Текст книги "Стратегические игры. Доступный учебник по теории игр"
Автор книги: Авинаш Диксит
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 14 (всего у книги 72 страниц) [доступный отрывок для чтения: 23 страниц]
В главе 4 мы сформулировали метод анализа наилучших ответов для поиска всех равновесий Нэша в чистых стратегиях в играх с одновременными ходами. Теперь расширим его на игры, в которых у каждого игрока – непрерывный диапазон вариантов выбора, например при установлении компанией цен на свою продукцию. Чтобы вычислить наилучшие ответы в игре такого типа, мы должны найти для каждого возможного значения цены одной компании значение цены другой компании, которое будет для нее лучшим (максимизирует ее прибыль). Непрерывность множества стратегий позволяет нам использовать алгебраические формулы для того, чтобы продемонстрировать, как стратегии обеспечивают выигрыши, а также показать наилучшие ответы в виде линий на графике, где на осях координат отображена цена (или любая другая непрерывная стратегия) каждого из игроков. При таком способе представления игры равновесие Нэша находится в месте пересечения линий на графике. Мы разовьем эту идею и метод на примере двух историй.
А. Ценовая конкуренция
Наша первая история происходит в маленьком городке под названием Яппи-Хейвен, в котором есть два ресторана: Xavier’s Tapas Bar и Yvonne’s Bistro. Чтобы упростить ситуацию, будем исходить из предположения, что в каждом ресторане используется стандартное меню. Владельцы Xavier’s и Yvonne’s должны установить цены на блюда в своих меню; при этом цель каждого из них, чтобы эти цены обеспечивали максимальную прибыль (выигрыш в этой игре). Мы также полагаем, что рестораны печатают меню порознь, не зная о ценах друг друга, стало быть, это игра с одновременными ходами[57]57
В действительности рестораны ведут конкурентную борьбу на протяжении длительного периода, поэтому каждый из них может отследить, какие цены устанавливал другой ресторан в прошлом. Такое повторение игры приводит к появлению новых факторов, которые мы рассмотрим в главе 10.
[Закрыть]. Поскольку цены могут принимать любое значение в пределах (почти) бесконечного диапазона, начнем с введения общих или алгебраических обозначений, затем найдем правила наилучших ответов и используем их для решения игры и определения равновесных цен. Обозначим цену ресторана Xavier’s как Px а Yvonne’s как Py.
При определении цены каждый ресторан должен просчитать последствия с точки зрения прибыли. Для того чтобы упростить задачу, мы ставим два ресторана в условия симметричной зависимости, но читатели с развитыми математическими навыками могут выполнить аналогичный анализ, воспользовавшись более общими величинами или даже алгебраическими символами. Допустим, обслуживание одного клиента обходится каждому ресторатору в 8 долларов. Предположим также, что опыт или исследования рынка показывают, что, если цена ресторана Xavier’s Px, а Yvonne’s Py, количество клиентов, Qx и Qy соответственно (в сотнях клиентов в месяц) задается уравнениями[58]58
Читатели, которые немного знакомы с экономикой, поймут, что уравнения, связывающие количество с ценами, – это функции спроса на два продукта X и Y. Величина спроса на каждый продукт уменьшается по мере повышения цены самого продукта (кривые спроса наклонены вниз) и растет по мере повышения цены другого продукта (если эти продукты взаимозаменяемы).
[Закрыть]
Qx = 44 – 2Px + Py,
Qy = 44 – 2Py + Px.
Основная идея этих уравнений состоит в том, что, если один ресторан повысит цену на 1 доллар (скажем, Yvonne’s повысит Py на один доллар), его объем продаж сократится на 200 в месяц (Qy уменьшится на 2), а объем продаж другого ресторана увеличится на 100 в месяц (Qx увеличится на 1). Можно предположить, что 100 клиентов ресторана Yvonne’s перейдут к Xavier’s, а еще 100 останутся дома.
Обозначим прибыль ресторана Xavier’s за неделю (в сотнях долларов в неделю) символом πх (греческая буква π [ «пи»] – традиционный экономический символ для обозначения прибыли). Эта прибыль рассчитывается как произведение чистого дохода на одного клиента (цена за вычетом затрат на обслуживание, или Рх – 8) и количества обслуженных клиентов:
πx = (Px – 8)Qx = (Px – 8) (44 – 2Px + Py).
Умножив и перегруппировав члены в правой части предыдущего выражения, можем записать прибыль как функцию повышающихся степеней Рх:
πx = – 8(44 + Py) + (16 + 44 + Py) Px – 2(Px)2 = – 8(44 + Py) + (60 + Py) Px – 2(Px)2.
Xavier’s устанавливает цену Рх, чтобы максимально увеличить свой выигрыш. Делая это для каждого возможного уровня цены ресторана Yvonne’s Py, мы получим правило наилучших ответов ресторана Xavier’s, которое можно отобразить на графике.
В такой форме можно представить многие простые иллюстративные примеры, в которых одно действительное число (такое как цена) выбирается для максимального увеличения другого, зависимого от него действительного числа (например, прибыль или выигрыш). В приложении к этой главе описан простой общий метод выполнения операции максимизации; вы найдете немало случаев его применения. Здесь же мы просто приводим формулу.
Функция, которую мы хотим максимизировать, задается следующим общим уравнением:
Y = A + BX–CX2.
Мы использовали обозначение Y для величины, которую нужно максимизировать, и X для величины, которую хотим выбрать, чтобы максимизировать Y. В нашем конкретном примере прибыль πx будет представлена в виде Y, а цена Pх в виде X. Точно так же, хотя в любой конкретной задаче члены приведенного выше уравнения А, В и С были бы известны, мы обозначили их общими алгебраическими символами, с тем чтобы наша формула была применима ко множеству аналогичных задач. (Формальный термин, которым обозначаются члены А, В и С, – параметры, или алгебраические константы.) Поскольку большинство случаев практического применения подразумевают наличие неотрицательных значений X, таких как цены, а также максимизацию значения Y, необходимо, чтобы выполнялось условие В > 0 и С > 0. Тогда формула, позволяющая выбрать X для максимизации Y с учетом известных значений А, В и С, будет выглядеть так: Х = В/2С. Обратите внимание, что А в ней отсутствует, хотя это, безусловно, влияет на полученное в результате значение Y.
Сравнив общую функцию в уравнении выше и конкретный пример функции прибыли в игре в ценообразование на предыдущей странице, получим[59]59
Хотя в полной игре цена Py, выбранная Yvonne’s, – это переменная, здесь мы ограничимся только частью игры, а именно – наилучшим ответом Xavier’s, который рассматривает выбор Yvonne’s как фактор, не поддающийся его контролю, а значит, как константу.
[Закрыть]
В = 60 + Py и С = 2.
Следовательно, цена, которую выберет ресторан Xavier’s для максимального увеличения прибыли, будет удовлетворять формуле В/2С и составит
Pх = 15 + 0,25 Py.
Это уравнение определяет значение Pх, при котором прибыль ресторана Xavier’s будет максимальной при соответствующем значении цены ресторана Yvonne’s Py. Иными словами, это и есть то, что нам нужно: правило наилучшего ответа ресторана Xavier’s.
Правило наилучшего ответа ресторана Yvonne’s можно найти аналогичным способом. Поскольку затраты на обслуживание клиентов и объемы продаж двух ресторанов полностью симметричны, очевидно, что это уравнение будет иметь такой вид:
Pу = 15 + 0,25 Pх.
Оба правила используются одним и тем же способом для построения графиков наилучших ответов. Например, если Xavier’s назначит цену 16, то Yvonne’s введет это значение в свое правило наилучшего ответа, чтобы найти Pу = 15 + 0,25 (16) = 19; точно так же наилучший ответ ресторана Xavier’s на значение цены ресторана Yvonne’s Pу = 16 составляет Pх = 19, наилучший ответ каждого ресторана на цену другого 4 равен 16, на цену 8 – 17 и т. д.
На рис. 5.1 приведены графики этих двух правил наилучшего ответа. В силу особенностей нашего примера (линейная зависимость между объемом продаж и назначенными ценами, а также постоянные издержки на приготовление каждого блюда) оба графика наилучших ответов представляют собой прямые линии. При других характеристиках спроса и затрат они могут не быть прямыми линиями, но метод их построения тот же, а именно: сначала зафиксировать цену одного ресторана (скажем, Pу), а затем найти значение цены другого ресторана (например, Pх), которая максимизирует прибыль второго ресторана, и наоборот.
.
Рис. 5.1. Графики наилучших ответов и равновесия в игре «ценообразование в ресторанах»
Точка пересечения двух графиков наилучшего ответа – это равновесие Нэша в игре в ценообразование между двумя ресторанами. Она представляет пару цен (по одной на каждую компанию), которые являются наилучшими ответами друг на друга. Конкретные значения для равновесной стратегии ценообразования каждого ресторана можно вычислить алгебраически, решив два правила наилучших ответов относительно Px и Py. Мы намеренно выбрали такой пример, чтобы уравнения были линейными и легко решаемыми. В данном случае мы просто подставим формулу для Px в формулу для Py и получим следующее уравнение:
Py = 15 + 0,25Pх = 15 + 0,25(15 + 0,25Py) = 18,75 + 0,0625Py.
Последнее уравнение можно упростить до Py = 20. Ввиду симметричности задачи не составит труда найти, что Px = 20[60]60
Без такой симметрии два уравнения наилучшего ответа были бы иными, но, учитывая другие характеристики, по-прежнему линейными. Так что решить асимметричную задачу было бы не намного труднее. У вас будет возможность это сделать в упражнении S2 в конце данной главы.
[Закрыть]. Таким образом, в равновесном состоянии каждый ресторан назначит цену 20 долларов на блюда в своем меню и получит 12 долларов прибыли на каждых 2400 клиентов (2400 = (44 – 2 × 20 + 20) × 100), которых обслуживает за месяц, что обеспечит общий объем прибыли 28 800 долларов в месяц.
Б. Некоторые экономические аспекты олигополии
Мы привели пример с ценообразованием в ресторанах, чтобы показать, как найти равновесие Нэша в игре, где стратегии представляют собой непрерывные переменные, такие как цены. Однако эту ситуацию целесообразно проанализировать более детально и объяснить кое-какие экономические аспекты стратегий ценообразования и прибыли при конкуренции между небольшим количеством компаний (в данном случае двух). На языке экономики такую конкуренцию называют «олигополия», от греческих слов, означающих «малое количество продавцов».
Для начала обратите внимание, что график наилучшего ответа каждой компании наклонен вверх. В частности, если один ресторан поднимает цену на 1 доллар, наилучший ответ другого ресторана – поднять цену на 0,25 доллара, или 25 центов. Когда один ресторан повышает цену, некоторые его клиенты переходят в другой ресторан, а это означает, что его конкурент может получить прибыль за счет новых клиентов посредством частичного повышения цены. Таким образом, ресторан, поднимающий цену, помогает конкуренту увеличить прибыль. В случае равновесия Нэша, при котором каждый ресторан назначает цену независимо от другого и исходя исключительно из собственной прибыли, он не учитывает дополнительное преимущество, которое создает для другого ресторана. Могут ли они объединить усилия и договориться о повышении цен, тем самым увеличив свою прибыль? Да. Предположим, два ресторана установили цены по 24 доллара каждый; стало быть, каждый из них получит 16 долларов прибыли на каждого из 2000 клиентов (2000 = (44 – 2 × 24 + 24) × 100), которых ресторан обслуживает за месяц, следовательно, общий объем прибыли составит 32 000 долларов в месяц.
Эта игра в ценообразование в точности такая же, как и дилемма заключенных, рассмотренная в главе 4, но теперь стратегии носят непрерывный характер. В истории из главы 4 у мужа и жены было искушение предать друг друга и признаться в совершении преступления в полиции, однако, сделав это, оба бы получили более длинные тюремные сроки (худшие исходы игры). Аналогично более прибыльная цена 24 доллара не является равновесием Нэша. Каждый из ресторанов, произведя расчеты, попытается предложить клиентам более низкую цену. Предположим, Yvonne’s начнет с цены 24 доллара. Воспользовавшись формулой наилучших ответов, можно определить, что Xavier’s при этом установит цену 15 + 0,25 × 24 = 21. Далее Yvonne’s отреагирует своим наилучшим ответом: 15 + 0,25 × 21 = 20,25. В случае продолжения этого процесса цены обоих ресторанов сведутся к равновесию Нэша, то есть к 20 долларам.
Но какая цена выгоднее для обоих ресторанов? При наличии симметрии допустим, что оба заведения назначат одну и ту же цену Р. Тогда прибыль каждого ресторана равна:
πx = πy = (P – 8) (44 – 2P + P) = (P – 8) (44 – P) = – 352 + 52P – P2.
Оба могут выбрать Р для максимизации формулы. Воспользовавшись уравнением, представленным в разделе 1.А, мы видим, что решение: Р = 52/2 = 26. Полученная в результате прибыль каждого ресторана составит 32 400 долларов в месяц.
На языке экономики соглашение о повышении цен до уровня, оптимального для обеих сторон, называется картелем. Высокие цены наносят ущерб потребителям, поэтому органы государственного регулирования США обычно пытаются предотвратить образование картелей и заставить компании конкурировать друг с другом. Явный сговор по поводу цен находится вне закона, но негласный сговор все же может иметь место в повторяющейся дилемме заключенных (мы проанализируем повторяющиеся игры такого рода в главе 10)[61]61
Компании действительно пытаются вступать в явный сговор, когда им кажется, что они могут избежать наказания за это. Забавный и поучительный случай такого сговора можно найти в книге Курта Эйхенвальда «Информатор» (Курт Эйхенвальд. Информатор. М.: Азбука-классика, 2009).
[Закрыть].
Сговор необязательно приводит к повышению цен. В нашем примере, если один ресторан снизит цену, его объем продаж увеличится отчасти потому, что он переманит некоторых клиентов от конкурента, поскольку продукты (блюда) двух ресторанов взаимозаменяемы. В других контекстах две компании могут продавать взаимодополняющие продукты, скажем программное и аппаратное обеспечение. В этом случае, если одна из них снижает цену, объем продаж в обеих компаниях возрастает. При равновесии Нэша, когда две фирмы действуют независимо друг от друга, они не учитывают выгоду, которую принесло бы обеим снижение цен. Следовательно, они поддерживают цены на более высоком уровне, чем если бы координировали свои действия. Сотрудничество между такими компаниями привело бы к снижению цен, что было бы выгодно и клиентам.
Конкуренция не всегда подразумевает использование цен в качестве стратегических переменных. Например, рыболовные флотилии могут конкурировать за более крупный улов. В таком случае имеет место конкуренция по количеству, а не по цене, рассмотренная в данном разделе. Мы опишем конкуренцию по количеству чуть ниже, а также в нескольких упражнениях, размещенных в конце главы.
В. Политическая реклама
Наш второй пример взят из политики. Он требует немного больше математических выкладок, чем мы обычно используем, но мы объясним интуитивные идеи, лежащие в их основе, с помощью слов и графиков.
Рассмотрим выборы с участием двух партий или двух кандидатов. Каждая сторона пытается отнять голоса избирателей у другой стороны посредством рекламы – либо позитивных рекламных объявлений, подчеркивающих достоинства самой партии или кандидата, либо негативной рекламы, сфокусированной на недостатках соперника. Для простоты будем исходить из предположения, что изначально избиратели не владеют никакой информацией и не отдают предпочтения ни одной из партий, поэтому формируют свое мнение исключительно под влиянием рекламы. (Многие сказали бы, что это точное описание американской политики, но более продвинутые исследования в области политологии подтверждают тот факт, что информированные, стратегически мыслящие избиратели все же существуют. Мы проанализируем их поведение более подробно в главе 15.) Для того чтобы упростить ситуацию еще больше, допустим, что доля избирателей, голосующих за партию, равна доле партии в общей сумме расходов на рекламу избирательной кампании. Назовем партии или кандидатов Л и П; если Л тратит на рекламу x миллионов долларов, а П – y миллионов долларов, то Л получит долю x / (x + y) голосов, а П – у / (x + y) голосов. Читатели, заинтересовавшиеся этой областью практического применения теории игр, найдут более общее описание соответствующих методов в специальной литературе по политологии.
Сбор средств на оплату такой рекламы требует определенных затрат; к их числу относятся деньги на рассылку писем и телефонные звонки; время и труд кандидатов, партийных лидеров и активистов; будущее политическое вознаграждение для лиц, сделавших крупные пожертвования, а также возможные политические издержки в случае, если такое вознаграждение станет достоянием гласности и повлечет за собой скандал. Для простоты анализа предположим, что все эти затраты пропорциональны прямым затратам на проведение кампании х и у. В частности, допустим, что выигрыш партии Л оценивается как процент голосов за вычетом расходов на рекламу: 100x (x + y) – x. Аналогичным образом выигрыш партии П составляет: 100у / (x + y) – у.
Теперь можем определить наилучшие ответы. Поскольку это нельзя сделать без вычислений, выведем математическую формулу, а затем объясним ее общий смысл на интуитивном уровне. Для заданной стратегии х партии Л партия П выбирает стратегию у, чтобы максимизировать свой выигрыш. Условие первого порядка можно найти, зафиксировав значение х и приравняв производную от 100у / (x + y) – у по у к нулю. В итоге получим уравнение 100x / (x + y)2 – 1 = 0, или . На рис. 5.2 показан график этой функции, а также аналогичный график функции наилучшего ответа партии Л, а именно .
.
Рис. 5.2. Наилучшие ответы и равновесие Нэша в игре «политическая реклама»
Посмотрите на кривую наилучших ответов партии П. По мере роста значения переменной x партии Л значение переменной у партии П сначала немного повышается, а затем снижается. Если другая партия размещает мало рекламных материалов, то реклама первой партии обеспечит высокую отдачу в виде голосов избирателей, поэтому на незначительное увеличение расходов другой партии на рекламу целесообразно ответить еще более существенным увеличением собственных расходов на рекламу в целях усиления конкуренции. Однако если другая партия уже вкладывает в рекламу солидные средства, то реклама первой партии обеспечит мизерную отдачу по отношению к затратам на нее, поэтому лучше ответить на повышение рекламных расходов другой партии сокращением собственных расходов.
Оказывается, кривые наилучших ответов двух партий пересекаются в точках максимума. Опять же, некоторые алгебраические манипуляции с уравнениями этих двух кривых позволяют получить точные величины равновесных значений x и y. Вы можете убедиться, что в данном случае значение каждой из переменных x и y равно 25, или 25 миллионов долларов. (Предполагается, что речь идет о выборах в Конгресс; выборы в Сенат и президентские выборы обходятся в наши дни гораздо дороже.)
Как и в игре в ценообразование, здесь мы имеем дело с дилеммой заключенных. Если обе партии сократят расходы на рекламу в равной пропорции, это никак не повлияет на долю голосов избирателей, но при этом обе партии сэкономят на расходах, а значит, получат более крупный выигрыш. В отличие от картеля производителей взаимозаменяемых продуктов (который поддерживает высокие цены и наносит ущерб потребителям), соглашение между политиками о сокращении объема рекламы, по всей вероятности, принесло бы пользу избирателям и обществу в целом, подобно тому как картель производителей взаимодополняющих продуктов привел бы к снижению цен и выгоде потребителей. Из решения данной дилеммы заключенных извлекли бы пользу все. В действительности Конгресс уже несколько лет пытается это сделать и даже ввел частичные ограничения, однако политическая конкуренция слишком ожесточенная для того, чтобы обеспечить полное или длительное разрешение этой дилеммы.
Но что если партии находятся в несимметричных ситуациях? Тогда может возникнуть асимметрия двух типов. Одна партия (скажем, П) может иметь возможность размещать рекламу по более низкой цене, поскольку у нее есть доступ к средствам массовой информации. Или рекламные расходы партии П могут быть эффективнее, чем у партии Л, – например, доля голосов Л может составлять x / (x + 2y), тогда как доля голосов П – 2y / (x + 2y).
В первом случае партия П использует свой более дешевый доступ к рекламе, выбирая более высокий уровень расходов y для любого заданного значения x партии Л; иными словами, кривая наилучших ответов на рис. 5.2 смещается вверх. Равновесие Нэша смещается вверх и направо вдоль неизменной кривой наилучших ответов партии Л. Таким образом, в итоге партия П потратит на рекламу больше, а партия Л меньше, чем раньше. Это сродни ситуации, когда побеждающая сторона как будто «играет мускулами», а проигрывающая как будто сдается перед таким натиском.
Во втором случае кривые наилучших ответов обеих партий смещаются в соответствии с более сложной схемой. В итоге обе несут равные расходы на рекламу, но меньше 25, как в симметричной ситуации. В нашем примере, где эффективность рекламных расходов партии П в два раза превышает эффективность расходов партии Л, это приводит к тому, что объем расходов каждой партии составляет 200 / 9 = 22,2 < 25. (Следовательно, именно в симметричной ситуации наблюдается самая острая конкуренция.) Если рекламные расходы партии П более эффективны, верно также и то, что в связи с характером асимметричности кривых наилучших ответов новое равновесие Нэша вместо точек максимума этих двух кривых расположено на нисходящей части кривой наилучших ответов партии Л и восходящей части кривой наилучших ответов партии П. Иными словами, хотя обе партии тратят на рекламу одинаковую сумму, объем рекламных расходов партии П, находящейся в более благоприятных условиях, превышает сумму, вызывающую максимальный ответ партии Л, а объем рекламных расходов более слабой партии Л меньше суммы, способной вызвать максимальный ответ партии П. В конце данной главы приведено дополнительное упражнение (U12), которое позволит студентам с более высоким уровнем математических знаний вывести эти результаты.
Г. Общий метод поиска равновесий Нэша
Хотя стратегии (цены или расходы на политическую рекламу) и выигрыши (прибыль и доля голосов избирателей) в предыдущих двух примерах связаны с конкуренцией между компаниями или политическими партиями, данный метод поиска равновесия Нэша в игре с непрерывными стратегиями абсолютно универсален и вы можете использовать его для решения других подобных игр.
Предположим, игроки следуют под номерами 1, 2, 3, …. Обозначим их стратегии как х, у, z, … в этом порядке, а выигрыши – соответствующими заглавными буквами X, Y, Z, …. В общем случае выигрыш каждого игрока является функцией выбора всех игроков; отметим соответствующие функции как F, G, H, … На основании этой информации об игре составим выигрыши и запишем их так:
X = F (x, y, z, …), Y = G (x, y, z, …), Z = H (x, y, z, …).
Если использовать этот общий формат для описания нашего примера с ценовой конкуренцией между двумя игроками (компаниями), то стратегии x и y становятся ценами Px и Py. Выигрыши X и Y – это прибыль πx и πy. Функции F и G – квадратичные функции вида
πx = –8(44 + Py) + (16 + 44 + Py) Px – 2(Px)2.
Аналогичная формула есть для πy.
Согласно общему подходу, игрок 1 рассматривает стратегии игроков 2, 3, … как не поддающиеся его контролю и выбирает свою стратегию так, чтобы максимально увеличить собственный выигрыш. Следовательно, для каждого заданного множества значений y, z, … выбор игроком 1 значения х максимизирует X = F (x, y, z, …). При использовании дифференциального исчисления условие такой максимизации состоит в том, что производная от X по х при постоянном значении y, z, … (это частная производная) равна нулю. Для особых функций существуют простые формулы, подобные приведенной выше и использованной для квадратичной функции. И даже если алгебраические формулировки или исчисление слишком сложны, есть немало компьютерных программ, которые составят для вас таблицы или построят графики наилучших ответов. Какой бы метод вы ни применили, вы можете найти уравнение оптимального выбора игроком 1 значения x при заданных значениях y, z, …, описывающее функцию наилучшего ответа игрока 1. Аналогичным способом можно найти функции наилучших ответов всех остальных игроков.
Функции наилучших ответов соответствуют числу стратегий в игре и могут быть решены одновременно при условии, что стратегические переменные рассматриваются как неизвестные величины. Это решение и есть равновесие Нэша, которое мы ищем. В одних играх может быть множество решений, обеспечивающих множество равновесий Нэша, в других решение может отсутствовать, что требует дальнейшего анализа, например включения смешанных стратегий.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?