Электронная библиотека » Авинаш Диксит » » онлайн чтение - страница 10


  • Текст добавлен: 5 октября 2017, 15:00


Автор книги: Авинаш Диксит


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 72 страниц) [доступный отрывок для чтения: 23 страниц]

Шрифт:
- 100% +
Глава 4. Игры с одновременными ходами: дискретные стратегии

Игрой с одновременными ходами, как пояснялось в главе 2, считается игра, в которой игроки делают ходы, не зная о выборе соперников. Очевидно, что такая ситуация складывается в случае, когда игроки действуют одновременно, а также когда они выбирают действия обособленно, не располагая информацией о действиях других игроков, даже если этот выбор делается в разное время. (Именно поэтому в играх с одновременными ходами имеет место несовершенная информация в том смысле, о котором мы говорили в разделе 2.Г главы 2.) Эта глава посвящена играм, в которых присутствует только одновременное взаимодействие между игроками. Мы рассмотрим различные типы игр с одновременными ходами, опишем концепцию их решения под названием «равновесие Нэша» и проанализируем игры без, с одним и несколькими равновесиями.

К категории игр с одновременными ходами можно отнести многие из знакомых вам стратегических ситуаций. Различные производители телевизоров, стереосистем или автомобилей принимают решения о дизайне и свойствах продукта, не зная о контраргументах конкурентов. Избиратели на выборах одновременно отдают свои голоса, не зная о предпочтениях других избирателей. В футболе взаимодействие между вратарем и нападающим противника во время пенальти требует одновременного решения обоих: вратарь не может себе позволить ждать удара по мячу, чтобы определить его траекторию, поскольку тогда уже будет слишком поздно.

Очевидно, что при выборе действия участник игры с одновременными ходами не располагает информацией о решениях других игроков. Кроме того, он не может предвидеть их реакцию на его выбор, так как они тоже действуют вслепую по отношению к нему. Поэтому каждый игрок должен анализировать предполагаемые шаги соперников, а те, в свою очередь, проводить аналогичный встречный анализ. Такая цикличность несколько усложняет анализ игр с одновременными ходами по сравнению с анализом игр с последовательными ходами, но выполнить его не так уж трудно. В этой главе мы сформулируем для этих игр простую концепцию равновесия, обладающую значительной пояснительной и прогностической способностью.

1. Описание игр с одновременными ходами и дискретными стратегиями

В главе 2 и главе 3 мы неоднократно подчеркивали, что стратегия – это исчерпывающий план действий. Однако в чистых играх с одновременными ходами у каждого участника есть максимум одна возможность действовать (хотя такое действие может состоять из множества компонентов), поскольку если бы их было несколько, это был бы уже элемент игры с последовательными ходами. Стало быть, в играх с одновременными ходами нет никаких реальных различий между стратегией и действием, поэтому в данном контексте эти термины часто используются как синонимы. Существует только одна сложность. Стратегия может представлять собой вероятностный выбор из первоначально оговоренных базовых действий. Например, в спорте игрок или команда могут умышленно выбирать действия в случайном порядке, чтобы соперник был вынужден угадывать. Такие вероятностные стратегии называются смешанными и рассматриваются в главе 7. Сейчас же мы ограничимся анализом базовых, первоначально оговоренных действий, обозначаемых термином чистые стратегии.

Во многих играх у каждого игрока есть конечное количество дискретных чистых стратегий, например дриблинг, пас и бросок в баскетболе, тогда как в ряде других игр чистая стратегия игрока может представлять собой любое число из непрерывного диапазона значений, скажем цену, назначаемую компанией на свой продукт[41]41
  В действительности цена может быть указана в минимальных денежных единицах (например, в целых центах), а значит, может принимать конечное количество дискретных значений. Однако эта единица, как правило, настолько мала, что имеет смысл считать цену непрерывной переменной.


[Закрыть]
. Это различие никак не влияет на общую концепцию равновесия в играх с одновременными ходами, но связанные с такими играми идеи легче формулировать с помощью дискретных стратегий; решение игр с непрерывными стратегиями требует несколько более продвинутых инструментов. Поэтому в данной главе мы ограничимся анализом более простых чистых дискретных стратегий, а стратегии с непрерывными переменными рассмотрим в главе 5.

Игры с одновременными ходами и дискретными стратегиями чаще всего описывают с помощью таблицы игры (синонимы: матрица игры или таблица выигрышей), которая называется нормальной или стратегической формой игры. Таблица игры позволяет проиллюстрировать игру с любым количеством участников, однако ее размерность должна соответствовать их числу. В случае игры с двумя участниками таблица имеет два измерения, а заголовки строк и столбцов в ней – это стратегии, находящиеся в распоряжении первого и второго игроков. Следовательно, размер таблицы зависит от количества доступных игрокам стратегий[42]42
  Если компании могут выбирать цену, выраженную в любом количестве центов в рамках одного доллара, тогда у каждой компании есть 100 дискретных стратегий, а значит, таблица будет иметь размер 100 на 100. Безусловно, она будет слишком громоздкой с точки зрения анализа. Использование алгебраических формул с непрерывными переменными – более простой, а не более сложный подход, как может показаться некоторым читателям. Подход «Алгебра – наш друг» рассматривается в главе 5.


[Закрыть]
. В ячейках указываются выигрыши, которые получат игроки при подобающей конфигурации стратегий. Игры с тремя участниками требуют трехмерной таблицы; ее мы рассмотрим далее в этой главе.

Концепция таблицы выигрышей для простой игры приведена на рис. 4.1. Представленная на нем игра не имеет специальной интерпретации, поэтому мы можем сформулировать концепции, не отвлекаясь на ее «историю». Имена участников игры – Строка и Столбец. В распоряжении Строки находится четыре варианта выбора (стратегий или действий), обозначенных как «вверху», «высоко», «низко», «внизу», а Столбца – три варианта: «слева», «посредине» и «справа». Каждый выбор Строки и Столбца определяет возможный исход игры. Выигрыши, связанные с каждым исходом игры, показаны в ячейке, соответствующей данной строке и данному столбцу. Принято считать, что из двух чисел, отображающих выигрыши, первое число отвечает выигрышу Строки, а второе – выигрышу Столбца. Например, если Строка выберет вариант «высоко», а Столбец – «справа», выигрыши составят 6 в случае Строки и 4 в случае Столбца. Для дополнительного удобства мы выделяем все, что касается Строки (имя игрока, его стратегии и выигрыши), черным цветом, а Столбца – серым.

.

Рис. 4.1. Представление игры с одновременными ходами в виде таблицы


Далее рассмотрим второй пример игры с более содержательной историей. На рис. 4.2 представлена упрощенная версия одного розыгрыша в американском футболе. Нападающие пытаются продвинуть мяч вперед, чтобы повысить шансы забить филд-гол. У них есть четыре возможные стратегии: пробежка и три паса разной длины (короткий, средний и длинный). Чтобы сдерживать атаку, защитники могут использовать одну из трех стратегий: защита в случае пробежки и в случае паса и блиц против квотербека. Нападающие пытаются набрать как можно больше ярдов, тогда как защитники – помешать им это сделать. Предположим, у нас достаточно информации об основных сильных сторонах тех и других, для того чтобы оценить вероятность завершения различных розыгрышей и определить среднее количество набранных ярдов, которого можно было бы ожидать при каждой комбинации стратегий. Например, когда команда нападения выбирает стратегию «средний пас», а команда защиты отвечает стратегией «защита в случае паса», по нашим оценкам, выигрыш нападения составляет 4,5 набранных ярда, или +4,5[43]43
  Вот как рассчитывались выигрыши в этом примере. Когда команда нападения выбирает стратегию «средний пас», а команда защиты отвечает стратегией «защита в случае паса», по нашим оценкам, вероятность успешного завершения паса и получения 15 ярдов составляет 50 процентов, вероятность незавершенного паса (0 ярдов) – 40 процентов, а вероятность того, что пас будет перехвачен и команда потеряет 30 ярдов, – 10 процентов; в среднем это составляет 0,5 × 15 + 0,4 × 0 + 0,1 × (−30) = 4,5 ярда. Данные в таблице были предложены небольшой группой экспертов из числа соседей и друзей, собранной Дикситом в один осенний воскресный день. Все эксперты получили за свои консультационные услуги гонорар.


[Закрыть]
. «Выигрыш» защиты – 4,5 потерянных ярда, или −4,5. В других ячейках также показаны наши оценки количества ярдов, набранных или потерянных каждой командой.

.

Рис. 4.2. Один розыгрыш в американском футболе


Обратите внимание, что сумма выигрышей в каждой ячейке таблицы равна 0: когда нападающие набирают 5 ярдов, защитники теряют 5 ярдов, и наоборот: когда нападающие теряют 2 ярда, защитники набирают 2 ярда. Такая схема достаточно широко распространена в спорте, где интересы двух сторон прямо противоположны друг другу. Как отмечалось в главе 2, мы называем это игрой с нулевой (или иногда с постоянной) суммой. Вы должны помнить, что, согласно определению, игра с нулевой суммой представляет собой игру, в которой сумма выигрышей во всех ячейках постоянная величина, будь то 0, 6 или 1000. (В разделе 7 описывается игра, в которой сумма выигрышей двух игроков составляет 100.) Основная особенность игры с нулевой суммой состоит в том, что проигрыш одного игрока равен выигрышу другого.

2. Равновесие Нэша

Для анализа игр с одновременными ходами необходимо рассмотреть, как игроки выбирают действия. Вернемся к игре, представленной на рис. 4.1. Обратите внимание на тот ее исход, при котором Строка выбирает вариант «низко», а Столбец – «посредине», с выигрышами 5 для Строки и 4 для Столбца. Каждый игрок отдает предпочтение действию, которое обеспечит ему более высокий выигрыш, и при данном исходе делает такой выбор с учетом выбора соперника. Если Строка выбирает вариант «низко», может ли Столбец получить более высокий выигрыш, выбрав что-то другое, а не «посредине»? Нет, поскольку вариант «слева» обеспечивает ему выигрыш 2, а вариант «справа» – выигрыш 3 и оба не превышают выигрыш 4 в случае варианта «посредине». Стало быть, стратегия «посредине» – наилучший ответ Столбца на стратегию «низко», реализуемую Строкой. С другой стороны, если Столбец остановится на варианте «посредине», получит ли Строка более высокий выигрыш, предпочтя варианту «низко» какой-нибудь иной? И снова нет, потому что выигрыши от выбора варианта «вверху» (2), «высоко» (3) или «внизу» (4) не будут больше выигрыша Строки в случае выбора варианта «низко» (5). Следовательно, «низко» – наилучший ответ Строки на стратегию «посредине», применяемую Столбцом.

Эти два варианта выбора, «низко» для Строки и «посредине» для Столбца, представляют собой наилучший ответ игрока, сделавшего соответствующий выбор, на действие другого игрока. После такого выбора оба игрока не захотели бы по собственной инициативе переключаться на что-либо другое. Согласно определению некооперативной игры, игроки делают выбор независимо друг от друга; следовательно, такие односторонние изменения – все, что может предпринять каждый игрок. Но поскольку ни один из них к ним не склонен, было бы естественно называть данное положение вещей равновесием. В этом и состоит суть концепции равновесия Нэша.

Согласно несколько более формальной формулировке, равновесие Нэша[44]44
  Эта концепция названа по имени математика и экономиста Джона Нэша, который сформулировал ее в докторской диссертации, написанной во время учебы в Принстонском университете в 1949 году. Кроме того, Нэш предложил решение кооперативных игр, которое мы рассмотрим в главе 17. В 1994 году Джон Нэш вместе с двумя другими специалистами по теории игр, Райнхардом Зелтеном и Джоном Харсаньи (мы проанализируем некоторые аспекты их работы в главе 8, главе 9 и главе 13), получил Нобелевскую премию по экономике. Биографическая книга Сильвии Назар «Прекрасный разум: жизнь гения математики и нобелевского лауреата Джона Нэша» (A Beautiful Mind: The Life of Mathematical Genius and Nobel Laureate John Nash (New York: Simon & Schuster, 1998) легла в основу художественного фильма, главную роль в котором исполнил Рассел Кроу. К сожалению, попытка объяснить в фильме концепцию равновесия Нэша оказалась неудачной. Мы расскажем о причинах в упражнении S13 в данной главе, а также в упражнении S14 в главе 7.


[Закрыть]
в игре представляет собой перечень стратегий (по одной на каждого участника), при котором ни один игрок не может увеличить выигрыш, выбрав другую стратегию из имеющихся в его распоряжении, если другие игроки придерживаются стратегий, оговоренных в этом перечне.

А. Дальнейшее разъяснение концепции равновесия Нэша

Для того чтобы лучше понять концепцию равновесия Нэша, давайте еще раз проанализируем игру на рис. 4.1. Возьмем какую-либо другую ячейку вместо ячеек «низко», «посредине», например ячейку, в которой Строка выбирает вариант «высоко», а Столбец – «слева». Может ли это сочетание стратегий быть равновесием Нэша? Нет, потому что, если Столбец применит стратегию «слева», Строка при выборе стратегии «внизу» вместо «высоко», которая обеспечивает выигрыш 4, получит более высокий выигрыш 5. Точно так же сочетание стратегий «внизу», «слева» не будет равновесием Нэша, поскольку Столбец может извлечь больше выгоды, перейдя на стратегию «справа» и тем самым увеличив свой выигрыш с 6 до 7.

Определение равновесия Нэша не требует, чтобы равновесные варианты выбора обязательно были лучше всех имеющихся вариантов. На рис. 4.3 отображена та же ситуация, что и на рис. 4.1, за одним исключением: выигрыш Строки от стратегий «внизу», «посредине» изменился на 5, то есть стал таким же, как и для стратегий «низко», «посредине». По-прежнему верно то, что при выборе Столбцом варианта «посредине» Строка не может добиться большего, чем в случае выбора варианта «низко». Следовательно, ни у одного игрока нет оснований для изменения действия в результате исхода «низко», «посредине», что позволяет квалифицировать данный исход как равновесие Нэша[45]45
  Однако обратите внимание, что сочетание стратегий «внизу», «посредине» с выигрышами 5, 5 не является равновесием Нэша. Если бы Строка выбрала вариант «внизу», лучший вариант выбора Столбца был бы не «посредине», а «справа». На самом деле вы можете проверить таким способом все остальные ячейки таблицы, чтобы убедиться, что ни одна из них не может быть равновесием Нэша.


[Закрыть]
.

.

Рис. 4.3. Вариант игры, представленной на рис. 4.1, с равными выигрышами


Однако важно учесть, что равновесие Нэша не всегда оптимально для обоих игроков. На рис. 4.1 пара стратегий «внизу», «справа» обеспечивает выигрыши 9, 7, которые лучше для обоих игроков, чем выигрыши 5, 4 при равновесии Нэша. Тем не менее, играя независимо друг от друга, игроки не смогут придерживаться именно этих стратегий. Если Столбец предпочтет вариант «справа», Строка может захотеть заменить вариант «внизу» на «низко» и выиграть 12 вместо 9. Получение выигрышей 9, 7 потребует кооперативного действия, которое сделало бы такой «обман» невозможным. Мы рассмотрим данный тип поведения чуть ниже (и более подробно в главе 10), а пока просто хотим указать на тот факт, что равновесие Нэша может не соответствовать общим интересам игроков.

Чтобы закрепить понимание концепции равновесия Нэша, давайте еще раз посмотрим на рис. 4.2, отображающий игру в американский футбол. Если защита выберет стратегию «защита в случае паса», то лучший вариант для нападающих – «короткий пас» (выигрыш 5,6 против 5, 4,5 или 3). И наоборот, если команда нападения предпочтет вариант «короткий пас», то лучший вариант для защиты – «защита в случае паса», которая позволит команде нападения набрать всего 5,6 ярда, тогда как при выборе вариантов «защита в случае пробежки» и «блиц» команда защиты уступила бы 6 и 10,5 ярда соответственно. (Не забывайте, что записи в каждой ячейке таблицы игры с нулевой суммой – это выигрыши игрока под именем Строка, поэтому самый лучший вариант выбора для Столбца – тот, который обеспечивает самый низкий, а не самый высокий показатель.) В данной игре сочетание стратегий «короткий пас», «защита в случае паса» – это равновесие Нэша, а полученный выигрыш команды нападения составляет 5,6 ярда.

Как вычислить равновесие Нэша в играх? Для этого можно проверить каждую ячейку на наличие стратегий, удовлетворяющих равновесию Нэша. Такой систематический анализ надежен, но утомителен, за исключением случаев, когда он выполняется в контексте простых игр или с помощью хорошей компьютерной программы. К счастью, существуют и другие методы, применимые к особым типам игр, которые позволяют не только быстро отыскать равновесие Нэша, но и лучше понять процесс размышлений, посредством которого формируются убеждения, а затем и выбор. Мы проанализируем эти методы в следующих разделах.

Б. Равновесие Нэша как система убеждений и выбор вариантов

Прежде чем приступать к дальнейшему изучению и применению концепции равновесия Нэша, попробуем прояснить то, что, возможно, тревожит некоторых из вас. Мы сказали, что в равновесии Нэша каждый игрок выбирает свой лучший ответ на выбор другого игрока. Но выбор делается одновременно. Тогда как игрок может реагировать на то, что еще не произошло, или по крайней мере не зная, что именно произошло?

Люди постоянно играют в игры с одновременными ходами и делают свой выбор. Для этого им необходимо найти замену фактическим знаниям или наблюдениям за действиями других игроков. Игроки могут делать слепые догадки и рассчитывать на то, что они окажутся ниспосланными свыше, но, к счастью, существуют более эффективные способы выяснить, что предпринимают другие. Один из них – опыт и наблюдение: если игроки постоянно играют в данную игру или аналогичные игры с подобными игроками, у них может сформироваться неплохое представление об их предпочтениях. В этом случае не самые лучшие варианты выбора вряд ли продержатся долго. Еще один способ – логический процесс мышления через размышления других игроков. Вы ставите себя на их место и размышляете о том, о чем они думают; разумеется, они тоже ставят себя на ваше место и размышляют о том, что думаете вы. На первый взгляд такая логика кажется циклической, однако есть несколько способов вмешаться в этот цикл, и мы покажем их на конкретных примерах в следующих разделах. Равновесие Нэша можно считать кульминацией такого процесса размышлений, в ходе которого каждый игрок правильно определил выбор других игроков.

Посредством наблюдения, или логической дедукции, или какого-либо иного подхода вы как участник игры формируете некоторое представление о выборе участников игр с одновременными ходами. Найти слова для описания этого процесса или его результатов не так уж легко. Речь идет не о предвидении и не о прогнозировании, поскольку действия других игроков выполняются одновременно с вашими и не относятся к будущему. Специалисты по теории игр чаще всего используют термин убеждение. Он не идеален для обозначения происходящего, поскольку вызывает смысловые ассоциации с уверенностью или определенностью в большей степени, чем следовало бы (в главе 7 мы допустим возможность того, что убеждения могут быть сопряжены с некоторой неопределенностью), однако ввиду отсутствия более подходящего обозначения нам придется им довольствоваться.

Концепция убеждения соотносится также с описанием неопределенности, представленным в разделе 2.Г главы 2, где мы ввели понятие стратегической неопределенности. Даже в случаях, когда все правила игры (стратегии, имеющиеся в распоряжении игроков, и выигрыши каждого игрока как функция стратегий всех игроков) известны и не подвержены влиянию внешних факторов неопределенности, таких как погода, каждый игрок может испытывать неопределенность относительно действий, предпринимаемых одновременно с ним другими игроками. Точно так же, если прошлые действия не поддаются наблюдению, каждый игрок может испытывать неопределенность по поводу действий других игроков в прошлом. Как же игрокам делать выбор в условиях такой стратегической неопределенности? Они должны составить субъективное мнение или оценку действий других игроков, что, собственно, и позволяет осуществить концепция убеждения.

А теперь представьте себе равновесие Нэша в таком контексте. Мы определили его как конфигурацию стратегий, при которой стратегия каждого игрока представляет собой лучший ответ на стратегии других игроков. Если игрок не располагает информацией о фактическом выборе остальных участников игры, но имеет о нем определенные убеждения, в равновесии Нэша они должны быть правильными: фактические действия других игроков должны соответствовать вашим убеждениям. Следовательно, мы можем дать альтернативное и эквивалентное определение: равновесие Нэша – это такая совокупность стратегий (по одной на каждого игрока), при которой 1) у каждого игрока есть правильные убеждения о стратегиях других игроков; 2) стратегия каждого игрока – лучшая для него самого с учетом его убеждений относительно стратегий других игроков[46]46
  В данной главе мы рассматриваем только равновесия Нэша в чистых стратегиях, а именно в изначально перечисленных в описании игры, а не в комбинации двух или более стратегий. Следовательно, в таком равновесии каждый игрок уверен в действиях других игроков, а значит, стратегическая неопределенность отсутствует. При рассмотрении равновесия в главе 7 в смешанных стратегиях стратегическая неопределенность каждого игрока будет включать вероятности, с которыми различные стратегии используются в равновесных комбинациях стратегий других игроков.


[Закрыть]
.

Данный подход к оценке равновесия Нэша имеет два преимущества. Во-первых, концепция лучшего ответа больше не содержит логического противоречия. Каждый игрок выбирает свой лучший ответ не на не поддающиеся наблюдению действия других игроков, а на собственные уже сформировавшиеся убеждения в отношении их действий. Во-вторых, как сказано в главе 7, где мы допускаем смешанные стратегии, случайность в стратегии одного игрока можно интерпретировать как неопределенность убеждений других игроков в отношении его действий. В этой главе мы будем параллельно использовать обе интерпретации равновесия Нэша.

На первый взгляд может показаться, что формирование правильных убеждений и вычисление лучших ответов – слишком сложная задача для обычного человека. Мы обсудим некоторые критические замечания такого рода, а также эмпирические и экспериментальные данные о равновесии Нэша в главе 5 в контексте чистых стратегий и в главе 7 в контексте смешанных стратегий. А пока просто напомним, что практика – критерий истины. Мы сформулируем и проиллюстрируем концепцию Нэша на примере ее применения и надеемся, что так вы лучше поймете ее достоинства и недостатки, чем в ходе абстрактного обсуждения этой темы.

3. Доминирование

Существует категория игр, в которых одна стратегия неизменно оказывается лучше или хуже другой. В таких случаях применяется один способ, позволяющий упростить поиск равновесия Нэша и его интерпретацию.

Эту концепцию отлично иллюстрирует известная игра под названием «дилемма заключенных». Рассмотрим сюжет, регулярно используемый в телесериале Law and Order («Закон и порядок»). Предположим, мужа и жену арестовали по подозрению в преступном сговоре в целях убийства молодой женщины. Детективы Грин и Лупо размещают их в разных камерах предварительного заключения и допрашивают по отдельности. Реальных улик, связывающих эту пару с убийством, очень мало, хотя есть доказательства того, что они причастны к похищению жертвы. Детективы объясняют каждому подозреваемому, что им обоим грозит тюремное заключение за похищение сроком до 3 лет, даже если ни один из них не признается. Кроме того, мужу и жене по отдельности внушают, что детективам «известны» подробности произошедшего и что один из них участвовал в совершении преступления по принуждению второго. При этом подразумевается, что тюремный срок одного признавшегося будет существенно сокращен, если все подробно изложить на бумаге. (Во многих фильмах такого рода в этот момент на стол обычно кладут стандартный блокнот с отрывными страницами из желтой линованной бумаги и карандаш.) И наконец, супругов убеждают, что, если они оба признают свою вину, можно будет говорить о снижении их тюремных сроков, но не настолько, как в случае, если бы один из них сознался, а другой отрицал свою вину.

В такой ситуации муж и жена – два участника игры с одновременными ходами, в которой каждый игрок должен сделать выбор: сознаваться в убийстве или нет. Оба знают, что в случае отказа признать свою вину каждому из них светит 3 года тюрьмы за причастность к похищению. Подозреваемые также знают, что если один из них сознается, то получит всего 1 год благодаря сотрудничеству с полицией, тогда как другой отправится в тюрьму минимум на 25 лет. Если сознаются оба, у них будет возможность договориться о сокращении тюремного срока до 10 лет для каждого.

Варианты выбора и исходы этой игры представлены в таблице игры на рис. 4.4. Стратегии «признать вину» и «отрицать вину» можно также обозначить как «отказ от сотрудничества» и «сотрудничество», поскольку это отображает роли двух игроков в отношениях между ними. Таким образом, стратегия «отказ от сотрудничества» означает нарушение любой молчаливой договоренности с супругом (супругой), а стратегия «сотрудничество» – совершение действия, которое поможет супругу (супруге), а не сотрудничество с полицейскими.

.

Рис. 4.4. Дилемма заключенных


Здесь выигрыши – это длительность тюремного заключения в случае каждого исхода игры, поэтому более низкие значения лучше для каждого игрока. Этим данный пример отличается от большинства анализируемых нами игр, в которых более высокий выигрыш – это хорошо, а не плохо. Так что хотим вас предупредить, что больше – не всегда лучше. Когда значения выигрышей отражают рейтинг исходов игры, лучшая альтернатива часто обозначается 1, а последовательно увеличивающиеся числа соответствуют следующим худшим альтернативам. Кроме того, в таблице игры с нулевой суммой, в которой показаны только выигрыши одного игрока, построенные по принципу «чем больше, тем лучше», меньшие числа для другого игрока будут лучше. В представленной здесь дилемме заключенных меньшие числа лучше для обоих игроков. Следовательно, если вам когда-либо придется составлять таблицу выигрышей, где большие числа – это плохо, вы должны четко предупредить об этом читателя, но и сами, если будете читать составленные кем-то примеры, не забывайте о данном нюансе.

Теперь рассмотрим игру с дилеммой заключенных на рис. 4.4 с точки зрения мужа. Он должен подумать, что предпочтет жена. Предположим, он убежден, что она сознается. Тогда его лучший выбор – тоже сознаться, поскольку так он получит 10 лет тюрьмы вместо 25 лет в случае отрицания вины. А если муж полагает, что жена не признается? Опять же, его лучший выбор – сознаться, так как это гарантирует ему всего год заключения вместо трех, которые бы ему обеспечило отрицание вины. Таким образом, в данной игре стратегия «признать вину» для мужа лучше стратегии «отрицать вину» независимо от его убеждений в отношении выбора жены. Будем говорить, что с точки зрения мужа «признать вину» – это доминирующая стратегия, а «отрицать вину» – доминируемая стратегия. Точно так же мы могли бы сказать, что стратегия «признать вину» доминирует над стратегией «отрицать вину» или что стратегия «отрицать вину» доминируется стратегией «признать вину».

Если то или иное действие явно лучшее для игрока независимо от действий других игроков, есть веские основания полагать, что рациональный игрок выберет именно его. Если то или иное действие явно худшее для игрока независимо от действий других игроков, есть не менее серьезные основания считать, что рациональный игрок будет его избегать. Следовательно, доминирование (когда оно существует) образует убедительную основу для теории решений игр с одновременными ходами.

А. Наличие доминирующих стратегий у обоих игроков

В представленной выше дилемме заключенных доминирование должно привести мужа к выбору стратегии «признать вину». Аналогичная логика применима и к выбору жены. Ее стратегия «признать вину» также доминирует над стратегией «отрицать вину», поэтому жена тоже решит сознаться. Следовательно, сочетание стратегий («признать вину», «признать вину») и есть прогнозируемый исход данной игры. Обратите внимание, что это равновесие Нэша. (На самом деле это единственное равновесие Нэша в данной игре.) Каждый игрок выбирает свою оптимальную стратегию.

В нашей игре лучший выбор каждого игрока не зависит от правильности его убеждений в отношении другого игрока (в этом и есть смысл доминирования), однако каждый игрок приписывает другому такую же рациональность, которую демонстрирует сам, поэтому оба должны быть в состоянии сформировать правильные убеждения. А фактическое действие каждого игрока будет наилучшим ответом на фактическое действие другого игрока. Обратите внимание, что факт доминирования стратегии «признать вину» над стратегией «отрицать вину» в случае обоих игроков совершенно не зависит от того, действительно ли они виновны, как во многих эпизодах телесериала «Закон и порядок», или обвинение против них сфабриковано, как в фильме L.A. Confidential («Секреты Лос-Анджелеса»). Все зависит исключительно от схемы выигрышей, определяемой продолжительностью сроков заключения.

Любая игра со схемой выигрышей как на рис. 4.4 обозначается общим названием «дилемма заключенных». А если конкретнее, то дилемме заключенных свойственны три ключевые особенности. Во-первых, в распоряжении каждого игрока есть две стратегии: сотрудничать с соперником (в нашем примере – отрицать любую причастностью к преступлению) или нет (признать вину в совершении преступления). Во-вторых, каждый игрок имеет доминирующую стратегию (признать вину или отказаться от сотрудничества). И наконец, равновесие в доминирующих стратегиях хуже для обоих игроков, чем неравновесная ситуация, при которой каждый игрок использует доминируемую стратегию (сотрудничать с соперниками).

Игры такого типа особенно важны при изучении теории игр по двум причинам. Первая – структура выигрышей, присущая дилемме заключенных, присутствует во многих стратегических ситуациях, касающихся экономической, социальной, политической и даже биологической конкуренции. Столь широкий диапазон применения дилеммы заключенных повышает важность ее изучения и понимания со стратегической точки зрения. Этой теме посвящена вся глава 10 и некоторые разделы других глав.

Вторая – несколько необычный характер равновесного исхода, достигаемого в играх с дилеммой заключенных. Оба игрока выбирают свои доминирующие стратегии, однако полученный равновесный исход обеспечивает им выигрыши ниже, чем они могли бы получить, предпочтя доминируемые стратегии. Следовательно, в дилемме заключенных равновесный исход, по сути, плохой исход для игроков. Существует иной исход, который оба бы предпочли равновесному, но проблема в том, как гарантировать, что никто из игроков не прибегнет к обману. На данной особенности дилеммы заключенных сфокусировались специалисты по теории игр и поставили вполне резонный вопрос: что могут сделать участники игры «дилемма заключенных», чтобы достичь ее лучшего исхода? Мы пока оставим его открытым и продолжим обсуждение игр с одновременными ходами, а затем вернемся к нему и проанализируем более подробно в главе 10.

Б. Наличие доминирующей стратегии у одного игрока

Если у рационального игрока есть доминирующая стратегия, он обязательно ее использует, и другой игрок может в этом не сомневаться. В дилемме заключенных это касается обоих игроков, тогда как в ряде других игр – только одного из участников. Если вы играете в игру, не имея доминирующей стратегии в отличие от соперника, можете исходить из предположения, что он применит ее, а значит, у вас есть возможность выбрать свое равновесное действие (наилучший ответ) с учетом данного факта.

Проиллюстрируем этот случай на примере игры между Конгрессом, отвечающим за фискальную политику (налоги и правительственные расходы), и Федеральной резервной системой (ФРС), осуществляющей монетарную политику[47]47
  Во многих других странах подобные игры ведутся с центральными банками, имеющими операционную независимость в выборе монетарной политики. В разных странах фискальную политику могут определять различные политические органы (исполнительные или законодательные).


[Закрыть]
. В упрощенной версии, в которой представлены только самые важные аспекты такой игры, фискальная политика Конгресса может сводиться либо к сбалансированному бюджету, либо к дефициту бюджета, а ФРС может устанавливать либо высокие, либо низкие процентные ставки. В реальной жизни эту игру нельзя однозначно отнести к числу игр с одновременными ходами, поскольку даже если выбор в ней делается последовательно, не всегда бывает понятно, кто ходил первым. Мы рассмотрим здесь вариант игры с одновременными ходами, а в главе 6 проанализируем, как будут отличаться исходы при изменении правил игры.

Почти все хотят снижения налогов. При этом немало претендентов на государственное финансирование: оборона, образование, здравоохранение и т. д. Кроме того, существуют различные политически влиятельные группы (в том числе фермеры и отрасли промышленности, страдающие от иностранной конкуренции), нуждающиеся в правительственных субсидиях. Поэтому Конгресс находится под постоянным давлением в плане как снижения налогов, так и увеличения расходов. Однако такой подход становится причиной образования дефицита бюджета, что, в свою очередь, может повлечь за собой рост инфляции. Главная задача ФРС – предотвратить инфляцию. Но ФРС тоже пребывает под политическим прессингом со стороны многих заинтересованных групп, ратующих за снижение процентных ставок, особенно домовладельцев, которым выгодны более низкие ставки по ипотечным кредитам. Снижение процентных ставок приводит к повышению спроса на автомобили, жилье и капиталовложения компаний, но этот спрос может обусловить и рост инфляции. Как правило, ФРС охотно понижает процентные ставки, но только до тех пор, пока нет угрозы инфляции. А она уменьшается, если правительство поддерживает сбалансированность бюджета. С учетом всех этих условий мы построили для этой игры матрицу выигрышей, представленную на рис. 4.5.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации