные.
[Закрыть].
Суша темнее облака, а океан, вопреки ожиданиям Леонардо, темнее суши – за исключением одной точки в центре, чуть ближе к лимбу, чем к границе света и тьмы, и эта точка сияет сама по себе. Это часть Южной Атлантики, где в тот конкретный момент в той конкретной геометрии поверхность моря стала шелковичным зеркалом, которое представлял Леонардо: дневное солнце отражается от нее ровно под тем углом, который нужен, чтобы направить лучи на Луну, встающую на востоке. Это яркое пятно, которое в оптике называют правильным (то есть зеркальным) отражением, по природе своей отличается от облаков. Глянцевое, оно блестит как металл, а не как снег.
Но это тот же самый свет. Экипаж “Аполлона-8” находился слишком далеко, чтобы увидеть рукотворные огни в городах Африки, ведь они в то время были совсем тусклыми: в те дни вся Нигерия потребляла меньше электричества, чем небольшой американский городок. Астронавты не видели ни пожаров, ни вулканов, ни молний. И на Земле, и на Луне они видели лишь то, на что падал солнечный свет.
И все же как сильно отличаются одинаково освещенные солнцем тела на этом снимке: одно из них выглядит сложным, красивым, динамичным, но на мгновение замершим при щелчке затвора, как сфотографированный танцор в прыжке, а другое – серым, словно бесконечным, неровным, апатичным, застывшим под слоем лака, неподвижным. Оно кажется незавершенным, но давно покинутым, нуждающимся в чем-то, но не способным ни на что.
Луна отражает всего 12 % света, получаемого от Солнца. Остальное она поглощает, как гудрон в пустыне. За 354-часовой день камни на ее поверхности нагреваются более чем до 100 °C. За 354-часовую ночь они остывают, когда переданная им энергия Солнца уходит обратно в космос как тепло, и поздней ночью их температура достигает –150 °C. Однако столь огромный перепад температуры почти ничего не дает. Солнечное тепло проникает в пыль, камни и породу лишь примерно на метр, а глубже ничего не меняется. Энергия приходит с неба и уходит в небо, не вызывая существенных перемен по пути.
Земля поглощает на 20 % меньше солнечной энергии на квадратный метр, чем Луна, но находит ей гораздо более полезное применение.
Энергетический поток, который на Луне лишь нагревает тонкий слой породы, на Земле становится двигателем постоянных изменений. Каждую секунду под влиянием Солнца с поверхности Земли испаряется 16 миллионов тонн воды, которая поднимается в небо. Достигнув более высоких и холодных слоев атмосферы, этот водяной пар конденсируется в плоские слоистые и высокие кучевые облака, в облака, похожие на орлов, на китов и даже на ручные пилы, в крошечные капли тумана и увесистые капли дождя, в тяжелый град, в мокрый снег – в свет и тьму, мягкость и твердость неба. Конденсация воды выпускает в атмосферу энергию, которую вода при испарении забрала с освещенной Солнцем поверхности, создавая градиенты температуры и давления, непрестанно колышущие воздух.
Океаны тоже перемещают тепло, большими партиями двигая его из тропиков к полюсам, и это путешествие определяется той же силой Кориолиса, которая заставляет облака на “Восходе Земли” закручиваться в разные стороны на севере и на юге. Направленные к полюсам потоки перераспределяют около 5 % солнечной энергии: тепло их вод, взаимодействие течений и колебания воздуха под действием Солнца приводят к формированию штормов, ветров и гигантских волн, а также к возникновению моментов неожиданного спокойствия, ясных морозных ночей и туманов, неподвижно лежащих целыми днями. И все это происходит просто потому, что это возможно. Просто потому, что наличие океана и атмосферы позволяет это – и даже требует этого.
И это еще не все. Жизнь обеспечила Землю огромными листьями – совокупная площадь их поверхности не уступает площади самих континентов. Вместе с менее известными, но не менее важными фотосинтезирующими мембранами водорослей и бактерий эти листья поглощают примерно одну тысячную солнечного света, которую используют для преобразования части углекислого газа из воздуха и части испаряющейся и проливающейся дождем воды в кислород и биомассу.
Это преобразование не позволяет атмосфере стабилизироваться, и оно же лежит в основе жизни на Земле. Почти все живое на нашей планете живет благодаря этому преобразованию – вся энергия, получаемая при поедании другого живого организма, изначально происходит из солнечного света. Каждое сокращение мышцы и каждый проходящий по нерву импульс – это тоже солнечный свет.
Немногие из созерцающих “Восход Земли” понимают эту климатическую, океаническую и биогеохимическую механику. Но почти все чувствуют, что она значит: видимая на снимке сфера многообразна и многолика, изменчива и динамична. Она представляет собой полный жизни мир над унылым и безжизненным немиром. “Восход Земли” несет два простых сообщения: что Земля там, в небесах, живая и что живой человек там, в небесах, ее видел.
* * *
Наблюдения пепельного света, сделанные в обсерваториях Прованса и Аризоны в начале 2000-х годов, стали повторением “Восхода Земли”. Используя отражения от Луны для формирования нового представления о жизни на Земле, эти и последующие исследования показали ту же самую несбалансированную динамику планеты, но теперь не на картинке, а в виде цифр.
Вот особенности Земли, которые можно увидеть в пепельном свете Луны. В составе атмосферы заметно химическое неравновесие, которое Джеймс Лавлок первым назвал признаком жизни: присутствие кислорода и метана, вступающих во взаимодействие друг с другом, требует наличия постоянного источника обоих газов, и мы знаем, что их источником служит жизнь. Существование океанов можно определить благодаря таким бликам, как экипаж “Аполлона-8” увидел в Южной Атлантике, потому что зеркальное отражение поляризует свет, а поляризация поддается измерению на расстоянии.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.