Текст книги "Стратегические игры. Доступный учебник по теории игр"
Автор книги: Авинаш Диксит
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 11 (всего у книги 72 страниц) [доступный отрывок для чтения: 23 страниц]
.
Рис. 4.5. Игра с фискальной и монетарной политикой
Для Конгресса лучший (выигрыш 4) – исход с дефицитом бюджета и низкими процентными ставками, что удовлетворяет всех непосредственных участников политического процесса. Правда, это чревато проблемами в будущем, но в политике временные интервалы непродолжительны. По той же причине худший для Конгресса (выигрыш 1) – исход со сбалансированным бюджетом и высокими процентными ставками. Из двух других исходов Конгресс предпочитает исход со сбалансированным бюджетом и низкими процентными ставками (выигрыш 3): он отвечает интересам домовладельцев как представителей важного среднего класса, а низкие процентные ставки предполагают меньше расходов на обслуживание государственного долга, поэтому в сбалансированном бюджете остается место для многих других статей расходов или снижения налогов.
Для ФРС худший (выигрыш 1) – исход с бюджетным дефицитом и низкими процентными ставками, поскольку это сочетание самое инфляционное; лучший (выигрыш 4) – исход со сбалансированным бюджетом и низкими процентными ставками, потому что это сочетание может выдержать высокий уровень экономической активности без большого риска инфляции. Сопоставив два оставшихся исхода с высокими процентными ставками, ФРС выбирает исход со сбалансированным бюджетом, так как он снижает риск инфляции.
Теперь давайте поищем в этой игре доминирующие стратегии. ФРС добьется более высоких результатов за счет низких процентных ставок, если считает, что Конгресс выберет сбалансированный бюджет (в таком случае выигрыш ФРС составит 4, а не 3). С другой стороны, ФРС выгоднее поднять процентные ставки исходя из убеждения, что Конгресс предпочтет дефицит бюджета (тогда выигрыш ФРС составит 2, а не 1). Таким образом, у ФРС нет доминирующей стратегии, а вот у Конгресса она есть. Если он убежден, что ФРС введет низкие процентные ставки, ему выгоднее выбрать бюджетный дефицит, а не сбалансированный бюджет (при этом выигрыш Конгресса составит 4 вместо 3), как, собственно, и в случае высоких процентных ставок (выигрыш Конгресса составит 2 вместо 1). Следовательно, выбор бюджетного дефицита – доминирующая стратегия Конгресса.
Итак, выбор Конгресса очевиден. Какими бы ни были его убеждения в отношении действий ФРС, он предпочтет дефицит бюджета. ФРС же может учесть этот выбор при принятии своего решения. Федеральная резервная система должна отталкиваться от убеждения, что Конгресс применит свою доминирующую стратегию (дефицит бюджета), и исходя из этого выбрать свою лучшую стратегию, то есть высокие процентные ставки.
При таком исходе игры каждая сторона получает выигрыш 2. Однако внимательное изучение рис. 4.5 показывает, что, как и в дилемме заключенных, существует еще один исход (а именно сбалансированный бюджет и низкие процентные ставки), способный обеспечить обоим игрокам более высокие выигрыши (3 для Конгресса и 4 для ФРС). Почему же он недостижим в качестве равновесия? Проблема в том, что у Конгресса возникнет искушение отклониться от заявленной стратегии и незаметно создать дефицит бюджета. ФРС, в свою очередь, зная о подобном соблазне и во избежание худшего исхода (выигрыш 1), тоже отклонится от своей стратегии и повысит ставки. В главе 6 и главе 9 мы расскажем, как обе стороны могут преодолеть эту трудность, чтобы достичь обоюдовыгодного исхода. Но следует отметить, что в большинстве стран в разные времена эти два политических органа действительно оказывались в тупиковой ситуации, когда фискальная политика была слишком мягкой, а монетарная требовала ужесточения, чтобы сдерживать инфляцию.
В. Последовательное исключение доминируемых стратегий
До сих пор в рассмотренных нами играх в распоряжении каждого игрока было по две чистые стратегии. Если одна стратегия в таких играх доминирующая, а другая – доминируемая, то выбор первой равнозначен исключению второй. В более масштабных играх некоторые стратегии игрока могут быть доминируемыми, даже если при этом ни одна стратегия не доминирует над остальными. Если игроки оказываются в игре данного типа, у них есть шанс добиться равновесия посредством исключения доминируемых стратегий из рассмотрения в качестве возможных вариантов выбора. Такое исключение уменьшает размер игры, а в «новой» игре у того же игрока или у его соперника может быть другая доминируемая стратегия, которую тоже можно удалить. В «новой» игре у одного из участников может даже появиться доминирующая стратегия. Последовательное, или итеративное, исключение доминируемых стратегий сводится к их удалению и сокращению размера игры до тех пор, пока дальнейшее сокращение не станет невозможным. Когда этот процесс завершается уникальным исходом, говорят, что игра разрешима по доминированию. Такой исход представляет собой равновесие Нэша, а стратегии, которые его обеспечивают, – равновесные стратегии каждого игрока.
Давайте возьмем в качестве примера этого процесса игру, представленную на рис. 4.1. Рассмотрим первые стратегии Строки. Если какая-то стратегия неизменно обеспечивает этому игроку худшие выигрыши, то она является доминируемой и ее можно исключить из рассмотрения в поисках равновесного выбора Строки. В данном примере единственная доминируемая стратегия Строки – «высоко», над которой доминирует стратегия «внизу»: если Столбец выберет стратегию «слева», Строка получит выигрыш 5 за счет стратегии «внизу» и 4 – за счет стратегии «высоко»; если Столбец предпочтет стратегию «справа», Строка получит выигрыш 9, применив стратегию «внизу», и только 6 в случае «высоко». Следовательно, мы можем исключить стратегию «высоко» из рассмотрения. Теперь проанализируем варианты выбора Столбца на предмет исключения. Стратегия Столбца «слева» доминируется стратегией «справа» (что подтверждают аналогичные рассуждения: 1 < 2, 2 < 3 и 6 < 7). Обратите внимание, что мы не могли сделать такой вывод раньше, до удаления стратегии Строки «высоко»: в игре против стратегии Строки «высоко» Столбец получил бы выигрыш 5 за счет стратегии «слева» и только 4 за счет стратегии «справа». Стало быть, первый этап исключения стратегии Строки «высоко» позволяет перейти ко второму этапу, сводящемуся к удалению стратегии Столбца «слева». Таким образом, в контексте оставшегося набора стратегий («вверху», «низко» и «внизу» у Строки и «посредине» и «справа» у Столбца) стратегии Строки «вверху» и «внизу» доминируемы стратегией «низко». Когда у Строки остается только стратегия «низко», Столбец выберет свой наилучший ответ – а именно стратегию «посредине».
Следовательно, эта игра разрешима по доминированию, а ее исход – «низко»/«посредине» с выигрышами 5, 4. Мы определили его как равновесие Нэша, когда впервые иллюстрировали данную концепцию с помощью этой игры. Теперь более подробно рассмотрели процесс размышлений игроков, приводящий к формированию правильных убеждений. Рациональный игрок Строка не выберет стратегию «высоко». Рациональный игрок Столбец поймет это и, взвесив эффективность своих стратегий против оставшихся у Строки, не выберет «слева». Строка, в свою очередь, предвидя это, не выберет ни «вверху», ни «внизу». И наконец, Столбец, проанализировав все это, применит «посредине».
Другие игры могут быть не разрешимы по доминированию, а последовательное исключение доминируемых стратегий может не обеспечить уникальный исход игры. Но даже в таких случаях исключение доминируемых стратегий позволяет уменьшить размер игры и облегчить ее решение с помощью одного или более методов, описанных в следующих разделах. Стало быть, исключение доминируемых стратегий может стать полезным шагом на пути к решению большой игры с одновременными ходами, даже если не предоставляет возможности решить ее полностью.
До сих пор в процессе анализа итеративного исключения доминируемых стратегий все сравнения выигрышей носили однозначный характер. Но что если выигрыши окажутся равными? Рассмотрим вариант предыдущей игры, показанной на рис. 4.3. В этой ее версии стратегии «высоко» (у Строки) и «слева» (у Столбца) также исключаются. На следующем этапе «низко» по-прежнему доминирует над «вверху», а вот доминирование «низко» над «внизу» стало менее очевидным. Эти две стратегии обеспечивают Строке равные выигрыши в борьбе против стратегии Столбца «посредине», хотя стратегия «низко» все же гарантирует Строке более высокий выигрыш по сравнению со стратегией «внизу» при их использовании против стратегии Столбца «справа». Будем говорить, что с точки зрения Строки в данный момент стратегия «низко» слабо доминирует над стратегией «внизу». Напротив, стратегия «низко» строго доминирует над стратегией «вверху», поскольку обеспечивает более высокие выигрыши, чем стратегия «вверху», разыгранная против обеих стратегий Столбца («посредине» и «справа»), анализируемых на данном этапе.
А теперь хотим предупредить вас вот о чем: последовательное исключение слабо доминируемых стратегий может привести к потере некоторых равновесий Нэша. Рассмотрим игру, представленную на рис. 4.6, где мы вводим Ровену как игрока вместо Строки и Колина вместо Столбца[48]48
Мы используем эти имена в надежде на то, что они помогут вам вспомнить, какой игрок выбирает строку («Ровена» от англ. row), а какой – столбец («Колин» от англ. column). Такой изобретательный способ обозначения игроков предложил Роберт Ауман, разделивший Нобелевскую премию с Томасом Шеллингом в 2005 году, идеи которого рассматриваются в главе 9.
[Закрыть]. В случае Ровены стратегия «вверх» слабо доминируема стратегией «вниз»; если Колин сыграет «налево», то Ровена получит лучший выигрыш, применив стратегию «вниз», а не «вверх», а если Колин сыграет «направо», то Ровена получит один и тот же выигрыш от обеих своих стратегий. Точно так же для Колина стратегия «направо» слабо доминирует над стратегией «налево». В таком случае разрешимость по доминированию говорит нам, что сочетание стратегий «вниз»/«направо» – равновесие Нэша. Это действительно так, но «вниз»/«налево» и «вверх»/«направо» – тоже равновесия Нэша. Рассмотрим сочетание «вниз»/«налево». Когда Ровена выбирает «вниз», Колин не может улучшить свой выигрыш, переключившись на стратегию «направо», а когда Колин выбирает «налево», лучший ответ Ровены – сыграть «вниз». Аналогичные рассуждения позволяют убедиться, что «вверх»/«направо» – также равновесие Нэша.
.
Рис. 4.6. Исключение слабо доминируемых стратегий
В связи с этим при использовании слабого доминирования для исключения некоторых стратегий целесообразно проверить, не пропустили ли вы какие-либо равновесия, с помощью других методов (таких как метод, представленный в следующем разделе). Решение по итеративному доминированию можно считать вероятным равновесием Нэша в этой игре с одновременными ходами, однако следует учитывать также важность множественности равновесий и другие равновесия сами по себе. Мы рассмотрим эти вопросы в следующих главах, проанализировав множественность равновесий в главе 5 и взаимосвязи между играми с последовательными и одновременными ходами в главе 6.
4. Анализ наилучших ответовВо многих играх с одновременными ходами нет ни доминирующих, ни доминируемых стратегий. Другие игры могут иметь одну или несколько доминируемых стратегий, но их итеративное исключение не обеспечивает единственного исхода игры. В таких случаях необходимо выполнить следующий шаг в процессе поиска решения игры. Мы по-прежнему ищем равновесие Нэша, в котором каждый игрок предпринимает свое лучшее действие с учетом действий другого игрока (игроков), но теперь должны прибегнуть к более тонкому стратегическому мышлению, чем то, которого требует простое исключение доминируемых стратегий.
Здесь мы сформулируем еще один систематический метод поиска равновесий Нэша, который нам очень пригодится при выполнении последующего анализа. Для начала введем требование о правильности убеждений. Мы будем по очереди принимать точку зрения каждого игрока и задавать такой вопрос: какой лучший ответ данного игрока на каждый вариант выбора, который может сделать другой игрок (игроки)? Таким образом мы найдем лучшие ответы каждого игрока на все стратегии, доступные другим игрокам. В математических терминах это означает, что мы найдем стратегию лучшего ответа каждого игрока в зависимости от (или как функцию от) стратегий, находящихся в распоряжении других игроков.
Вернемся к игре, в которую играли Строка и Столбец, и представим ее на рис. 4.7. Сначала проанализируем ответы Строки. Если Столбец применит стратегию «слева», наилучший ответ Строки – «внизу», обеспечивающий выигрыш 5. Мы показываем его, выделив соответствующий выигрыш кружком в таблице игры. Если Столбец предпочтет стратегию «посредине», лучший ответ Строки – «низко» (тоже выигрыш 5). А если Столбец выберет стратегию «справа», оптимальный выбор Строки – снова «низко» (выигрыш 12). Опять же, мы показываем лучшие варианты выбора Строки, обведя кружками соответствующие выигрыши. Аналогичным образом представлены лучшие ответы Столбца, выигрыши по которым выделены кружками: 3 (стратегия «посредине» как лучший ответ на стратегию Строки «вверху»), 5 («слева» как лучший ответ на «высоко»), 4 («посредине» как лучший ответ на «низко») и 7 («справа» как лучший ответ на «внизу»)[49]49
В качестве альтернативного способа можно как-то отмечать стратегии, которые игроки не выбирают. Например, на рис. 4.3 Строка не выбирает стратегии «вверху», «высоко» и «внизу» как ответы на стратегию Столбца «справа». Это можно было бы показать, зачеркнув косыми линиями выигрыши ряда в этих случаях – 10, 6 и 9 соответственно. Когда это будет сделано по всем стратегиям обоих игроков, выигрыши стратегий («низко», «посредине») останутся незачеркнутыми; это и есть равновесие Нэша в данной игре. Такие варианты, как выделение кружками выбранных стратегий и зачеркивание косыми линиями невыбранных, связаны друг с другом на концептуальном уровне, так же как выделение выбранных ветвей стрелками и отсечение невыбранных в случае игр с последовательными ходами. В каждом из этих случаев мы отдаем предпочтение первому варианту, поскольку полученная в результате картина более наглядна и лучше передает суть происходящего.
[Закрыть]. Мы видим, что в одной ячейке – а именно «низко»/«посредине» – оба выигрыша выделены кружками. Следовательно, стратегии «низко» у Строки и «посредине» у Столбца одновременно будут лучшими ответами друг на друга. Мы нашли равновесие Нэша в этой игре еще раз.
.
Рис. 4.7. Анализ наилучших ответов
Анализ наилучших ответов – это исчерпывающий способ обнаружения в игре всех возможных равновесий Нэша. Вам следует углубить понимание этого метода, применив его ко всем играм, описанным в данной главе. Примеры с доминированием представляют особый интерес. Если у Строки есть доминирующая стратегия, именно она будет наилучшим ответом на все стратегии Столбца; следовательно, все наилучшие ответы Строки расположены по горизонтали в одной и той же строке. Точно так же, если у Столбца есть доминирующая стратегия, то все его наилучшие ответы выстроятся по вертикали в одном и том же столбце. Вы можете сами проверить, как такой анализ позволяет определить равновесия Нэша в дилемме заключенных с участием мужа и жены, показанной на рис. 4.4, и в игре между Конгрессом и Федеральной резервной системой, отображенной на рис. 4.5.
В некоторых играх анализ наилучших ответов не позволяет найти равновесие Нэша, подобно тому как разрешимость по доминированию не всегда обеспечивает требуемый результат. Однако в данном случае мы можем сказать кое-что более конкретное, чем при неудачной попытке использовать доминирование. Когда анализ наилучших ответов в игре с дискретными стратегиями не обнаруживает равновесия Нэша, это означает, что в этой игре нет равновесия в чистых стратегиях. Мы рассмотрим игры такого типа в разделе 7 данной главы, а в главе 5 расширим область применения анализа наилучших ответов на игры, в которых стратегии представляют собой непрерывные переменные, например цены или расходы на рекламу. Кроме того, мы построим кривые наилучших ответов, что позволит нам находить равновесия Нэша, и увидим, что в подобных играх равновесие может отсутствовать с меньшей вероятностью в силу непрерывности выбора стратегий.
5. Три игрокаДо сих пор мы анализировали только игры между двумя участниками. Однако все рассмотренные методы анализа применимы и для поиска равновесий Нэша в чистых стратегиях в любой игре с одновременными ходами с участием любого количества игроков. Когда в игре больше двух участников, каждому из которых доступно сравнительно небольшое количество чистых стратегий, анализ можно выполнить с помощью таблицы игры, подобно тому как мы это делали в первых четырех разделах данной главы.
В главе 3 мы рассматривали игру с тремя участницами, каждая из которых имела по две чистые стратегии. Эмили, Нине и Талии предстояло решить, вносить ли вклад в создание декоративного сада на их маленькой улице. Мы предположили, что в случае вклада всех трех участниц игры сад будет не лучше, чем при вкладе двоих девушек, а вот если вклад сделает только одна участница, сад получится настолько скудным, что уж лучше его и не высаживать вовсе. Теперь допустим, что три участницы делают выбор одновременно, а разнообразие возможных исходов и выигрышей несколько богаче. В частности, размер и пышность сада будут зависеть от точного количества инвесторов: вклад трех участниц позволит разбить самый большой и красивый сад, двух – средний сад и одной – маленький.
Предположим, Эмили анализирует вероятные исходы игры «уличный сад». Ей предстоит оценить шесть возможных вариантов. Эмили может выбирать, вносить или не вносить вклад, если и Нина, и Талия внесут свой вклад или если ни одна из них этого не сделает либо сделает только одна. С точки зрения Эмили, лучший возможный исход с рейтингом 6 – воспользоваться добротой соседок и сделать так, чтобы Нина и Талия инвестировали в создание сада, а она сама – нет. Тогда Эмили могла бы наслаждаться средним садом, не вкладывая в него заработанные тяжелым трудом деньги. Если Нина и Талия вложат средства в сад и Эмили тоже, она сможет любоваться большим прекрасным садом, но ценой собственного вклада, поэтому она присваивает этому исходу рейтинг 5.
На другом конце диапазона находятся исходы, возникающие в случае отказа Нины и Талии инвестировать в сад. При таком раскладе Эмили снова предпочтет не вносить вклад, поскольку иначе все расходы на создание общественного сада, которым будут наслаждаться все, лягут на ее плечи; уж лучше она посадит цветы у себя во дворе. Таким образом, если другие участницы игры отказываются вкладывать средства в создание сада, Эмили присваивает рейтинг 1 исходу, при котором она вносит вклад, и рейтинг 2 исходу, при котором она этого не делает.
Между крайними случаями находятся ситуации, в которых кто-то один – либо Нина, либо Талия – вносит вклад, но не сразу обе. Когда одна из них это делает, Эмили знает, что сможет наслаждаться маленьким садом, не принимая участия в его создании. Кроме того, она считает, что цена ее вклада перевешивает то, что он позволит увеличить размер сада. Поэтому Эмили присваивает рейтинг 4 исходу, при котором она не вносит вклад, но получает возможность наслаждаться маленьким садом, и рейтинг 3 исходу, при котором вносит вклад, обеспечивая создание среднего сада. Поскольку Нина и Талия придерживаются аналогичных взглядов на затраты и преимущества, каждая из них составляет такой же рейтинг вероятных исходов игры, в котором самый худший – когда каждая участница инвестирует в создание сада, а две оставшиеся этого не делают, и т. д.
Если все трое решают, вносить ли вклад в создание сада, не зная о действиях соседок, перед нами – игра с одновременными ходами с тремя игроками. Для того чтобы найти в ней равновесие Нэша, необходимо составить таблицу игры. В случае игры с тремя участниками таблица должна быть трехмерной, а стратегии третьего игрока должны соответствовать третьему измерению. Самый простой способ его прибавить к двумерной таблице игры – добавить страницы. Первая страница таблицы отображает выигрыши для первой стратегии третьего игрока, вторая страница – выигрыши для второй стратегии третьего игрока и т. д.
Мы показываем трехмерную таблицу игры «уличный сад» на рис. 4.8. В ней две строки отведены для двух стратегий Эмили, два столбца – для двух стратегий Нины и две страницы – для двух стратегий Талии. Мы разместили эти страницы рядом, чтобы вы могли видеть все одновременно. В каждой ячейке выигрыши перечислены в следующем порядке: сначала выигрыш игрока строки, затем выигрыш игрока столбца, далее выигрыш игрока страницы, то есть в данном примере: Эмили, Нина, Талия.
.
Рис. 4.8. Игра «уличный сад»
Прежде всего мы должны определить, есть ли доминирующие стратегии у каждой из участниц. В таблицах игр из одной страницы это было достаточно просто: мы просто сравнивали исходы, связанные с одной из стратегий игрока, с исходами другой его стратегии. На практике в случае игрока строки такое сравнение требовало простой проверки данных в столбцах одной страницы таблицы и наоборот в случае игрока столбца. Сейчас же мы должны проверить данные на обеих страницах таблицы, чтобы определить, есть ли доминирующая стратегия у какой-либо из участниц игры.
В случае Эмили мы сравниваем две строки обеих страниц таблицы и видим, что если Талия внесет вклад, то доминирующая стратегия Эмили – не вносить вклад. Следовательно, для Эмили лучше не вносить вклад в создание сада независимо от решений остальных участниц игры. Точно так же мы видим, что доминирующая стратегия Нины (на обеих страницах таблицы) – не вносить вклад. А вот при поиске доминирующей стратегии у Талии нужно быть предельно внимательными. Мы должны сравнить исходы, которые поддерживают постоянство поведения Эмили и Нины, проанализировав выигрыши Талии в случае выбора стратегии «внести вклад» в сравнении с выигрышами от выбора стратегии «не вносить вклад». Иными словами, мы должны сравнить ячейки двух страниц таблицы: верхнюю левую ячейку первой страницы (слева) с верхней левой ячейкой второй страницы (справа) и т. д. Как и для первых двух участниц игры, этот процесс показывает, что доминирующая стратегия Талии – тоже не вносить вклад.
Итак, у каждой участницы игры есть доминирующая стратегия, которая должна быть ее равновесной чистой стратегией. Равновесие Нэша в этой игре состоит в том, что все ее участницы предпочитают не вкладывать средства в создание сада и получить второй по величине выигрыш. При этом сад так и не будет посажен, а участницы игры не понесут лишних расходов.
Обратите внимание, что эта игра – еще один пример дилеммы заключенных. Существует единственное равновесие Нэша, при котором все игроки получают выигрыш 2. Однако у «уличного сада» есть еще один исход (при котором все три соседки инвестируют в сад), обеспечивающий всем трем участницам более высокие выигрыши 5. Хотя каждой из них было бы выгодно поучаствовать в создании сада, ни у кого из них нет индивидуального стимула для этого. В итоге такие сады либо вообще не сажают, либо делают это за счет налоговых поступлений, поскольку городская администрация может взыскать с жителей города такой налог. В главе 11 мы рассмотрим другие дилеммы коллективного действия и изучим некоторые методы их решения.
Равновесие Нэша в игре «уличный сад» можно также найти посредством анализа наилучших ответов, как показано на рис. 4.9. Так как доминирующая стратегия каждой участницы игры – «не вносить вклад», все наилучшие ответы Эмили находятся в ее строке «не вносить вклад», Нины – в ее колонке «не вносить вклад», а Талии – на ее странице «не вносить вклад». Ячейка в правом нижнем углу содержит три наилучших ответа, а значит, это и есть равновесие Нэша.
.
Рис. 4.9. Анализ наилучших ответов в игре «уличный сад»
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?