Электронная библиотека » Александр Седов » » онлайн чтение - страница 11


  • Текст добавлен: 28 октября 2013, 20:28


Автор книги: Александр Седов


Жанр: Медицина, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 19 страниц)

Шрифт:
- 100% +
2. Лабораторная диагностика вирусных инфекций

Для лабораторной диагностики вирусных инфекций используются различные методы.

Вирусологическое исследование (световая микроскопия) позволяет обнаружить характерные вирусные включения, а электронная микроскопия – сами вирионы, и по особенностям их строения диагностировать соответствующую инфекцию (например, ротавирусную).

Вирусологическое исследование направлено на выделение вируса и его идентификацию. Для выделения вирусов используют заражение лабораторных животных, куриных эмбрионов или культуры тканей.

Первичную идентификацию выделенного вируса до уровня семейства можно провести с помощью:

определения типа нуклеиновой кислоты (проба с бромдезоксиуридоном),

особенностей ее строения (электронная микроскопия),

размером вириона (фильтрование через мембранные фильтры с порами диаметром 50 и 100 нм),

наличия суперкапсидной оболочки (проба с эфиром),

гемагглютининов (реакция гемагглютинации),

типа симметрии нуклеокапсида (электронная микроскопия).

Результаты оцениваются по заражению культуры ткани пробой, подвергнутой соответствующей обработке, и с последующим учетом результатов заражения методом цветной пробе фильтрования. Существенное значение для идентификации вирусов (до рода, вида, внутри вида) имеет также изучение их антигенного строения, которое проводится в реакции вирусонейтрализации с соответствующими иммунными сыворотками. Сущность этой реакции состоит в том, что после обработки гомологичными антителами вирус утрачивает свою биологическую активность (нейтрализуется) и клетка хозяина развивается так же, как и неинфицированная вирусом. Об этом судят по отсутствию цитопатического действия, цветной пробе, результатам реакции торможения гемагглютинации (РТГА), отсутствию изменений при заражении куриных эмбрионов, выживаемости чувствительных животных.

Вирусологическое исследование – это «золотой стандарт» вирусологии и должно проводится в специализированной вирусологической лаборатории. В настоящее время оно используется практически только в условиях возникновения эпидемической вспышки того или иного вирусного инфекционного заболевания.

Для диагностики вирусных инфекций широкое применение нашли методы иммунодиагностики (серодиагностики и иммуноиндикации). Они реализуются в самых разнообразных реакциях иммунитета:

радиоизотопный иммунный анализ (РИА),

иммуноферментный анализ (ИФА),

реакция иммунофлюоресценции (РИФ),

реакция связывания комплемента (РСК),

реакция пассивной гемагглютинации (РПГА),

реакции торможения гемагглютинации (РТГА) и другие.

При использовании методов серодиагностики обязательным является исследование парных сывороток. При этом четырехкратное нарастание титра антител во второй сыворотке в большинстве случаев служит показателем протекающей или свежеперенесенной инфекции. При исследовании одной сыворотки, взятой в острой стадии болезни, диагностическое значение имеет обнаружение антител класса Ig М, свидетельствующее об острой инфекции.

Большим достижением современной вирусологии является внедрение в практику диагностики вирусных инфекций молекулярно-генетических методов (ДНК-зондирование, полимеразной цепной реакции – ПЦР). В первую очередь с их помощью выявляют персистирующие вирусы, находящиеся в клиническом материале, с трудом обнаруживаемые или не обнаруживаемые другими методами.

Вопрос 42. Профилактика и лечение вирусных инфекций

1. Методы профилактики вирусных инфекций

Для активной искусственной профилактики вирусных инфекций, в том числе и для плановой профилактики, широко используются живые вирусные вакцины. Они стимулируют резистентность в месте входных ворот инфекции, образование антител и клеток-эффекторов, а также синтез интерферона. Основные живые вирусные вакцины:

гриппозная, коревая,

полиомиелитная (Сейбина-Смородинцева-Чумакова),

паротитная, против коревой краснухи,

антирабическая, против желтой лихорадки,

генно-инженерная вакцина против гепатита В – Энджерикс В.

Для профилактики вирусных инфекций используются и убитые вакцины:

против клещевого энцефалита,

омской геморрагической лихорадки,

полиомиелита (Солка),

гепатита А (Харвикс 1440),

антирабическая (ХДСВ, Пастер Мерье),

а также и химические — гриппозные.

Для пассивной профилактики и иммунотерапии предложены следующие антительные препараты:

противогриппозный гамма-глобулин,

антирабический гамма-глобулин,

противокоревой гамма-глобулин для детей до 2 лет (в очагах) и для ослабленных детей старшего возраста,

противогриппозная сыворотка с сульфаниламидами.

Универсальным средством пассивной профилактики вирусных инфекций являются интерферон и индукторы эндогенного интерферона.

2. Противовирусные химиотерапевтические средства

Большинство известных химиотерапевтических препаратов не обладает противовирусной активностью, так как механизм действия большинства из них основан на подавлении микробного метаболизма, а у вирусов собственные метаболические системы отсутствуют.

Антибиотики и сульфаниламиды при вирусных инфекциях используют только с целью профилактики бактериальных осложнений. Тем не менее, в настоящее время разрабатываются и применяются химиотерапевтические средства, обладающие противовирусной активностью. Прежде всего – это аномальные нуклеозиды. По строению они близки к нуклеотидам вирусных нуклеиновых кислот, но включенные в состав нуклеиновой кислоты, они не обеспечивают ее нормальное функционирование. К таким препарат относятся азидотимидин – препарат активный в отношении вируса иммунодефицита человека (ВИЧ-инфекция). Недостаток этих препаратов в высокой токсичности для клеток макроорганизма.

Вторая группа препаратов нарушает процессы абсорбции вирусов на клетках. Они менее токсичны, обладают высокой избирательностью и весьма перспективны. Это тиосемикарбозон и его производные, ацикловир (зовиракс) – герпетическая инфекция, ремантадин и его производные – грипп А, и другие.

Универсальным средством терапии, так же как и профилактики вирусных инфекций является интерферон.

Вопрос 43. Бактериофаги

1. Понятие о бактериофагах

Бактериофаги (фаги) – это вирусы, поражающие бактериальные клетки (в качестве клетки-хозяина). Вирионы фагов состоят из головки, содержащей нуклеиновую кислоту вируса, и более или менее выраженного отростка. Нуклеокапсид головки фага имеет кубический тип симметрии, а отросток – спиральный тип, т. е. бактериофаги имеют смешанный тип симметрии нуклеокапсида.

Большинство фагов содержит кольцевую двунитчатую ДНК, и лишь некоторые РНК или однонитчатую ДНК. Фаги, как и другие вирусы, обладают антигенные свойствами и содержат группоспецифические (по ним делятся на серотипы) и типоспецифические антигены. Сыворотки, содержащие антитела к этим антигенам (антифаговые сыворотки) нейтрализуют литическую активность фагов. Взаимодействие бактериофага с клеткой происходит в соответствии с основными типами взаимодействия, характерными для всех вирусов, – продуктивная (литическая), абортивная вирусная и латентная (лизогения, вирогения) инфекция, а также вирус-индуцированная трансформация.

По характеру взаимодействия фага с клеткой все бактериофаги делятся на:

вирулентные (литические), вызывающие продуктивную инфекцию и лизис бактериальной клетки,

умеренные, вызывающие латентную инфекцию и ассоциацию генома вируса с бактериальной хромосомой.

Умеренные фаги, в отличие от вирулентности, не вызывают гибель бактериальных клеток, и при взаимодействии с ней переходят в неинфекционную форму фага, называемую профагом.

Профаг – геном фага, ассоциированный с бактериальной хромосомой. Профаг, ставший частью хромосомы клетки, при ее размножении реплицируется синхронно с геномом бактерии, не вызывая ее лизиса, и передается по наследству от клетки к клетке в неограниченном числе поколений.

Бактериальные клетки, содержащие в своей хромосоме профаг, называются лизогенными. Профаг в лизогенных бактериях самопроизвольно или под влиянием различных индуцированных агентов может переходить в вегетативный фаг. В результате такого превращения бактериальная клетка лизируется и продуцирует новые фаговые частицы. В ходе лизогенизации бактериальные клетки могут дополнительно приобретать новые признаки, детерминируемые геномом вируса. Такое явление – изменение свойств микроорганизмов под влиянием профага, называется фаговой, или лизогенной конверсией (проявление вирус-индуцированной трансформации).

Умеренные фаги, неспособные ни при каких условиях переходить из профага в вегетативный фаг (образовывать зрелые фаговые частицы), называются дефектными, чаще это происходит в результате нарушения стадии сборки вирусных частиц. Некоторые умеренные фаги называются трансдуцирующими. поскольку с их помощью осуществляется один из механизмов генетической рекомбинации у бактерий – трансдукции. Такие фаги могут использоваться, в частности в генной инженерии в качестве векторов для получения рекомбинантных ДНК и/или приготовлении рекомбинантных (генно-инженерных) вакцин.

2. Классификация бактериофагов. Фаготипирование

Специфичность фагов послужила основанием для их наименования по видовым и родовым названиям чувствительных к ним бактерий. Так, например, фаги, лизирующие стрептококки, называются стрептококковыми, лизирующие холерные вибрионы – холерные, стафилококки – стафилококковыми.

По признаку специфичности выделяют поливалентные бактериофаги, лизирующие культуры одного семейства или рода бактерий, моновалентные (монофаги) – лизирующие культуры только одного вида бактерий, а также отличающиеся наиболее высокой специфичностью – типовые бактериофаги, способные вызывать лизис только определенных типов (вариантов) бактериальной культуры внутри вида бактерий.

Наборы таких типоспецифических фагов используются для дифференцировки бактерий внутри вида – это метод фаготипирования бактерий. С помощью этого метода можно установить источник и пути передачи инфекционного заболевания, т. е. провести его эпидемиологический анализ, поскольку он позволяет сравнивать фаготипы (фаговары) чистых культур бактерий, выделенных в ходе бактериологического исследования от больного и от окружающих его лиц, возможных бактерионосителей.

Фаги получают индукцией из лизогенных культур или из объектов, содержащих соответствующие бактерии, при культивировании на жидкой питательной среде, с последующим выделением из культуральной жидкости путем фильтрования через бактериальные фильтры. Активность полученного (выделенного) фага определяют путем титрования или определения количества фаговых частиц в единице объема среды методом агаровых слоев по Грациа. Суть его состоит в том, что на газон чувствительной культуры (первый слой) наносят определенное разведение фага в полужидком агаре (второй слой). Каждая фаговая частица, размножаясь на бактериальном газоне, образует на поверхности выросшей культуры стерильное пятно («бляшка», или негативная колония фага). Таким образом, по количеству стерильных пятен можно подсчитать количество фаговых частиц в единице среды (титр фага).

3. Диагностическая и терапевтическая роль фагов

Фаги могут применяться в качестве диагностических препаратов для установления рода и вида бактерий, выделенных в ходе бактериологических исследования. Однако чаще всего их используют для лечения и профилактики некоторых инфекционных заболеваний (перорально или местно). Активность фага выражают числом частиц фага, содержащихся в 1 мл или 1 таблетке. Лечебное и профилактическое действие фагов основано на их литической активности.

Отличительной чертой бактериофагов как терапевтических средств является почти полное отсутствие у них побочного действия, что позволяет назначать эти препараты различным возрастным группам без каких-либо ограничений, и возможность назначения поливалентных бактериофагов до получения результатов бактериологического исследования. Препараты диагностических бактериофагов вводить категорически запрещается. В настоящее время в России для фаготерапии и фагопрофилактики производятся и используются:

поливалентный сальмонеллезный бактериофаг;

моновалентные бактериофаги – брюшнотифозный, дизентерийный, протейный, синегнойный, холерный, стафилококковый, стрептококковый, коли-фаг (кишечной палочки);

комбинированные препараты поливалентных бактериофагов — колипротейный, пиобактериофаг(включающий стафилококковые, стрептококковые, клебсиеллезные, эшерихиозные, протейные и синегнойные бактериофаги) и другие.

Вопрос 44. Общая микология

1. Биологические особенности грибов

Микология – это наука о грибах, выделившаяся в самостоятельную отрасль микробиологии.

Грибы представляют собой обширную гетерогенную группу макро– и микрорганизмов растительного происхождения, лишенных хлорофилла. Грибы являются эукариотами и выделены в особое царство Mycota, так как имеют черты как растительных, так и животных клеток.

Общими с растительными клетками в характеристике грибов можно выделить следующие признаки:

наличие клеточной стенки,

неподвижность,

неограниченный апикальный (верхушечный) рост,

способность к активному синтезу витаминов.

Сходство с животными клетками грибам придает:

наличие хитина в клеточной стенке,

структура цитохромов,

гетеротрофный тип питания,

способность запасать в клетке гликоген и синтезировать мочевину.

По типу дыхания в окружающей среде грибы аэробы, их тканевые формы (при попадании в макроорганизм) – факультативные анаэробы.

Как уже было указано, грибы представлены как одноклеточными, так и многоклеточными микроорганизмами. К одноклеточным грибам относят дрожжи и дрожжеподобные клетки неправильной формы, значительно крупнее по размерам бактерий. Многоклеточные грибы-микроорганизмы – это плесневые, или мицелярные грибы.

Тело многоклеточного гриба называют талом, или мицелием. Основу мицелия составляет гифа – многоядерная нитевидная клетка. Мицелий может быть септированный (гифы разделены перегородками и имеют общую оболочку) и несептированный (представлен разветвлениями одной гифы без перегородок). Тканевые формы дрожжей могут быть представлены псевдомицелием, его образование – результат почкования одноклеточных грибов без отхождения дочерних клеток. Общую оболочку псевдомицелий в отличие от истинного не имеет.

2. Особенности строения генетического аппарата грибов

Грибы – эукариоты, их клетки содержат оформленное ядро, имеющее ядерную мембрану и ядрышки. Для грибов характерна большая вариабельность в строении ядерного аппарата, его гетерогенность. У многоклеточных грибов может быть дикариотический и даже гетерокариотический ядерный аппарат. В последнем случае ядра одной клетки отличаются хромосомным составом, набор хромосом у грибов может быть как диплоидным, так и гаплоидным.

3. Способы размножения грибов

У грибов различают бесполое и половое размножение, последнее присуще только высшим грибам. При бесполом размножении возможны процессы почкования (характерны для дрожжеподобных грибов) и спорообразования. Дочерние клетки образующиеся при почковании дрожжей, называют бластоспорами. Среди спор бесполого размножения различают экзо– и эндоспоры.

Экзоспоры (конидии) образуются на терминальных нитевидных отростках специализированных гиф – конидиеносцев, например, у плесневых грибов. По размерам различают микро– и макроконидии. Среди конидий особо выделяют алейрии, при их формировании мицелий становится нежизнеспособным, так как вся протоплазма клеток уходит на формирование спор.

Эндоспоры бесполого размножения образуются внутри клетки гриба. Их разновидности достаточно многочисленны. Так, к эндоспорам относят:

артроспоры,

хламидоспоры,

спорангиоспоры,

ондии и другие.

Артроспоры образуются при фрагментации концов гиф многоклеточного гриба, хламидоспоры могут образовывать и дрожжи, и многоклеточные грибы. Эти споры характеризуются образованием утолщенных оболочек.

Спорангиоспоры созревают в особых образованиях – спорангиях. Спорангии представляют собой колбовидные или шаровидные вздутия специализированных гиф многоклеточного гриба, называемых спорангионосцами.

Ондии – очень мелкие зерна-споры, образующиеся при фрагментации любой гифы многоклеточного гриба.

У высших многоклеточных грибов различают мужские и женские гифы, обозначаемые как F+ и F. Наряду с бесполым размножением, для них характерно половое размножение. В этом случае процесс спорообразования идет после слияния мужской и женской гифы. Среди спор полового размножения грибов различают:

зигоспоры,

ооспоры,

аскоспоры,

базидиоспоры.

Зигоспоры образуются в результате мейоза внешне одинаковых гиф, а ооспоры – после слияния внешне различных гиф.

Аскоспоры присущи только одному классу высших грибов – аскомицетам. Для них характерно образование спор после слияния половых гиф и процесса мейоза в особых вместилищах – сумках (асках).

Базидиоспоры присущи высшим грибам из класса базидиомицетов, особенность их образования заключается в том, что процессы слияния половых гиф, мейоз и последующее созревание идут только в основании мицелия.

4. Культивирование грибов

В лабораторных условиях чистые грибные культуры получают при выделении из исследуемого материала методами механического разобщения и культивирования на искусственных питательных средах. Грибы растут медленнее бактерий, видимый рост их колоний на твердых питательных средах обычно наблюдается на 3–5 день. Образование колоний грибов на твердых питательных средах – результат апикального роста главной гифы и ее ответвлений.

Грибы обладают выраженной сахаролитической активностью, поэтому их выращивают на специальных средах, содержащих углеводы:

среда Сабуро,

сусло-агар,

морковный агар и другие, при этом Ph среды должно составлять 6,0–6,5.

Для роста грибам необходимы соли фосфора и серы, накопить большую биомассу грибов для промышленных целей позволяют добавки ионов меди, магния и натрия, витаминов: биотина, рибофлавина, тиамина.

Грибы растут в широком диапазоне температур (20–45 °C), грибы, вызывающие заболевания человека, обычно культивируются при температуре 37 °C. При росте многоклеточных грибов на питательных средах различают субстратный или погружной мицелий (врастающие колонии, большая часть в среде) и воздушный мицелий (большая часть его находится над питательной средой). С воздушным мицелием связано образование конидий, с субстратным – бласто-, хламидо-, и артроспор.

Вопрос 45. Особенности метаболизма грибов. Основы систематики грибов

1. Биохимические свойства грибов

Грибы биохимически очень активны, в природе они участвуют в круговороте азота и углерода, в процессах минерализации.

Грибы образуют целлюлазы, выделяемые из мицелия и питательной среды, и активно разрушают целлюлозу растительных остатков в аэробных условиях, в том числе древесины. Они эффективнее бактерий, особенно в кислых почвах.

Большинство грибов продуцируют ксиланазы, расщепляя усилан, второй по распространенности вслед за целлюлозой в природе углевод, входящий в состав соломы и луба, древесины хвойных и лиственных пород, сахарного тростника.

Грибы синтезируют альфа-амилазы, осуществляя гидролиз крахмала, при росте на углеводных средах (с глюкозой, сахарозой) многие дрожи синтезируют бета-1, 6,-глюкан, входящий в состав их клеточной стенки в качестве нерастворимой опорной структуры. Некоторые дрожжеподобные грибы выделяют глюкан-пуллулан и маннаны, а плесневые грибы рода пенициллина активно накапливают в мицелиях полисахарид нигеран. Аспергиллы активно расщепляют фруктаны, хитин.

Многим грибам присуща способность расщеплять пектины, что используется при аэробной росяной мочке льна и конопли.

Базидиомицеты активно разрушают лигнин живых растений. При этом выделяют возбудители бурой гнили, разрушающие целлюлозные и гемицеллюлозные компоненты древесины и возбудители белой гнили, разрушающие собственно лигнин.

Дрожжи рода Candida способны разрушать метанол и алканы с длинной цепью.

Многие грибы разрушают ароматические углеводороды за счет ферментативного разрыва ароматического кольца. Все указанные процессы идут с участием экзоферментов грибов.

В анаэробных условиях дрожжи активно осуществляют брожение, но рост их резко замедляется, в аэробных условиях идут процессы дыхания с активным размножением грибов. Дрожжевые грибы широко используют в технологических процессах хлебопекарного и пивоваренного производства, виноделия. Главные продуценты этанола – грибы рода Saccharomyces, которые без доступа кислорода сбраживают глюкозу с его образованием. Помимо глюкозы дрожжи способны сбраживать пируват. Брожение дрожжами в присутствии бисульфата используют для промышленного производства глицерина.

Многочисленные грибы наряду с бактериями осуществляют распад белков в почве, минерализацию азота. Многие плесневые грибы являются продуцентами антибиотиков (пенициллина, эритромицина и др.) и используются в антибиотической промышленности. Многие грибы способны разлагать кератин, что обуславливает многочисленные поражения кожи и ее дериватов, в том числе и у человека.

Изучение биохимических свойств грибов имеет важное значение не только для развития промышленной микробиологии, но и медицинской микологии. По биохимическим свойствам идентифицируют вид чистой культуры гриба, выделенной в ходе микологического исследования из материла от больного, что позволяет поставить точный диагноз. Набор ферментов строго специфичен для вида.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | Следующая
  • 3 Оценок: 2

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации