Электронная библиотека » Александр Астахов » » онлайн чтение - страница 3


  • Текст добавлен: 28 сентября 2017, 21:40


Автор книги: Александр Астахов


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 26 страниц)

Шрифт:
- 100% +

Далее, если перенести в конец вектора радиальной скорости ещё и вектор абсолютного ускорения параллельно самому себе, то можно увидеть, что вектор (ar) в точности совпадает с вектором (ae), как с проекцией той же самой (aабс) на ту же самую касательную к тому же самому годографу. Это свидетельствует о том, что скорости (Vе) и (Vr) имеют общий годограф, а вектор (ar) это такая же проекция абсолютной скорости, как и вектор (ae).

Но один вектор (aабс) не может иметь две одинаковые проекции на одно и то же направление. Следовательно, векторы (ae) и (ar) это одна и та же физическая величина, которая и является ускорением Кориолиса.

Как видно, приведённая на рисунке (4.1.3) геометрия динамики поворотного движения учитывает не только геометрию прямого перемещения материи в пространстве в виде прямого преобразования напряжение-движение, но и непрямое преобразование силы в движение, которое в большинстве случаев можно определить не по прямой геометрии приращения физической траектории, а только через абстрактный годограф скорости.

Так, например, радиальное центростремительное ускорение в классической физике не имеет под собой реального приращения радиального движения тела и определяется только через годограф линейной скорости. Поэтому наличие общего годографа скорости (Vе) и (Vr) вне всяких сомнений свидетельствуют о том, что векторы (ae) и (ar) это одна и та же физическая величина.

Таким образом, поскольку две половинки классического ускорения Кориолиса, как мы выяснили, это одна и та же физическая величина, то коэффициент при ускорении Кориолиса равен «единице», но никак не «двойке». При этом напряжение Кориолиса по абсолютной величине действительно соответствует классической силе Кориолиса (см. гл. 3.5.2). Однако половина этого напряжения не реализуется в движение тела. Она компенсируется истинной силой Кориолиса-Кеплера и рассеивается среди элементов радиуса, тела и окружающей среды.

***

Выводом формулы ускорения Кориолиса занимались множество авторов. Однако, несмотря на все перечисленные выше противоречия классической модели поворотного движения, формула ускорения Кориолиса в выводах всех авторов неизменно привязана к результату, определяющемуся исторически сложившейся неправильной оценкой ускоренного геометрического приращения поворотного движения.


Рис. 4.1.5


В выводе формулы для ускорения Кориолиса, представленном в одном из многочисленных справочников по физике для высшей школы (см. Рис.4.1.5), ускорение Кориолиса определяется как ускорение эквивалентного прямолинейного равноускоренного движения по формуле пути (S) для прямолинейного равноускоренного движения. Мы не будем уточнять библиографию этого справочника, т.к. все они как две капли воды повторяют одну и ту же ошибку классической физики и соответственно высших школ всех времён и народов.

Приведем дословно выдержку из справочника: «Пусть тело (Б), находящееся на расстоянии (А) от неподвижной точки (О), движется в направлении точки (В) со скоростью (Vр). При отсутствии вращения тело (Б) через время (t) оказалось бы в точке (В). Так как направляющая (ОВ), вдоль которой движется тело, вращается в направлении (С), то фактически через время (t) тело (Б) окажется в точке (С) пройдя путь равный дуге окружности (ВС)».

Таким образом, ускорение Кориолиса в классической физике определяется через дугу (ВС), которую предлагается считать расстоянием, пройденным с ускорением Кориолиса. Причем никаких пояснений, на каком основании дуга (ВС) принимается за путь, пройденный с ускорением Кориолиса, в справочнике не приводится. Можно лишь предположить, что дуга (ВС) ассоциируется с девиацией поворотного движения. Девиация это академическое отклонение тела от реальной траектории движения в случае прекращения действия ускорения за период движения без ускорения.

Чтобы вернуть тело после движения с постоянной скоростью, которую оно имело на момент прекращения действия ускорения на реальную траекторию движения необходимо обеспечить ему такое же приращение движения, дефицит которого образуется за время отсутствия ускорения. Очевидно, что ускорение по преодолению девиации, образующейся в достаточно малом интервале времени в некотором приближении соответствует реальному ускорению криволинейного движения, по крайней мере, по абсолютной величине.

В общем случае криволинейного движения девиация в заданном интервале времени представляет собой отклонение прямолинейной траектории, которая пройдена с учетом постоянной скорости, достигнутой на момент начала образования девиации от реальной траектории, по которой тело движется с той же начальной скоростью, но с учетом реального ускорения в дальнейшем.

Причем поскольку прямолинейное движение с постоянной скоростью, равной начальной скорости образования девиации осуществляется по одной касательной к абсолютной траектории, то в общем случае отклонение прямолинейного движения однозначно определяется по отношению к единственно возможной траектории абсолютного движения. В поворотном движении такой определенности нет, т.к. в любом его сколь угодно малом интервале времени радиальное движение пересекает бесконечное множество окружностей переносного вращения, вдоль которых может быть определена своя текущая мгновенная девиация.

Однако в начале настоящей главы было показано (см. Рис. 4.1.1), что общее приращение поворотного движения для полного приращения радиуса (∆r), пересекающего бесконечное множество переносных окружностей, вдоль которых может быть определена своя текущая мгновенная девиация, определяется суммой девиаций вдоль всех промежуточных переносных окружностей поворотного движения. Эта сумма определяется дугой окружности со средним радиусом за вычетом её части, пройденной с начальной линейной скоростью в исходной точке поворотного движения.

На (Рис. 4.1.6) схематично изображена структура девиации поворотного движения в заданном интервале времени. Очевидно, средняя девиация поворотного движения эквивалентна дуге окружности (ЖЗ) со средним радиусом переносного вращения (Rср) за вычетом дуги (БГ), соответствующей линейному поступательному перемещению за счёт начальной линейной скорости переносного вращения (VлБ).

Элементарные окружные участки переносного вращения реальной траектории с радиусами большими среднего радиуса (Rср) больше соответствующих им участков дуги (ЖЗ), в то время как элементарные окружные участки с меньшими радиусами, меньше соответствующих участков дуги (ЖЗ). Однако в силу прямой пропорциональности величины радиуса и длины окружности общая сумма окружных участков вдоль кривой (БС) равна длине дуги (ЖЗ).


Рис. 4.1.6


С учётом изложенного определим линейное ускорение, эквивалентное ускорению Кориолиса (ак) через девиацию поворотного движения. При этом, поскольку в рассматриваемом случае дуга (ЖЗ), кроме девиации поворотного движения включает в себя отрезок, пройденный с начальной линейной скоростью (Vлб), применим формулу равноускоренного движения для пути (S = ЖЗ) с учетом начальной скорости, являющейся постоянной составляющей равноускоренного движения.

S = VлБ * t + ак * t2 / 2 (4.1.1)

Где VлБ – линейная скорость точки (Б)

Тот же самый путь можно определить, как суммарную длину элементарных участков поворотного движения вдоль траектории (БС), из которых и складывается в конечном итоге девиация поворотного движения с учетом постоянной начальной линейной скорости, равной дуге (БГ).

Радиус дуги (ЗЖ) равен среднему радиусу между начальным и конечным радиусом поворотного движения. Обозначим его (Rср):

Rср = (ОС + А) / 2 (4.1.2)

Очевидно, что:

ОС = А + Vр * t (4.1.3)

Подставляя (4.3) в (4.2) получим:

Rср = A + Vр * t / 2 (4.1.4)

Путь (S), выраженный через угловую скорость (ω), определится выражением:

S = Rср * ω * t (4.1.5)

Подставляя (4.4) в (4.5) и приравняв (4.1) и (4.5) получим:

Б * t + ак * t2 / 2 = (А + Vр * t / 2) * ω * t

или

2 * VлБ * t + ак * t2 = 2 * А * ω * t + Vр *ω * t2

или

2 * VлБ / t + ак = 2 * А * ω / t + Vр * ω (4.1.6)

Отсюда находим ускорение Кориолиса (ак):

ак = 2 * А * ω / t + Vр * ω – 2 * Vлб / t (4.1.7)

Заметим, что произведение А*ω есть не что иное, как (VлБ). Произведя замену, получим выражение (4.8), в котором отсутствует начальная линейная скорость, т.е. ускорение Кориолиса зависит только от угловой скорости переносного вращения и линейной скорости относительного движения:

ак = ω * Vр (4.1.8)

Выражение (4.8), полученное с учётом реального изменения радиуса поворотного движения отличается от формулы для (ак), приведенной в справочнике по физике для высшей школы (4.9):

ак = 2 * А * ω /t +2 * Vр * ω (4.1.9)

Авторы не учли, что:


во-первых: в любом промежутке времени девиация поворотного движения прямо пропорциональна радиусу, т.е. реальный путь, пройденный телом за счет ускорения Кориолиса ровно вдвое меньше длины дуги (ВС) с максимальным радиусом за вычетом дуги (БГ), равной длине пути, пройденного с начальной линейной скоростью (Vлб);

во-вторых: начальная скорость тела в точке (Б) Б ≠ 0. Поэтому путь (S), пройденный телом под действием ускорения Кориолиса равен не:


S = ак * t2 / 2 (4.1.10)

как записано в справочнике. С учетом начальной линейной скорости переносного вращения (VлБ) путь равен:

S = VлБ * t + ак * t2 / 2 (4.1.11)

В случае изменения направления движения тела (Б) на противоположное, т.е. к центру вращения выражение для (Rср) приобретет вид:

Rср = А – V * t / 2 (4.1.12)

S = VлБ * t – ак * t2 / 2 (4.1.13)

Тогда получим для (ак):

 ак = 2 * VлБ / t – 2 * А * ω / t + V * ω (4.1.14)

или

 ак = ω * Vр (4.1.15)

***

Поскольку формулы ускорения Кориолиса (4.1.9) и (4.1.15) соответствуют приращению либо только линейной скорости относительного движения по направлению, либо только приращению линейной скорости переносного движения по абсолютной величине, то формулу ускорения Кориолиса намного проще вывести через прирост линейной скорости переносного вращения.

Пусть тело (Б) движется (см. рис. 4.1.5) вдоль радиуса в направлении точки (В) с постоянной радиальной скоростью (Vр). За время (t) – время прохождения пути (БС) линейная скорость движения по окружности увеличится от линейной скорости точки (Б) – (Vлб) до линейной скорости точки (С) – (Vлс). Разгон происходит под воздействием направляющей (ОВ) на тело (Б) с силой эквивалентной силе Кориолиса (Fк) и ускорением Кориолиса (ак). Ускорение определяется как прирост линейной скорости за единицу времени (t):

ак = (VлС – VлБ) / t (4.1.16)

Если выразить линейные скорости через угловую скорость получим:

ак = (ω * (А + Vр * t) – ω * А) / t (4.1.17)

или:

ак = ω * Vр (4.1.18)

В некоторых случаях радиальное относительное движение может осуществляться с ускорением. Это необходимо учитывать при определении ускорения Кориолиса. Рассмотрим случай равноускоренного радиального движения.

Вернемся еще раз к формуле (4.16):

ак = (VлС – VлБ) / t (4.1.16)

Запишем выражение для линейной (окружной) скорости в точке (Б):

Б = ω * А (4.1.19)

И для линейной (окружной) скорости точки (С):

С = ω * (А + Vр * t) (4.1.20)

Здесь (Vр) – радиальная скорость с учетом радиального ускорения.

Скорость (Vр) можно найти через радиальное ускорение. Так как ускорение в общем случае может меняться, найдем среднюю величину радиального ускорения (ар) на участке (БС):

ар = (арс + арб) / 2 (4.1.21)

Тогда радиальная скорость с учетом радиального ускорения определится выражением:

Vр = Vрн + (арс + арб) * t/2 (4.1.22)

где: Vрн – радиальная скорость начальная.

Подставим (4.22) в (4.20):

С = ω * (А + (Vрн + (арс + арб) * t / 2) * t) =

= ω * А + ω * t * Vрн + ω * арс * t2 / 2 + ω * арб * t2/2 (4.1.23)

Подставим (4.23) и (4.19) в (4.16):

ак = ω * А / t + ω * Vрн + ω * арс * t / 2 + ω * арб * t / 2 – ω * А / t

или формула для ускорения Кориолиса при ускоренном радиальном движении примет вид:

ак = ω * Vрн + ω * t * (арс + арб) / 2 (4.1.24)

Как следует из выражения (4.8) и (4.15), девиация поворотного движения не зависит от начальной линейной скорости переносного вращения, т.к. начальная скорость есть величина постоянная. Поэтому приращение поворотного движения в каждом минимальном интервале времени, начинающегося не с нулевого радиуса эквивалентно приращению поворотного движения, начинающегося с нулевого радиуса. На (Рис.4.1.7) графически пояснено определение девиации поворотного движения с нулевого радиуса поворота без учёта начальной линейной скорости переносного вращения.


Рис. 4.1.7


В соответствии с положениями теоретической механики движение по любой криволинейной траектории может быть достигнуто одним поступательным и одним вращательным движением (см. Рис. 4.1.7). Следовательно, общий путь сложного движения раскладывается на три составляющие: на путь переносного движения (О-О1), путь относительного движения (О1-В = О1-А) и на поворотный путь (ВС).

В соответствии с классической схемой криволинейного движения поступательное движение по траектории переносного движения (О-О1) и вращательное движение в точке переносной траектории, соответствующей конечному моменту рассматриваемого интервала времени в точке (О1) осуществляются с учётом завершённого в рассматриваемом интервале времени относительного движения (ОА).

При этом дуга (ВС), соответствующая максимальному радиусу поворота в рассматриваемом интервале времени принимается за девиацию поворотного движения, в то время как реальный радиус поворотного движения растёт линейно и достигает максимального радиуса поворота только к концу рассматриваемого интервала времени. Таким образом, классическая схема сложного движения не отражает реальной действительности.

При наличии переносного вращения движение вдоль относительной траектории следует рассматривать одновременно с поворотом относительной траектории в конечной точке траектории переносного движения (О1), соответствующей конечному моменту рассматриваемого интервала времени. При этом поступательное движение осуществляется как перемещение точки начала относительного и поворотного движений в конечную точку траектории переносного движения, из которой одновременно осуществляются относительное и поворотное движения. Однако при этом реальная девиация поворотного движения соответствует окружным участкам кривой (О1-С), которая обозначена на рисунке (4.1.7) синим цветом.

В предложенной академической схеме представления сложного движения классический принцип разложения абсолютной траектории на составляющие, соответствующие каждому виду движения полностью сохраняется. Однако при этом учитывается реальный путь, пройденный с ускорением Кориолиса, т.к. реальное приращение поворотного движения определяется средним радиусом поворота, изменяющимся без учёта начальной линейной скорости переносного вращения от нуля до (Rmax). В этом случае абсолютная величина девиации поворотного движения равна сумме окружных участков синей кривой (О1-С) или длине дуги (DN).

Таким образом, полное геометрическое ускорение Кориолиса количественно соответствует линейному ускорению в направлении линейной скорости переносного вращения или ускорению по изменению направления радиальной скорости относительного движения каждому в отдельности, что полностью соответствует приведённому выше механизму формирования ускорения Кориолиса и физическому смыслу ускорения Кориолиса в нашей версии.

***

Аналогичный геометрический вывод ускорения Кориолиса приведен в другом справочнике по физике (Х. Кухлинг, «Справочник по физике», МОСКВА, «МИР» 1983). «Перемещение тела в радиальном направлении равно r = vt. За то же время точка, удаленная от центра вращения на расстояние r, пройдет по дуге окружности путь s = rωt. Подставив сюда выражение для r, получим s = vtωt = vωt2. Отсюда следует, что s ~ t2, т.е. движение происходит ускоренно, а s = аt2/2. Таким образом, vωt2 = аt2/2, следовательно, ускорение Кориолиса равно ак = 2vω» (см. Рис. 4.1.8).


Рис. 4.1.8


Как и в большинстве случаев описания физических явлений в современной физике, в выводе Кухлинга какие-либо физические обоснования ускорения Кориолиса отсутствуют. У Кухлинга нет никаких пояснений, из каких соображений путь (s) увязывается с приращением, полученным непосредственно за счет ускорения Кориолиса, кроме некорректной с физической точки зрения фразы: «За то же время точка, удаленная от центра вращения на расстояние r, пройдет по дуге окружности путь s = rωt». Точка, удаленная от центра вращения на расстояние (r) действительно пройдет указанное Кухлингом расстояние. Однако теоретическое обоснование соответствия пути (s = rωt) девиации поворотного движения у Кухлинга, как и других авторов по сути дела отсутствует.

В классической схеме девиации поворотного движения одно и то же приращение фактически учитывается дважды. Один раз как реальное приращение, т.е. девиация непосредственно поворотного движения. Второй раз как искуственное для определения девиации приращение линейной окружной скорости, обусловленное несоответствием максимального радиуса текущему радиусу. При этом приращение поворотного движения в классической физике практически удваивается. Но вопреки классическому физическому смыслу ускорения Кориолиса, это исключительно именно удвоенное переносное ускорение, без какого-либо намёка на ускорение по изменению радиальной скорости относительного движения по направлению.

***

В приведенных выше классических геометрических выводах поворотного ускорения Кориолиса радиальное движение осуществляется в направлении от центра вращения. При движении к центру вращения классическая логика определения ускорения Кориолиса, заложенная в геометрические модели девиации поворотного движения приводит к полному абсурду. Например:

Пусть тело из точки (Б) (см. рис. 4.1.5) движется к центру вращения вдоль направляющей (ОБ). В соответствии с классической логикой определения девиации поворотного движения при отсутствии вращения тело (Б) через время (t) оказалось бы в точке (К). Однако так как направляющая (ОБ), вдоль которой движется тело, вращается в направлении (Г), то фактически через время (t) тело (Б) окажется в точке (Д) пройдя путь равный дуге окружности (КД).

Таким образом, в соответствии с классической же логикой при радиальном движении к центру вращения за девиацию поворотного движения должна приниматься дуга окружности с минимальным радиусом в рассматриваемом интервале времени.

Очевидно, что ускорение Кориолиса, определенное через приращение поворотного движения, равного дуге окружности с минимальным радиусом, должно быть вдвое меньше ускорения, определенного через средний радиус радиального движения и вчетверо меньше классического ускорения Кориолиса. Между тем в реальной действительности при смене направления радиального движения и при неизменных остальных параметрах сложного движения только ни направление поворотного ускорения, ни его абсолютная величина неизменяется (см. гл. 8).

По этой же логике при смене направления радиального движения к центру вращения ускорение Кориолиса в выводе Кухлинга, в котором поворотное движение начинается с нулевого радиуса (см. рис. 4.1.8), и вовсе отсутствует! Учитывая, что минимальная величина радиуса при движении к центру вращения равна нулю, классическая логика определения девиации поворотного движения вообще может привести к парадоксальному результату, в соответствии с которым при радиальном движении к центру вращения ускорение Кориолиса и вовсе отсутствует!

4.2. Аналитический вывод ускорения Кориолиса Р. Фейнмана. Вывод ускорения Кориолиса через мерный радиан

Аналитический вывод Фейнмана отличается от приведённых выше геометрических выводов явления Кориолиса тем, что Фейнман определяет ускорение и силу Кориолиса не через геометрическое приращение поворотного движения, а непосредственно определяет силу Кориолиса через уравнение динамики вращательного движения. Однако, как показано в главе 3.5, классическое уравнение моментов и все параметры классической динамики вращательного движения противоречат истине динамики Ньютона. Поэтому результат вывода Фейнмана так же не соответствует истине. Из вывода Фейнмана следует точно такая же неправильная геометрия приращения поворотного движения, как во всех остальных классических выводах.


Р. Фейнман


Ни в одном другом движении приращение пути, пройденного с ускорением, не определяется в классической физике по приращению виртуальных для этого движения траекторий. Это было бы абсурдом. Но в поворотном движении классическая физика именно так абсурдно и поступает! Приращение поворотного движения в классической физике геометрически определяется как длина окружного пути точки вращающейся системы находящейся на конечном радиусе поворотного движения в случае радиального движения в сторону от центра вращения и на начальном радиусе при движении к центру вращения. В обоих случаях это максимальный радиус поворотного движения, который не соответствует его реальному текущему радиусу.

Абсолютная траектория поворотного движения в любом сколь угодно малом интервале времени пересекает бесконечное множество переносных окружностей с разными радиусами. При этом поскольку длина окружности прямо пропорциональна радиусу, то совершенно очевидно, что если уж девиация поворотного движения и определяется дугой окружности переносного вращения, то это должна быть дуга окружности со средним радиусом, которая вдвое меньше классического приращения поворотного движения.

В главе (4.1) показано, что приращение поворотного движения, определяемое вдоль переносной окружности, это и есть общий годограф «поворотной» скорости, который и определяет общее приращению радиальной скорости по направлению и окружной скорости переносного движения по величине. При этом длина общего годографа вдвое меньше длины окружности с максимальным радиусом и соответствует длине окружности переносного движения со средним радиусом.

Из этого следует, что общее приращение скорости поворотного движения или «поворотной» скорости численно равно либо приращению абсолютной скорости в направлении линейной скорости переносного движения по величине, либо приращению относительной скорости по направлению. Однако классическая физика более чем за 200 лет со дня открытия явления Кориолиса, так и не смогла этого понять.

Поэтому аналитический вывод Фейнмана, в котором геометрическое приращение поворотного движения непосредственно не определяется, тем не менее, – это очередная подгонка математического вывода ускорения и силы Кориолиса под нужный теоретический ответ, основанный на неправильных классических представлениях о геометрии приращения поворотного движения.

Но поскольку правильная математика не может отражать неправильную «действительность», то подгонка под неправильный ответ не может быть выполнена без нарушения, в том числе и математических правил. Поэтому Фейнману вслед за искажением физического смысла явления Кориолиса пришлось нарушить и математические правила.

Итак, обо всём по порядку.

Ниже приведена фотокопия оригинального текста из работы «ФЕЙНМАНОВСКИЕ ЛЕКЦИИ ПО ФИЗИКЕ. 2. ПРОСТРАНСТВО. ВРЕМЯ. ДВИЖЕНИЕ», стр. 78, 79; Р. Фейнман, Р. Лейтон, М. Сэндс.








Как видно из вывода Фейнмана, для определения силы Кориолиса в классической физике необходимо поддерживать угловую скорость вращающейся системы за счет «обычной» внешней боковой силы, которая естественно воздействует и на любой предмет на радиусе системы. Фейнман, наверное, оговорился, но в приведённом выше фрагменте он утверждает, что это и есть сила Кориолиса, которая и толкает тело в бок (см. выше). На самом деле в классической интерпретации поворотного движения в бок тело толкает обычная поддерживающая сила. А силой инерции Кориолиса называют реакцию в ответ на действие поддерживающей силы.

Однако в этой ошибке Фейнмана нет ничего удивительного, т.к. в современной физике нет ничего более странного, чем сама классическая модель явления Кориолиса. Она настолько странная, что в ней запутались многие известные физики.

Первая странность заключается в том, что сила Кориолиса определяется в классической физике исключительно только при неизменной угловой скорости, т.е. это реакция на строго определённую поддерживающую вращение силу. Хотя в природе явление Кориолиса наблюдается в любых вращающихся системах с радиальным движением, в которых условие неизменности угловой скорости практически никогда идеально не соблюдается. Более того в естественном виде явление Кориолиса наблюдается только в таких системах.

Один из примеров проявления силы Кориолиса в естественном виде приведён самим Фейнманом. Это человек с гантелями в руках, вращающийся на вращающемся столике. Конечно же, это не совсем природный пример, но он естествен тем, что в нём нет полной поддерживающей силы, которая искусственно поддерживала бы угловую скорость на неизменном уровне, как это происходит в классической модели явления Кориолиса.

На этом примере, выраженном намного контрастнее природных вращающихся систем, но не отличающемся от них принципиально, мы и покажем всю абсурдность классической модели явления Кориолиса. Начнём с того, что выясним, какую именно силу классическая физика принимает за силу Кориолиса и почему теоретически она в классической физике привязана к постоянной угловой скорости вращающейся системы, несмотря на то, что в естественных условиях таких систем практически не существует.

Есть все основания полагать, что эта привязка вызвана вовсе не только и не столько соображениями математического упрощения вывода силы Кориолиса. Скорее всего, это связано с непониманием классической физикой природы явления Кориолиса, в котором при недостаточной компенсации угловой скорости поддерживающей силой проявляется и неизвестная классической физике истинная сила Кориолиса-Кеплера. При этом естественно изменяется и величина классической силы и ускорения Кориолиса.

Фейнман правильно отмечает, что тело вращающегося человека при сгибании им рук с гантелями не изменяет свой момент инерции (приведённое сопротивление, см главу 3.5), т.к. радиус самого тела остаётся при этом постоянным. Но если при сгибании рук тело человека начинает вращаться быстрее, значит, увеличивается его линейный импульс, т.е. «на тело должен действовать момент силы», как говорит сам Фейнман, или в нашей версии просто сила.

Это не может быть центробежная сила, т.к. она направлена по радиусу, говорит Фейнман. Следовательно, заключает он, среди сил, возникающих во вращающейся системе центробежная сила не одинока: есть ещё и другая сила: «Эта другая сила носит название кориолисовой силы, или силы Кориолиса». Фейнман отмечает, что: «Она обладает очень странным свойством: оказывается, что если во вращающейся системе мы двигаем какой-то предмет, то она толкает его в бок». «…Именно эта „боковая сила“ и создаёт момент, который раскручивает наше тело».

Фейнман удивительно точно отметил, что классическая сила Кориолиса действительно очень странная сила в классической физике, причём странная даже среди других странных уже по самому своему определению сил инерции. Она настолько странная, что даже сам Фейнман в ней основательно запутался. Обратите внимание, что строго по тексту Фейнмана следует, что боковая фиктивная сила инерции Кориолиса толкает тело в бок и создаёт момент, который раскручивает и гантели и тело человека. Однако фиктивные силы инерции не могут ничего и никуда толкать.

Действительно, если на тело человека со стороны гантелей действует «момент» силы и при этом их линейная скорость синхронно изменяется в одном и том же направлении, то в бок их может толкать только одна и та же сила, причём не фиктивная сила инерции Кориолиса, а вполне реальная обычная сила. Это и есть истинная сила Кориолиса (см. главу 3.5). В классической физике такой силы нет. Вот Фейнман и запутался, приняв обычную истинную силу Кориолиса-Кеплера, за фиктивную силу инерции Кориолиса. Но это более, чем странно для фиктивных сил инерции, которые по определению не могут вызывать ускорения в своём направлении.

Можно, конечно же, считать, что Фейнман опять оговорился. Однако мы не случайно привели фотокопию работы Фейнмана. Обратите внимание, что говоря о боковой закручивающей силе, которая делает центробежную силу инерции не одинокой и которая является такой же фиктивной, как и сама центробежная сила, он, безусловно имеет в виду фиктивную силу инерции Кориолиса. При этом Фейнман заостряет наше внимание именно на увеличении скорости гантелей и тела человека под действием момента этой боковой силы. Следовательно речь о фиктивной силе Кориолиса именно, как об обычной силе у Фейнмана идёт вовсе не случайно. Для классической физики – это явная ошибка, хотя в нашей версии явления Коориолиса в этом нет никакой ошибки.

Поддерживающей силой в примере с вращающимся человеком, является сила инерции вращающейся массы тела человека, которая по причине неизменности своего радиуса стремится сохранить (поддержать) на неизменном уровне прежнюю угловую скорость всей системы. При движении гантелей к центру вращения эта сила отрицательная, т.к. она направлена против ускоренного вращения системы. Следовательно, реакция на эту поддерживающую силу положительная, т.е. сила инерции Кориолиса в этом случае направлена в сторону растущей угловой и линейной скорости гантелей и вращающегося человека. Так что Фейнман абсолютно правильно определил направление классической фиктивной, несуществующей силы инерции Кориолиса.

Из этого следует, что Фейнман не ошибся и не оговорился. Он совершенно правильно указал направление классической силы инерции Кориолиса. Вот только он почему-то не объяснил, как фиктивная сила инерции может реально толкать тело в бок, создавая реальный момент, увеличивающий скорость вращения гантелей и человека с реальным ускорением! Ё! Фейнман так же не объяснил, как же в таком случае называть ещё одну фиктивную силу инерции, которая так же проявляется в этом движении, как реакция со стороны тела человека на реальный момент со стороны гантелей.

В этом движении одновременно проявляется столько обычных и фиктивных сил инерции, что Фейнман, скорее всего просто окончательно запутался в них. А объяснить все эти силы Фейнман просто не в состоянии, т.к. это принципиально не возможно сделать с точки зрения классической динамики вращательного движения, которая на фоне поддерживающей силы классической модели явления Кориолиса фактически потеряла истинную причину явления Кориолиса, т.е. истинную силу Кориолиса-Кеплера. При этом классической физике остаётся только одно – списать всё на странности классической силы Кориолиса! Но самое странное в этом то, что вот уже более 200 лет эта более, чем странная сила Кориолиса, несмотря ни на какие свои странности, всех абсолютно устраивает! Ё!


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации