Текст книги "Стратегические игры. Доступный учебник по теории игр"
Автор книги: Авинаш Диксит
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 72 страниц) [доступный отрывок для чтения: 23 страниц]
U1[20]20
Символом U обозначаются упражнения без решений (англ. unsolved exercises). Прим. ред.
[Закрыть]. Определите, какая из следующих ситуаций представляет собой игру, а какая – решение. В каждом конкретном случае укажите, какие особенности заставили вас отнести ее к той или иной категории.
a) Кандидат от партии на пост президента США должен решить, использовать для своей кампании частное финансирование или государственное.
b) Бережливый Фред получает подарочную карту стоимостью 20 долларов на загрузку музыки, и ему предстоит решить, что покупать – отдельные композиции или альбомы.
c) Красавица Белла получила 100 ответов на свой профиль на сайте онлайн-знакомств и должна определиться, отвечать на каждое предложение или нет.
d) Канал NBC решает, как распределить свои телевизионные шоу в интернете в текущем сезоне. Руководство канала рассматривает такие варианты: Amazon.com, iTunes и/или NBC. Комиссионные, которые могут быть выплачены Amazon или iTunes, открыты для обсуждения.
e) Китай выбирает уровень тарифных ставок на импорт из США.
U2. Проанализируйте описанные ниже стратегические игры. В каждом случае укажите, к какой категории вы бы отнесли данную игру по шести параметрам, перечисленным в тексте. (i) Ходы в игре последовательные или одновременные? (ii) Это игра с нулевой суммой или нет? (iii) Это повторяющаяся игра? (iv) Присутствует ли в игре несовершенная информации и если да, то имеет ли место неполная (асимметричная) информация? (v) Правила игры фиксированные или нет? (vi) Возможны ли соглашения о сотрудничестве или нет? Если вам не хватает информации, чтобы отнести игру к какой-то определенной категории, объясните причины.
a) Гарри и Росс – торговые представители одной и той же компании. Менеджер сообщает им, что тот из них, кто обеспечит более высокий объем продаж, получит «кадиллак».
b) В игровом шоу «Правильная цена» четыре участника угадывают цену телевизора. Игра начинается с крайнего левого игрока, а сумма, которую называет каждый очередной игрок, должна отличаться от догадок предыдущих игроков. Участник шоу, который назовет максимально близкую к реальной цену, но не превысит ее, выиграет телевизор.
c) Шесть тысяч игроков выплачивают по 10 000 долларов каждый, чтобы принять участие в Мировой серии покера. Каждый игрок начинает турнир с фишек на сумму 10 000 долларов, после чего разыгрывается серия No-Limit Texas Hold ’Em (разновидность покера), которая продолжается до тех пор, пока кто-то не выиграет все фишки. Первые 600 игроков получают денежные призы согласно порядку окончания ими игры, при этом победителю достаются 8 миллионов долларов.
d) За пассажирами Desert Airlines не закрепляются места в самолетах; они выбирают их только после того, как окажутся на борту. Авиакомпания устанавливает очередность посадки пассажиров в соответствии со временем их регистрации либо на сайте не более чем за 24 часа до вылета, либо лично в аэропорту.
U3. «Любая выгода для победителя должна вредить проигравшему». Это утверждение истинно или ложно? Обоснуйте свой вывод посредством одного-двух предложений.
U4. Алисе, Бобу и Конфуцию становится скучно во время каникул, и они решают сыграть в новую игру. Каждый вносит в общий фонд 1 доллар, а затем подбрасывает монету. Алиса выиграет, если выпадут три орла или три решки. Боб выиграет, если выпадут два орла и одна решка, а Конфуций – если выпадет один орел и две решки. Все монеты правильные, и победитель получит чистый выигрыш в размере 2 доллара (3–1 = 2 доллара), а каждый проигравший потеряет 1 доллар.
a) Какова вероятность того, что Алиса победит или проиграет?
b) Чему равен ожидаемый выигрыш Алисы?
c) Какова вероятность того, что Конфуций победит или проиграет?
d) Чему равен ожидаемый выигрыш Конфуция?
e) Это игра с нулевой суммой? Обоснуйте ответ.
U5. «Когда один игрок застает другого игрока врасплох, это говорит о том, что у них нет общего понимания правил игры». Приведите пример, который иллюстрирует это утверждение, и контрпример, показывающий, что оно не всегда верно.
Часть II. Концепции и методы
Глава 3. Игры с последовательными ходами
Игры с последовательными ходами предполагают стратегические ситуации, в которых существует строгий порядок ведения игры. Игроки ходят поочередно и осведомлены о действиях соперников, сделавших свои ходы до них. Для того чтобы хорошо играть в такую игру, ее участникам необходимо использовать определенный тип интерактивного мышления. Каждый игрок должен просчитать возможную реакцию противника на тот или иной ход. Всякий раз при выполнении действий игрокам следует думать о том, как их текущие действия повлияют на будущие действия как самого игрока, так и его соперников. Следовательно, игроки выбирают ходы на основании расчета вероятных последствий.
Большинство реальных игр сочетают в себе аспекты игр как с последовательными, так и с одновременными ходами. Но концепции и методы анализа легче понять, если вводить их сначала отдельно для двух чистых типов игр. Исходя из этого, в данной главе рассматриваются только игры с последовательными ходами. Глава 4 и глава 5 целиком и полностью посвящены играм с одновременными ходами, а в главе 6 и нескольких разделах главы 7 показано, как объединить оба типа анализа в более реалистичных смешанных ситуациях. Представленный здесь анализ можно использовать всякий раз, когда игра включает в себя последовательное принятие решений. Кроме того, изучение игр с последовательными ходами позволяет определить, когда игроку выгоднее ходить первым, а когда вторым. Затем игроки могут разработать способы, так называемые стратегические ходы, манипулирования порядком игры в свою пользу. Подробно они рассматриваются в главе 9.
1. Дерево игрыНачнем с описания графического метода отображения и анализа игр с последовательными ходами, именуемого дерево игры. На таком дереве, также называемом экстенсивной формой игры, представлены все ее элементы, о которых шла речь в главе 2: игроки, действия и выигрыши.
Скорее всего, вы уже сталкивались с деревьями решений в других контекстах. Такие деревья демонстрируют всю последовательность точек принятия решений (или узлов) одним игроком в нейтральной среде. Дерево решений также включает в себя ветви, которые соответствуют имеющимся вариантам выбора и исходят из каждого узла. Дерево игры – это просто совокупность деревьев решений всех ее участников. Такое дерево отображает все возможные действия, которые могут предпринять все игроки, а также все возможные исходы игры.
А. Узлы, ветви и пути игры
На рис. 3.1 изображено дерево конкретной игры с последовательными ходами. Мы не будем здесь описывать ее историю, поскольку хотим опустить многочисленные детали, чтобы вы могли сфокусироваться на общих концепциях. В игре участвуют четыре человека: Энн, Боб, Крис и Деб. Согласно правилам игры, первый ход делает Энн; это показано в крайней левой точке дерева, или узле под названием начальный узел или корень дерева игры. В этом узле, который еще можно называть узлом действия или узлом принятия решений, у Энн есть два доступных варианта выбора. Они обозначены как «стоп» и «вперед» (не забывайте, что это абстрактные обозначения и они не обязательно должны иметь какой-то смысл) и показаны на рисунке в виде ветвей, исходящих из начального узла.
.
Рис. 3.1. Иллюстративное дерево игры
Если Энн выберет «стоп», наступит очередь Боба делать ход. У него в узле действия есть три варианта выбора, обозначенные как 1, 2 и 3. Если Энн выбирает «вперед», то следующий ход делает Крис с вариантами выбора «рискованно» и «безопасно». Другие узлы и ветви следуют друг за другом, но вместо того чтобы их перечислять, мы просто обратим ваше внимание на некоторые характерные особенности данного дерева.
Если Энн выберет «стоп», после чего Боб выберет 1, Энн получит право на следующий ход с новыми вариантами выбора – «вверх» и «вниз». В реальных играх с последовательными ходами достаточно типична ситуация, когда игрок делает несколько ходов, причем они могут быть разными в разных узлах. В шахматах, например, два игрока ходят по очереди; каждый такой ход меняет ситуацию на доске, а значит, меняются и ходы, доступные для игрока, который будет ходить следующим.
Б. Неопределенность и «ходы природы»
Если Энн выберет ход «вперед», а Крис – «рискованно», произойдет случайное событие, например подбрасывание монеты, и исход игры будет зависеть от того, выпадет орел или решка. Этот аспект игры представляет собой пример внешней неопределенности и отображается на дереве игры посредством введения внешнего игрока под названием «природа». Ему передается контроль над случайным событием, и он как будто выбирает одну из ветвей, каждую с вероятностью 50 %. Вероятность здесь определяется посредством случайного события одного типа, а именно подбрасывания монеты, но в других обстоятельствах могут использоваться и события иных типов. Например, в случае бросания игральных костей «природа» могла бы указать шесть возможных вариантов, каждый с вероятностью 162/3 процента. Использование игрока под названием «природа» позволяет ввести в игру фактор внешней неопределенности и предоставляет в наше распоряжение механизм, который делает возможным наступление событий, находящихся вне контроля реальных участников игры.
Вы можете определить количество различных путей, существующих на дереве игры, передвигаясь по следующим друг за другом ветвям. На рис. 3.1 каждый путь приводит к конечной точке игры за конечное число ходов. Конечная точка не является обязательным элементом всех игр, некоторые из них теоретически могут вестись до бесконечности. Но в большинстве наших примеров представлены конечные игры.
В. Исходы и выигрыши
В последнем узле каждого пути, так называемом концевом узле, ни один игрок не может сделать очередной ход. (Обратите внимание, что именно этим концевые узлы отличаются от узлов действия.) Вместо этого мы показываем в этом узле исход определенной последовательности действий, выраженный в выигрышах игроков. Выигрыши наших четырех героев перечислены в таком порядке: Энн, Боб, Крис, Деб. Важно указать, какой выигрыш соответствует каждому игроку. Обычно выигрыши принято указывать в том порядке, в каком игроки делают ходы. Однако иногда этот метод бывает неоднозначным; в нашем примере непонятно, кто должен делать следующий ход, Боб или Крис. Поэтому мы перечислили их в алфавитном порядке (англ. Ann, Bob, Chris, Deb), а кроме того, использовали цветную маркировку информации об игроках. Так, имя Энн, ее варианты выбора и выигрыши выделены черным цветом, Боба – темно-серым, Криса – светло-серым, а Деб – серым. При построении деревьев для игр, которые вы будете анализировать, можно выбрать любую понравившуюся вам систему обозначений, но вы должны четко сформулировать и объяснить ее тому, кто будет читать дерево игры.
Выигрыш – это числовая величина, и, как правило, для каждого игрока чем она больше, тем лучше исход игры. Таким образом, для Энн самый нижний путь (выигрыш 3) лучше самого верхнего (выигрыш 2). Однако выигрыши разных игроков не обязательно должны быть сопоставимы. В данном примере неочевидно, что в конце самого верхнего пути Боб (выигрыш 7) добивается большего, чем Энн (выигрыш 2). Иногда, например если выигрыш исчисляется в денежных единицах, сравнение выигрышей может иметь смысл.
Игроки используют информацию о выигрышах при выборе доступных действий. Включение случайного события (выбор, сделанный «природой») означает, что игрокам необходимо определить, что они получат в среднем, когда «природа» сделает свой ход. Например, если Энн выберет «вперед» в качестве первого хода в игре, Крис может выбрать «рискованно», что приведет к подбрасыванию монеты и выбору «природой» варианта «хорошо» или «плохо». В такой ситуации Энн в половине случаев может рассчитывать на выигрыш 6 и в половине случаев – на выигрыш 2; иными словами, статистическое среднее, или ожидаемый выигрыш, составит 4 = (0,5 × 6) + (0,5 × 2).
Г. Стратегии
И наконец, мы используем дерево игры, представленное на рис. 3.1, чтобы объяснить концепцию стратегии. Единичное действие, предпринятое игроком в узле, называется ходом. Но игроки могут и должны составлять планы последовательности выполнения ходов, которые они намерены сделать во всех возможных случаях в ходе игры. Такой план действий и называется стратегией.
На данном дереве игры Боб, Крис и Деб получают возможность сделать ход максимум один раз; например, Крис будет ходить только в случае, если Энн в качестве первого хода выберет «вперед». Для этих игроков между ходом и стратегией нет разницы. Мы можем определить ход, указав условие, при котором он будет сделан; так, в случае Боба может быть следующая стратегия: «Выбрать 1, если Энн выберет “стоп”». Однако у Энн есть две возможности сделать ход, поэтому ее стратегия требует более полного описания. Одна из стратегий Энн: «Выбрать “стоп”, а если Боб выберет 1, выбрать “вниз”».
В более сложных играх, таких как шахматы, где есть длинные последовательности ходов с большим количеством вариантов выбора в каждой, описание стратегий усложняется; мы обсудим данный аспект более подробно далее в этой главе. Однако общий принцип построения стратегий достаточно прост, за исключением одной особенности. Если Энн выберет «вперед» на первом ходе, она так и не получит шанса сделать второй ход. Следует ли в стратегии, согласно которой она выбирает «вперед», указывать то, что Энн сделала бы в гипотетическом случае, если бы каким-то образом оказалась в узле своего второго действия? Возможно, ваша интуиция скажет «нет», но формальная теория игр говорит «да» по двум причинам.
Во-первых, выбор Энн варианта «вперед» в качестве первого хода может зависеть от ее рассуждений о том, что ей пришлось бы сделать на втором ходе, если бы она изначально предпочла вариант «стоп». Например, тогда Боб мог бы выбрать 1, и Энн получила бы второй ход, а ее лучшим выбором стал бы вариант «вверх», обеспечивающий ей выигрыш 2. Если Энн для первого хода выберет «вперед», Крис выберет вариант «безопасно» (поскольку его выигрыш 3 в случае варианта «безопасно» больше, чем ожидаемый выигрыш от варианта «рискованно»), и такой исход игры обеспечит Энн выигрыш 3. Для того чтобы процесс размышлений был понятнее, можно сформулировать стратегию Энн так: «Выбрать “вперед” на первом ходе и выбрать “вверх”, если появится возможность походить еще раз».
Вторая причина для такого, казалось бы, педантичного описания стратегий имеет отношение к устойчивости равновесия. При анализе устойчивости мы спрашиваем, что бы произошло, если бы выбор игроков был подвержен влиянию небольших помех, среди которых и мелкие ошибки самих игроков. Скажем, если бы выбор нужно было делать посредством нажатия клавиши, не исключено, что у Энн дрогнула бы рука и она случайно вместо клавиши «вперед» нажала бы клавишу «стоп». Исходя из этого, важно определить, как Энн будет действовать, обнаружив ошибку, поскольку Боб выберет 1 и наступит очередь Энн делать следующий ход. На более продвинутых уровнях теории игр анализ устойчивости обязателен, поэтому мы хотим подготовить вас заранее, настаивая на том, чтобы вы изначально формулировали свои стратегии в виде исчерпывающих планов действий.
Д. Построение дерева
Теперь подытожим общие концепции, проиллюстрированные деревом, представленным на рис. 3.1. Дерево игры состоит из узлов и ветвей. Узлы соединены между собой ветвями и бывают двух типов. Узел первого типа обозначается термином «узел принятия решений». Каждый такой узел соответствует игроку, который выбирает в нем действие. Каждое дерево имеет один узел принятия решений – это начальный узел дерева, отправная точка игры. Узел второго типа называется «концевой узел». Каждому концевому узлу соответствует совокупность исходов игры для ее участников; эти исходы представляют собой выигрыши, полученные каждым игроком, если игра проходила по ветвям, приведшим к данному концевому узлу.
Ветви дерева игры представляют действия, которые можно предпринять из любого узла принятия решений. Каждая ветвь на дереве ведет от узла принятия решений либо к другому узлу принятия решений (как правило, другого игрока), либо к концевому узлу. В дереве должны учитываться все допустимые варианты действий, которые игрок может выбрать в каждом узле, поэтому некоторые деревья включают также ветви, соответствующие варианту «ничего не делать». Из каждого узла принятия решений должна исходить как минимум одна ветвь, но ограничений на количество ветвей нет. При этом к каждому узлу принятия решений может вести только одна ветвь.
Деревья игры часто рисуют на странице слева направо, однако их можно рисовать в любом наиболее подходящем для рассматриваемой игры направлении: снизу вверх, в сторону, сверху вниз или даже радиально, от центра. Дерево – это метафора, в основе которой лежит идея о последовательном ветвлении, поскольку решения принимаются в узлах деревьев.
2. Решение игр с помощью деревьевМы проиллюстрируем использование деревьев на примере поиска равновесных исходов игр с последовательными ходами в очень простой ситуации, с которой, по всей вероятности, сталкивались многие из вас, – курить или не курить. Эту и многие другие аналогичные стратегические ситуации с участием одного игрока можно рассматривать как игры, если мы признаем, что впоследствии выбор предстоит делать будущему «я» игрока, которое подвержено влиянию различных факторов и иначе оценивает идеальный исход игры.
Возьмем, к примеру, подростка по имени Кармен, которая решает, следует ли ей курить. Во-первых, она должна определиться, стоит ли ей вообще пробовать курить. Если она все же попробует, в будущем ей предстоит принять еще одно решение: продолжать ли курить. Мы проиллюстрируем этот пример с помощью дерева, представленного на рис. 3.2.
.
Рис. 3.2. Принятие решения о курении
Узлы и ветви обозначены доступными Кармен вариантами выбора, но мы должны объяснить выигрыши. Примем исход игры «никогда не курить» за эталон для сравнения и присвоим ему выигрыш 0. Число 0 в этом контексте ничего особо не значит; все, что имеет значение для сравнения исходов, а следовательно, и решения Кармен, – соответствующий выигрыш больше или меньше остальных. Предположим, что для Кармен наиболее предпочтителен исход игры, при котором она попробует какое-то время курить, а потом бросит. Возможно, причина в том, что Кармен не привыкла верить на слово и желает обо всем составить собственное представление, или в том, что это позволит ей со знанием дела заявить: «Я это пробовала и уверяю, что ничего хорошего в этом нет», когда в будущем ей придется наставлять своих детей на путь истинный. Присвоим этому исходу выигрыш +1. Худший исход игры – когда Кармен попробует курить и не сможет остановиться. Даже если не брать во внимание вред, наносимый курением здоровью в долгосрочной перспективе, в краткосрочном периоде появятся не менее насущные проблемы: волосы и одежда Кармен будут неприятно пахнуть, а друзья станут ее избегать. Присвоим этому исходу выигрыш −1. В итоге выбор Кармен кажется очевидным: попробовать курить, но не продолжать это делать.
Однако в этом анализе не учтена проблема зависимости. Как только Кармен попробует какое-то время курить, у нее сформируются другие вкусы и изменятся выигрыши. Решение о том, продолжать ли курить, будет принимать уже не нынешняя Кармен с ее теперешней оценкой исходов игры в том виде, как показано на рис. 3.2, а будущая Кармен, которая иначе оценит дальнейшие альтернативы. Делая выбор сегодня, Кармен нужно проанализировать его последствия и учесть это в своем решении, которое она должна принять исходя из текущих предпочтений. Другими словами, проблема выбора, касающаяся курения, – на самом деле не решение в том смысле, о котором шла речь в главе 2 (выбор, сделанный в нейтральной среде), а игра в формальном смысле, также представленная в главе 2, в которой другой игрок – это будущее «я» Кармен со своими особыми приоритетами. И нынешней Кармен при принятии решения предстоит вести игру с будущей Кармен.
Мы превратим дерево решений, представленное на рис. 3.2, в дерево игры на рис. 3.3 посредством введения двух игроков, делающих выбор в двух узлах. В начальном узле нынешняя Кармен решает, стоит ли ей пробовать курить. В случае положительного ответа появляется будущая Кармен, попавшая в зависимость от курения, и уже она решает, продолжать ей курить или нет. Давайте изобразим здоровую, не загрязняющую окружающую среду нынешнюю Кармен, ее действия и выигрыши серым цветом, а пристрастившуюся к курению будущую Кармен, ее действия и выигрыши – черным (такими стали ее легкие). Выигрыши нынешней Кармен остались прежними. А вот будущая Кармен продолжит наслаждаться курением, а при попытке бросить у нее наступит ужасный абстинентный синдром. Пусть выигрыш будущей Кармен при выборе варианта «курить» составляет +1, а при выборе «не курить» – −1.
.
Рис. 3.3. Игра «курение»
Учитывая предпочтения будущей курильщицы Кармен, в узле принятия решений она выберет вариант «продолжать». Нынешняя Кармен должна проанализировать эту перспективу и учесть ее при принятии текущего решения, признав, что если перевесит желание покурить, то это неизбежно приведет к тому, что она будет курить и впоследствии. Несмотря на то что нынешняя Кармен этого не хочет, она не сможет в дальнейшем реализовать свой текущий выбор, поскольку будущая Кармен, у которой совсем иные наклонности, сделает именно такой выбор. Следовательно, нынешняя Кармен должна предвидеть, что выбор варианта «попробовать» приведет к выбору «продолжать» и обеспечит ей выигрыш −1 по ее текущим оценкам, тогда как выбор варианта «нет» даст выигрыш 0. Таким образом, ей следует предпочесть второе.
Подобная аргументация более наглядно представлена на рис. 3.4. На рис. 3.4а мы обрезаем, или отсекаем, ветвь «нет», исходящую из второго узла. Такое отсекание говорит о том, что будущая Кармен, которая делает выбор в этом узле, не выберет действие, соответствующее этой ветви, учитывая ее предпочтения, выделенные черным цветом.
.
.
Рис. 3.4. Отсечение ветвей дерева игры «курение»
На дереве остались две ветви, исходящие из первого узла, в котором делает выбор нынешняя Кармен; каждая из ветвей ведет непосредственно к концевому узлу. Такое отсечение позволяет нынешней Кармен просчитать все возможные последствия любого своего решения. Выбор варианта «попробовать» приведет к варианту «продолжать» и обеспечит выигрыш −1 с точки зрения предпочтений нынешней Кармен, тогда как выбор варианта «нет» даст выигрыш 0. Таким образом, на данный момент Кармен должна выбрать вариант «нет», а не «попробовать». Следовательно, мы можем отсечь ветвь «попробовать», исходящую из первого узла (вместе с ее предполагаемым продолжением), как показано на рис. 3.4б. На нем изображено «полностью усеченное» дерево всего с одной ветвью, исходящей из начального узла и ведущей к концевому. Единственный оставшийся путь, пролегающий по дереву игры, демонстрирует, что произойдет в игре, если все ее участники сделают лучший выбор на основании правильного прогнозирования всех вероятных исходов.
При обрезке ветвей дерева игры на рис. 3.4 мы вычеркнули ветви, которые не выбрали. Еще один эквивалентный, но альтернативный способ показать выбор игрока – как-то выделить выбираемые им ветви. Для этого можно отметить их галочками или стрелками или выделить более жирными линиями. Подойдет любой способ (на рис. 3.5 показаны все перечисленные варианты[21]21
На рис. 3.5 показаны варианты обозначения отсекаемых ветвей, а не отсечения игры «курение». Прим. ред.
[Закрыть]), вам виднее, но все же второй вариант, особенно выделение стрелками, имеет свои преимущества. Во-первых, он обеспечивает формирование более четкой картины происходящего. Во-вторых, в случае вычеркивания ветвей не всегда понятен порядок их отсечения. Например, на рис. 3.4б читатель может подумать, что ветвь «продолжать», исходящая из второго узла, была отсечена первой, а уже после этого была отсечена ветвь «попробовать» в первом узле и следующая за ней ветвь «нет» во втором узле. Последний и самый важный аргумент в пользу этого способа состоит в том, что стрелки более наглядно показывают результат последовательности оптимальных вариантов выбора в виде непрерывной цепочки стрелок от начального до концевого узла. Вот почему в других диаграммах такого типа, представленных далее в книге, мы используем стрелки вместо вычеркивания ветвей. В процессе построения деревьев игр вам следует попрактиковаться в применении обоих способов, а когда научитесь строить такие деревья, можете выбрать тот способ, который вам больше нравится.
.
Рис. 3.5. Выбор ветвей на дереве игры «курение»
Независимо от того, как вы отобразите свои размышления на дереве игры, логика анализа во всех случаях будет одинаковой и важной. Вы должны начать с рассмотрения узлов действий, ведущих непосредственно к концевым узлам. Оптимальный выбор для игрока, делающего ход в таком узле, можно определить путем сравнения его выигрышей в соответствующих концевых узлах. Использование вариантов выбора в конце игры для прогнозирования последствий более ранних действий позволяет рассчитать выбор в узлах, предшествующих узлам окончательного принятия решений. Затем то же самое можно сделать с предыдущими узлами и т. д. Передвигаясь таким образом по дереву игры в обратном направлении, вы можете решить всю игру.
Данный метод определения поведения в игре с последовательными ходами (смотреть вперед и рассуждать в обратном порядке) известен как метод обратных рассуждений. Как подразумевает само его название, сперва следует подумать, что произойдет во всех концевых узлах, а затем передвигаться по дереву в обратном направлении вплоть до начального узла, анализируя соответствующие действия. Поскольку такие рассуждения требуют передвижения в обратном направлении по одному шагу за один раз, этот метод обозначают также термином «обратная индукция». Мы предпочитаем термин «обратные рассуждения», ввиду того что он проще и получает все более широкое распространение, однако в других книгах по теории игр используется старый термин «обратная индукция». Вам следует просто запомнить, что они эквивалентны.
Когда все участники игры для выбора оптимальных стратегий применяют метод обратных рассуждений, такая совокупность стратегий в данной игре называется равновесием обратных рассуждений, а исход игры, обусловленный использованием этих стратегий, – исходом равновесия обратных рассуждений. В более сложных учебниках по теории игр эта концепция обозначается как совершенное равновесие подыгры; возможно, ваш преподаватель предпочитает именно этот термин. Мы приводим формальное объяснение и анализ совершенного равновесия подыгры в главе 6, но склоняемся к употреблению более простого и интуитивно понятного термина «равновесие обратных рассуждений». Теория игр предсказывает такой исход в качестве равновесия в игре с последовательными ходами, в которой все игроки становятся рациональными вычислителями в погоне за максимальным выигрышем. Далее в данной главе мы проанализируем, как этот прогноз подтверждается на практике. А пока вам следует знать, что во всех конечных играх с последовательными ходами, представленных в этой книге, есть по крайней мере одно равновесие обратных рассуждений. В действительности в большинстве игр присутствует в точности одно такое равновесие. И только в исключительных случаях, когда игрок получает одинаковые выигрыши в результате двух или более наборов ходов, а значит, не может отдать явное предпочтение ни одному из них, их может быть больше.
В игре «курение» равновесие обратных рассуждений наблюдается в случае, когда нынешняя Кармен выбирает стратегию «нет», а будущая Кармен – стратегию «продолжить». Когда нынешняя Кармен совершает оптимальное действие, пристрастившаяся к курению будущая Кармен вообще не появляется на свет, а значит, и не получает реальной возможности сделать ход. Однако призрачное присутствие будущей Кармен и стратегия, которую бы она предпочла, если бы нынешняя Кармен выбрала вариант «попробовать» и предоставила бы ей шанс сделать ход, – важный элемент игры, на самом деле являющийся ключевым в определении оптимального хода нынешней Кармен.
Итак, мы описали концепции дерева игры и анализа методом обратных рассуждений с помощью очень простых примеров, в которых решение было очевидным на основании словесных аргументов. А теперь перейдем к использованию этих концепций в более сложных ситуациях, когда выполнение вербального анализа усложняется, в связи с чем роль визуального анализа с помощью дерева игры возрастает.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?