Автор книги: Ричард Докинз
Жанр: Религиоведение, Религия
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 10 (всего у книги 23 страниц)
У нас есть интуитивное ощущение, что, скажем, омар более сложен (более “развит”, а кто-то мог бы даже сказать “эволюционно выше”), чем какое-нибудь другое животное, например кивсяк. Можем ли мы измерить что-то, чтобы подтвердить или опровергнуть этот интуитивный вывод? Не разбирая организмы этих животных на биты, мы можем приблизительно оценить количество информации в этих двух организмах следующим образом. Представьте, что мы напишем книгу, в которой описывается омар. Теперь давайте напишем другую книгу, в которой с той же степенью подробности описывается кивсяк. Разделим число слов в одной книге на число слов в другой, и мы получим приблизительную оценку соотношения количества информации омара и кивсяка. Важно подчеркнуть, что соответствующие животные должны быть описаны в обеих книгах с одной и той же степенью подробности. Очевидно, что если мы опишем кивсяка с точностью до подробностей клеточного строения, но ограничимся макроскопическими анатомическими признаками в случае омара, то кивсяк окажется далеко впереди.
Однако если провести эту проверку должным образом, я готов спорить, что книга об омаре окажется длиннее, чем книга о кивсяке. Этот вывод основан на следующих простых соображениях. Оба животных состоят из сегментов – модулей строения тела, принципиально сходных друг с другом и соединенных продольно, как вагоны поезда. У кивсяка большинство сегментов идентичны, а у омара большинство сегментов отличаются друг от друга, хотя и следуют общему плану (у каждого есть нервный узел, пара конечностей и так далее). Книга о кивсяке состояла бы из одной главы с описанием типичного сегмента, за которой следовала бы фраза: “Повторить N раз”, где N – число сегментов. В книге об омаре понадобилась бы отдельная глава для каждого сегмента. Это не совсем справедливо в отношении кивсяка, у которого сегменты на переднем и заднем концах тела немного отличаются от остальных. И все же я готов спорить, что если кто-либо собрался бы провести такой эксперимент, полученная оценка количества информации у омара оказалась бы существенно выше оценки количества информации у кивсяка.
Такое сравнение омара и кивсяка не представляет непосредственного эволюционного интереса, потому что никто не считает, что омары произошли от кивсяков. Очевидно, что ни одно современное животное не произошло ни от одного другого современного животного. Но у любой пары современных животных был последний общий предок, который жил в какой-то (принципиально) определимый момент геологической истории. Почти вся эволюция свершилась далеко в прошлом, что сильно затрудняет изучение ее подробностей. Но мы можем воспользоваться мысленным экспериментом “с длиной книги”, чтобы договориться, что, если только мы сможем исследовать предковые формы, будет означать вопрос о том, увеличивается ли количество информации в ходе эволюции.
На деле ответ на этот вопрос запутан и служит предметом разногласий, очень тесно связанных с бурными спорами о том, прогрессивна ли эволюция в целом. Я из числа тех, кто придерживается умеренной разновидности ответа “да”. Мой коллега Стивен Джей Гулд склоняется к ответу “нет”[125]125
См. очерк “Человеческий шовинизм и эволюционный прогресс”.
[Закрыть]. Не думаю, что кто-либо станет отрицать, что измеренное любым способом количество информации в геноме – будь то информация в описании строения тела, суммарная информационная емкость генома, емкость реально используемой части генома или количество настоящей (“архивированной”) информации в геноме – имело широкую общую тенденцию к увеличению в ходе эволюционного развития человека из наших далеких предков-бактерий. Однако у людей могут быть разногласия по двум важным вопросам: во-первых, обнаружится ли такая тенденция во всех или в большинстве эволюционных ветвей (например, эволюционное развитие паразитов нередко демонстрирует тенденцию к уменьшению сложности строения тела, потому что паразитам удобнее быть простыми), и, во-вторых, не наталкивается ли эта тенденция, даже в тех эволюционных ветвях, где она отчетливо проявляется в долговременном масштабе, на такое количество реверсий и повторных реверсий в кратковременном масштабе, что это подрывает саму идею прогресса. Здесь не место разрешать этот интересный спор. У обеих сторон есть адепты среди выдающихся биологов, предъявляющие хорошие аргументы.
Кстати, сторонники “разумного замысла”, направляющего эволюцию, должны крепко верить в то, что количество информации в ходе эволюции увеличивается. Даже если эта информация исходит от Бога (возможно, тем более, если она исходит от Бога), ее количество непременно должно увеличиваться и это увеличение должно, предположительно, проявляться в геноме.
Наверное, главный урок, который мы должны извлечь из подхода Прингла, состоит в том, что количество информации в биологической системе – это другое название сложности этой системы. Поэтому вопрос креационистов, с которого мы начали, равнозначен стандартному вопросу о том, как объяснить возникновение биологической сложности из более простых предшественников в ходе эволюции. Ответу на этот вопрос я посвятил три книги и не предлагаю пересказывать здесь их содержание. “Вопрос об информации” – это, оказывается, не кто иной, как наш старый друг: “Как такая сложная структура как глаз могла развиться в ходе эволюции?” На него просто надели броский наряд из математического языка – возможно, специально, чтобы обвести нас вокруг пальца. Или, возможно, те, кто задает этот вопрос, уже сами обвели себя вокруг пальца и не понимают, что это все тот же старый вопрос – на который дан исчерпывающий ответ.
В заключение позвольте мне обратиться к другому способу взглянуть на вопрос о том, увеличивается ли количество информации в геномах в ходе эволюции. Сейчас мы переключимся с широкого размаха эволюционной истории на мелкие детали естественного отбора. Сам естественный отбор, если подумать, представляет собой сведение обширного исходного поля возможных альтернатив к более узкому полю тех альтернатив, которые реально будут выбраны. Случайные генетические ошибки (мутации), половая рекомбинация и миграционное перемешивание вместе обеспечивают обширное поле генетической изменчивости – доступные альтернативы. Мутация – это не увеличение настоящего количества информации, скорее наоборот, потому что мутация, в терминах Шеннона, способствует увеличению априорной неопределенности. Но перейдем теперь к естественному отбору, который сокращает “априорную неопределенность” и поэтому, в шенноновском смысле, вносит информацию в генофонд. В каждом поколении естественный отбор удаляет из генофонда менее успешные гены, так что остающийся генофонд представляет собой меньшее подмножество. Это сокращение неопределенности происходит неслучайно, в направлении усовершенствования, определяемого, по Дарвину, как увеличение приспособленности к выживанию и размножению. Разумеется, общий диапазон изменчивости вновь пополняется в каждом поколении за счет новых мутаций и других форм изменчивости. Но это не отменяет истинности утверждения, что естественный отбор сводит более обширное исходное поле возможностей, включающее преимущественно неуспешные варианты, к более узкому полю успешных вариантов. Это аналогично тому определению информации, с которого мы начали: информация – это то, что позволяет свести априорную неопределенность (исходный диапазон возможностей) к последующей определенности (“успешным” вариантам, выбранным из априорных возможностей). Согласно этой аналогии, естественный отбор по определению представляет собой процесс, поставляющий информацию в генофонд следующего поколения.
Если естественный отбор поставляет информацию в генофонд, то о чем эта информация? О том, как выжить. Строго говоря, она о том, как выжить и размножиться в условиях, преобладавших, когда были живы предшествующие поколения. В той степени, в какой сегодняшние условия отличаются от условий жизни предков, генетические советы предков будут неправильными. В крайних случаях это может привести к вымиранию вида. В той степени, в какой условия жизни текущего поколения не слишком отличаются от условий жизни прошлых поколений, информация, поступающая в геномы текущего поколения от прошлых, будет полезной информацией. Информацию, полученную из времени жизни предков, можно рассматривать как руководство по выживанию для нынешнего поколения – семейную библию “советов” предков о том, как выжить сегодня. Если позволить себе немного поэтической вольности, можно сказать, что информация, поставляемая в современные геномы естественным отбором, это не что иное, как информация о древней среде, в которой выжили предки.
Эта идея информации, поставляемой поколениями предков в генофонд потомков, составляет одну из тем моей книги “Расплетая радугу”. Развитие этой концепции занимает в ней целую главу (“Генетическая книга мертвых”), поэтому я не буду повторять ее здесь. Скажу только две вещи. Во-первых, именно генофонд вида в целом, а не геном конкретной особи, лучше всего рассматривать как получателя поступающей от предков информации о том, как выжить. Геномы отдельных особей – это случайные выборки из современного генофонда, которые делает половая рекомбинация. Во-вторых, наше привилегированное положение позволят нам при желании “перехватывать” эту информацию и “читать” организм животного или даже его гены как зашифрованное описание древних миров. Вот что я написал об этом в книге “Расплетая радугу”:
И разве это не захватывающая мысль? Мы цифровые архивы африканского плиоцена и даже девонских морей, ходячие хранилища мудрости давних дней. Можно провести всю жизнь за чтением в этой древней библиотеке и умереть, не пресытившись ее чудесами.
Гены – это не мы[126]126
Впервые текст был опубликован под заголовком Don't panic; take comfort, it's not all in the genes в газете “Дейли телеграф” 17 июля 1993 года.
[Закрыть]
Пугало генетического детерминизма давно пора похоронить. Открытие так называемого “гена гомосексуальности” наконец дает нам превосходный повод это сделать.
Изложение фактов не займет много времени. Группа исследователей из Национальных институтов здравоохранения в городе Бетесда (штат Мэриленд, США) опубликовала в журнале “Сайенс”[127]127
Hamer, D. H., et al. A linkage between DNA markers on the X chromosome and male sexual orientation // Science, 261 (1993): 321–327.
[Закрыть] статью, в которой показала следующую закономерность. Братья мужчин-гомосексуалов с большей вероятностью сами окажутся гомосексуалами, чем можно было бы ожидать, если бы распределение было случайным. Примечательно, что высока и вероятность наличия у них гомосексуальных дядьев по матери и других гомосексуальных родственников-мужчин с материнской (но не с отцовской) стороны. Эта закономерность сразу заставляет заподозрить, что по крайней мере один ген, ведущий к гомосексуальности у мужчин, передается с X-хромосомой[128]128
У мужчин всего одна X-хромосома, которую они всегда получают от матери. У женщин две X-хромосомы, по одной от каждого из родителей. В X-хромосоме у мужчины могут быть те же гены, что у его дяди по матери, но не у дяди по отцу.
[Закрыть].
Но команда из Бетесды на этом не остановилась. Современные технологии позволили исследователям провести поиск конкретных генетических маркеров в самом коде ДНК. В одном участке, называемом Xq28, недалеко от конца X-хромосомы, они обнаружили пять идентичных маркеров, общих для достоверно повышенного процента гомосексуальных братьев. Эти факты изящно сходятся друг с другом, подтверждая полученные ранее свидетельства наследуемого компонента мужской гомосексуальности.
И что же? Дрожат ли основания социологии? Должны ли богословы заламывать руки в тревоге, а юристы потирать их в предвкушении поживы? Говорит ли нам это открытие что-то новое о “виновности” или “ответственности”? Добавляет ли оно что-нибудь к аргументам за или против того, что гомосексуальность можно или нужно “лечить”? Должно ли оно прибавить или убавить у отдельных гомосексуалов гордости, или стыда, за свои склонности? На все эти вопросы ответ – нет. Если вы гордитесь, можете продолжать гордиться. Если предпочитаете себя винить, продолжайте себя винить. Ничего не изменилось. Объясняя, что я имею в виду, я заинтересован не столько в данном конкретном случае, сколько в том, чтобы на его примере проиллюстрировать идею более общего свойства о генах и о пугале генетического детерминизма.
Между чертежом и рецептом есть существенная разница[129]129
Эта разница обсуждается и в очерке “Дарвин-триумфатор”.
[Закрыть]. Чертеж – это подробное, однозначное описание какого-либо конечного продукта, например дома или автомобиля. Один из отличительных признаков чертежа – то, что он обратим. Если инженеру дать автомобиль, он может восстановить его чертеж. Но если повару дать попробовать фирменное блюдо другого повара, его соперника, он не сможет воспроизвести рецепт. Между компонентами чертежа и компонентами конечного продукта есть взаимно однозначное соответствие. Этот элемент автомобиля соответствует этому элементу чертежа. Тот элемент автомобиля соответствует тому элементу чертежа. В случае с рецептом такого взаимно однозначного соответствия нет. Нельзя взять отдельный шарик суфле и найти по нему то слово в рецепте, которое “определяет” этот шарик. Все слова в рецепте, в совокупности со всеми ингредиентами, соединяются, чтобы получить суфле.
Гены иногда похожи на чертежи, а иногда – на рецепты. Важно не смешивать эти два аспекта. Гены представляют собой информацию в цифровом, текстовом виде, и они сохраняют свою жесткую, текстуальную целостность, меняя партнеров в ряду поколений. Хромосомы – длинные цепочки генов – очень похожи на компьютерные магнитные ленты. Когда в клетке считывается фрагмент генетической ленты, первое, что происходит с записанной на ней информацией, это ее трансляция – перевод из одного кода в другой: из кода ДНК в связанный с ним код, которым диктуется точная форма белковой молекулы. До этого момента ген ведет себя как чертеж. Между элементами гена и элементами белка действительно имеется взаимно однозначное соответствие, и оно действительно детерминировано.
Лишь на следующем этапе процесса – развитии всего организма и его психологических предрасположенностей – все становится сложнее и больше похоже на использование рецепта. Между отдельным геном и “элементами” организма редко имеется простое взаимно однозначное соответствие. Вместо этого имеется соответствие между генами и скоростями, с которыми в ходе эмбрионального развития идут различные процессы. Последствия, которые это будет иметь для организма и его поведения, нередко многообразны, и разобраться в них трудно.
Рецепт – хорошая метафора, но есть лучшая. Представьте себе одеяло, подвешенное под потолком на ста тысячах резиновых лент, спутанных друг с другом и перекрученных. Форма этого одеяла (организма) определяется натяжением всех этих лент. Одни ленты соответствуют генам, другие – факторам среды. Каждому изменению в одном конкретном гене соответствует удлинение или укорачивание конкретной ленты. Но всякая из этих лент соединена с одеялом только опосредованно, через бесконечные связи в путанице других лент. Если перерезать одну из них или натянуть ее, произойдет распределение изменений натяжения, и действие, которое это окажет на форму одеяла, будет сложным и труднопредсказуемым.
Точно так же наличие определенного гена не обязательно однозначно диктует, что его обладатель будет гомосексуалом. Гораздо вероятнее, что причинно-следственная связь имеет статистический характер. Действие генов на организм и его поведение напоминает действие сигаретного дыма на легкие. Если вы много курите, вы повышаете статистическую вероятность того, что у вас будет рак легких. Нельзя сказать, что вы однозначно заработаете рак легких. И воздержание от курения не сможет однозначно защитить вас от рака легких. Мы живем в статистическом мире.
Представьте себе газетный заголовок: “Ученые открыли, что гомосексуальность имеет причины”. Очевидно, что это никакая не новость, это банальность. Все чем-то обусловлено. Утверждение, что гомосексуальность обусловлена генами, интереснее и обладает тем эстетическим достоинством, что оно смутит политически ангажированных зануд, но о неотвратимости гомосексуальности оно говорит не больше, чем мой банальный заголовок.
Одни вещи, обусловленные генами, сложно изменить. Другие просто. Одни вещи, обусловленные средой, просто изменить. Другие – сложно. Подумайте о том, как крепко мы связаны с акцентом нашего детства: взрослый иммигрант всю жизнь носит ярлык иностранца. Здесь налицо гораздо более строгий детерминизм, чем в действии большинства генов. Интересно было бы узнать статистическую вероятность того, что ребенок, подвергшийся определенному влиянию среды, например религиозному воспитанию в монастыре, сможет впоследствии избавиться от этого влияния. Было бы столь же интересно узнать статистическую вероятность того, что мужчина, в X-хромосоме которого на участке Xq28 имеется определенный ген, окажется гомосексуалом. Простая демонстрация того, что существует ген, “ведущий” к гомосексуальности, оставляет вопрос о значении этой вероятности почти полностью открытым. У генов нет монополии на детерминизм.
Поэтому, ненавидите ли вы гомосексуалов или любите, хотите ли вы посадить их за решетку или “вылечить”, не стоит подводить под это генетические основания.
“Сын” закона Мура[130]130
Впервые опубликовано в сб.: Brockman, J. (ed.) The Next Fifty Years. New York, Vintage Books, 2002.
[Закрыть]
Великие люди, своротившие горы, иногда развлекаются перегибанием палок. Питер Медавар знал, что делает, когда написал в рецензии на книгу Джеймса Уотсона “Двойная спираль”:
Нет никакого смысла спорить с кем-либо бестолковым настолько, что он не понимает: этот комплекс открытий [молекулярная генетика] – величайшее научное достижение XX века.
Медавар, как и автор рецензируемой книги, мог с лихвой оправдать свою заносчивость, но не обязательно быть бестолковым, чтобы не согласиться с его мнением. Как насчет предшествующего англоамериканского набора открытий, известного как неодарвинизм, или синтетическая теория эволюции? Физики имели бы все основания выдвинуть на роль “величайшего достижения” теорию относительности или квантовую механику, а космологи – расширение Вселенной. Окончательно решить, что именно было “величайшим”, невозможно, однако молекулярно-генетическая революция, несомненно, стала одним из величайших научных достижений XX века, а значит, и человеческого вида за все время его существования. Куда мы ее заведем – или куда она нас заведет – в следующие пятьдесят лет? К середине века суд истории может постановить, что Медавар был ближе к истине, чем допускали его современники или даже он сам.
Если бы меня попросили охарактеризовать молекулярную генетику одним словом, я выбрал бы слово “цифровая”. Разумеется, генетика Менделя тоже была “цифровой”: она предполагала дискретность в независимом распределении генов при скрещиваниях. Но что у генов внутри, было неизвестно, и они по-прежнему могли оказаться субстанциями с непрерывно изменчивыми свойствами, силой и оттенками, необъяснимо и запутанно связанными со своими проявлениями. Генетика Уотсона – Крика – “цифровая” от начала до конца, “цифровая” до мозга костей, представленного самой двойной спиралью. Размер генома можно измерять в гигабазах[131]131
Гигабаза – миллиард баз, то есть азотистых оснований, которыми различаются составляющие ДНК нуклеотиды. В базах (килобазах, мегабазах и так далее) измеряют длину ДНК, в том числе генов, хромосом и целых геномов. – Прим. пер.
[Закрыть] с такой же точностью, как размер жесткого диска измеряют в гигабайтах. Более того, эти две единицы можно переводить одну в другую, умножая на константу. Современная генетика представляет собой чистые информационные технологии. Именно поэтому ген антифриза можно скопировать из тела арктической рыбы и вставить в помидор[132]132
См.: “Наука, генетика и этика. Докладная для Тони Блэра”.
[Закрыть].
За те полвека, что прошли со дня знаменитой совместной публикации Уотсона и Крика, взрыв, вызванный высеченной ими искрой, экспоненциально расширялся, как и подобает взрыву. Я думаю, что могу употребить слово “экспоненциально” в буквальном его смысле и могу подкрепить это мнение аналогией с более известным взрывом, на сей раз в информационных технологиях в традиционном понимании. Закон Мура гласит, что вычислительная мощность компьютеров увеличивается вдвое за каждые полтора года. Это эмпирически установленный закон без общепринятого теоретического обоснования, хотя Натан Мирволд и предлагает на эту роль остроумную самоотносимую конструкцию, “закон Натана”, который гласит, что программное обеспечение растет быстрее, чем предполагает закон Мура, и именно этим объясняется закон Мура. Какой бы ни была его причина (или комплекс причин), закон Мура выполняется уже почти пятьдесят лет. Многие аналитики ожидают, что он будет выполняться еще столько же, и это будет иметь поразительное влияние на дела людские – но мой очерк посвящен иному.
Давайте вместо этого зададимся вопросом, существует ли в информационных ДНК-технологиях некий эквивалент закона Мура. Лучшей мерой здесь, конечно, будет мера экономического свойства, потому что деньги дают нам хороший сводный индекс человекочасов и стоимости оборудования. Проходят десятки лет, и что происходит со стандартным числом килобаз ДНК, которые можно секвенировать за определенную сумму денег? Возрастает ли оно экспоненциально, и если да, то каково время его удвоения? Заметьте, кстати (это еще одно проявление того, что наука о ДНК – одна из отраслей информационных технологий), что совершенно безразлично, от какого животного или растения получена эта ДНК. Технологии секвенирования и их стоимость примерно одинаковы. Более того, не прочитав записанное в ДНК текстовое сообщение, невозможно сказать, взята ли эта ДНК у человека, гриба или микроба.
Выбрав свой экономический стандарт, я не знал, как на практике узнать стоимость секвенирования. К счастью, я догадался спросить об этом своего коллегу – Джонатана Ходжкина, профессора генетики из Оксфордского университета. И с радостью узнал, что он недавно сделал именно то, что мне нужно, когда готовился к лекции для школы, в которой когда-то учился. Ходжкин любезно прислал мне следующие оценки стоимости в фунтах стерлингов секвенирования одной базы (то есть одной буквы кода ДНК). В 1965 году эта стоимость составила около тысячи фунтов за букву для секвенирования 5S рибосомной РНК бактерии (не ДНК, но секвенировать РНК стоит примерно столько же). В 1975 году стоимость секвенирования ДНК вируса X174 составила около десяти фунтов за букву. Ходжкин не нашел подходящего примера для 1985 года, а в 1995 году стоимость составила один фунт для секвенирования ДНК Caenorhabditis elegans – крошечного червя-нематоды, в которого молекулярные биологи настолько влюблены, что называют его просто “нематода” или даже просто “червь”[133]133
Нелепость этого можно оценить, обратившись к следующему незабываемому образу, приведенному в одной из первых книг по зоологии, которые мне довелось прочесть – “Животные без позвоночника” Ральфа Буксбаума: “Если бы вся материя во вселенной, за исключением нематод, куда-то исчезла, наша планета по-прежнему осталась бы смутно узнаваемой… Мы увидели бы горы, холмы, долы, реки, озера и океаны, представленные пленкой нематод… Вдоль призрачных рядов, представляющих наши улицы и дороги, по-прежнему стояли бы деревья. Местоположение разных растений и животных по-прежнему можно было бы установить и, будь у нас достаточно знаний, во многих случаях даже определить их до вида, исследовав паразитировавших на них нематод”. Существует, по-видимому, более полумиллиона видов нематод – намного больше, чем во всех классах позвоночных, вместе взятых.
[Закрыть]. Около 2000 года, к тому времени, когда увенчался успехом проект “Геном человека”, стоимость секвенирования составляла около 0,1 фунта за букву. Чтобы показать положительную тенденцию, я взял обратные этим величинам показатели “соотношения цена – качество”, то есть количество ДНК, которое можно секвенировать за определенную сумму денег (я выбрал тысячу фунтов с поправкой на инфляцию). Я нанес полученные показатели в базах на тысячу фунтов на логарифмическую шкалу, удобную тем, что на ней график экспоненциального роста имеет вид прямой линии.
Я должен вслед за профессором Ходжкином отметить, что данные по этим четырем точкам рассчитаны лишь в первом приближении. Тем не менее их близость к прямой линии достаточно убедительна, что заставляет предположить экспоненциальный рост наших возможностей в области секвенирования ДНК. Время удвоения (или время сокращения стоимости вдвое) составляет два года и три месяца, что сопоставимо с полутора годами, о которых говорит закон Мура. В той степени, в какой секвенирование ДНК зависит от мощности компьютеров (а эта степень довольно высока), открытый нами новый закон, должно быть, многим обязан самому закону Мура, что оправдывает мое шуточное название – “сын” закона Мура.
Вообще-то у нас нет никаких оснований ожидать экспоненциального роста технического прогресса. Я не пытался строить графики, но удивился бы, если бы оказалось, что, скажем, скорость летательных аппаратов, расход топлива автомобилей или высота небоскребов меняются экспоненциально. Я подозреваю, что они меняются не вдвое за постоянные промежутки времени, а ближе к арифметической прогрессии. Действительно, покойный Кристофер Эванс[134]134
Кристофер Эванс (1931–1979) – британский психолог и специалист по информатике. – Прим. пер.
[Закрыть] писал еще в 1979 году, когда закон Мура едва вступил в силу:
Сегодняшний автомобиль отличается от автомобиля первых послевоенных лет по целому ряду показателей… Но давайте на минуту представим, что автомобилестроение за тот же период развивалось с такой же скоростью, как компьютерная промышленность: насколько дешевле и эффективнее были бы современные модели? Сегодня можно было бы купить “Роллс-ройс” за 1 фунт 35 пенсов, он расходовал бы один галлон топлива на три миллиона миль, а мощность его двигателя была бы как у [лайнера] “Королева Елизавета – 2”. А если вас интересует миниатюризация, то вы могли бы разместить полдюжины машин на булавочной головке.
Космонавтика тоже казалась мне отраслью, где возможен умеренный, поступательный рост, как в автомобилестроении. Но затем я вспомнил интереснейшие рассуждения Артура Кларка, чьим авторитетом пророка нельзя пренебречь. Представьте себе космический корабль будущего, улетающий к далекой звезде. Даже если он будет лететь с самой высокой скоростью, возможной на нынешнем этапе развития космонавтики, ему все равно потребуется не одно столетие, чтобы достигнуть цели. И прежде чем он проделает половину своего пути, его перегонит более быстрый корабль – продукт технологий одного из следующих столетий. Кто-то мог бы сказать, что первый корабль вообще не стоило труда запускать. Из тех же соображений и второй корабль тоже не стоило труда запускать, потому что члены его команды обречены помахать руками своим правнукам, проносящимся мимо на третьем корабле, и так далее. Одним из способов разрешить этот парадокс будет указание на то, что технологии, необходимые для создания последующих кораблей, не стали бы доступны без исследований и разработок, которые пошли на создание их более медленных предшественников. Я дал бы тот же ответ любому, кто предположил бы, что поскольку весь проект “Геном человека” теперь можно было бы начать с нуля и завершить гораздо быстрее, значит, и само это предприятие следовало отложить на соответствующий срок.
Если четыре точки, по которым построен наш график, следует признать грубыми оценками, то экстраполяция прямой линии до 2050 года тем более неточна. Но по аналогии с законом Мура, и особенно если “сын” закона Мура действительно чем-то обязан отцу, эта прямая линия, вероятно, представляет собой достаточно убедительный прогноз. Давайте по крайней мере проследим, куда она нас приведет. Она заставляет предположить, что в 2050 году у нас будет возможность целиком секвенировать человеческий геном всего за сто фунтов по их текущей стоимости (около ста шестидесяти долларов США). Вместо проекта “Геном человека” каждый сможет себе позволить собственный, персональный геномный проект. Специалисты по популяционной генетике получат окончательные данные о человеческом разнообразии. Можно будет построить схемы родства, связывающие любого с любым другим. Это будет воплощением самых дерзких мечтаний историков. Они воспользуются данными о географическом распространении генов, чтобы реконструировать великие переселения и нашествия былых веков, прочертить пути морских походов викингов, проследить по генам американских племен их расселение от Аляски до Огненной Земли, а по генам англосаксов – их расселение по Британии, уточнить историю еврейской диаспоры и даже найти современных потомков жестоких завоевателей прошлого, таких как Чингисхан[135]135
Анализ ДНК уже вносит впечатляющий вклад в исторические исследования. См., например: Sykes, B. The Seven Daughters of Eve. London, Bantam Press, 2001; Wells, S. The Journey of Man: A Genetic Odyssey. London, Allen Lane, 2002.
[Закрыть].
В наши дни флюорография грудной клетки позволяет узнать, есть ли у вас туберкулез или рак легких. В 2050 году за стоимость флюорографии можно будет узнать полный текст всех ваших генов до единого. Врач будет выписывать вам не рецепты, рекомендованные для среднего человека с вашим заболеванием, а рецепты, в точности соответствующие вашему геному. Это, несомненно, хорошо, но распечатка ваших личных данных также позволит предсказать с пугающей точностью вашу естественную смерть. Захотим ли мы это знать? Даже если мы сами захотим, захотим ли мы, чтобы данные о нашей ДНК читали актуарии страховых компаний, специалисты по делам об установлении отцовства, государственные чиновники? Даже в очень демократичной стране не всякого обрадует такая перспектива. Стоит подумать и о том, как такими данными мог бы злоупотребить какой-нибудь новый Гитлер.
Как ни вески эти соображения, мой очерк все же посвящен другому. Я отступаю к своей башне из слоновой кости, к своим более отвлеченным научным заботам. Если цена секвенирования генома человека станет равна ста фунтам, за те же деньги можно будет купить геном любого другого млекопитающего: все они примерно одного размера, порядка нескольких гигабаз, что относится и ко всем позвоночным. Даже если мы предположим, что график “сына” закона Мура до 2050 года выйдет на плато, как, по мнению многих, должно произойти с графиком самого закона Мура, мы все же можем уверенно предсказать, что секвенировать геномы сотен видов в год станет экономически оправданным. Получить такую массу информации – это одно. А что можно будет с ней делать? Как ее усваивать, просеивать, анализировать, использовать?
Одной сравнительно скромной целью будут полные и окончательные знания о филогенетическом древе. Ведь на самом деле есть лишь одно истинное древо жизни – уникальная схема реально происходивших эволюционных ветвлений. Оно существует. И есть принципиальная возможность его узнать. Мы пока не знаем его целиком. К 2050 году должны узнать, а если нет, то мы не справимся только с концевыми веточками из-за одного лишь числа видов (числа, которое, как отмечает мой коллега Роберт Мэй, в настоящее время известно лишь с точностью до одного или даже двух порядков).
Мой научный ассистент Вон Янь предположил, что в 2050 году натуралисты и экологи будут носить с собой небольшой полевой таксономический набор, который избавит их от необходимости посылать экземпляры на определение музейным специалистам. Тонкий зонд, присоединенный к компьютеру, можно будет ввести в ствол дерева либо тело только что пойманной полевки или кузнечика. За несколько минут компьютер разберется с немногими ключевыми участками ДНК и выдаст вам название вида и любые подробности, которые найдутся в базе данных.
ДНК-таксономия уже преподнесла нам несколько сюрпризов. Мой рассудок классического зоолога протестует почти непереносимо, когда меня просят поверить, что бегемоты ближе к китам, чем к свиньям. Этот вопрос остается спорным, но к 2050 году этот спор будет разрешен в пользу той или другой стороны, как и бессчетное число подобных споров. Они будет разрешены потому, что уже завершатся проекты “Геном бегемота”, “Геном свиньи” и “Геном кита” (если к тому времени наши японские друзья не съедят их всех). На самом деле не понадобится даже секвенировать целые геномы, чтобы навсегда устранить таксономические неопределенности.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.