Электронная библиотека » Авинаш Диксит » » онлайн чтение - страница 15


  • Текст добавлен: 5 октября 2017, 15:00


Автор книги: Авинаш Диксит


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 15 (всего у книги 72 страниц) [доступный отрывок для чтения: 20 страниц]

Шрифт:
- 100% +
2. Критический анализ концепции равновесия Нэша

Хотя равновесие Нэша – важнейшая концепция решения игр с одновременными ходами, оно стало объектом ряда теоретических критических замечаний. В данном разделе мы кратко рассмотрим некоторые из них, а также приведем контраргументы, подкрепляя каждый примером[62]62
  Превосходный глубокий анализ этой темы представлен в книге David M. Kreps, Game Theory and Economic Modelling (Oxford: Clarendon Press, 1990).


[Закрыть]
. Отдельные критические замечания противоречат друг другу; есть и подлежащие опровержению при более тщательном анализе игр. Некоторые утверждают, что сама концепция равновесия Нэша неполная, и предлагают дополненные или расширенные концепции с более эффективными свойствами. Мы сформулируем в данном разделе одну из таких альтернатив и укажем еще на несколько в последующих главах. Мы убеждены, что наши объяснения помогут вам заново обрести, хотя и с оговорками, уверенность в целесообразности применения концепции равновесия Нэша. Однако определенные серьезные сомнения остаются неразрешенными, и это говорит о том, что теорию игр пока еще нельзя назвать окончательно сформировавшейся наукой. Но даже этот факт должен воодушевить начинающих специалистов по теории игр, поскольку открывает перед ними широкое поле для новых идей и исследований. Неразвивающаяся наука – мертвая наука.

Давайте начнем с анализа основного фактора привлекательности концепции равновесия Нэша. Большинство игр в этой книге относятся к категории некооперативных, то есть тех, в которых игроки действуют независимо друг от друга. Следовательно, было бы естественно предположить, что если действие игрока нельзя назвать лучшим согласно его системе ценностей (шкале выигрышей) в контексте действий других игроков, то он изменит его. Иными словами, весьма заманчиво предположить, что действие каждого игрока будет представлять собой наилучший ответ на действия остальных игроков. Равновесие Нэша обладает именно таким свойством «одновременных наилучших ответов»; собственно говоря, это и есть его определение. При любом предполагаемом исходе, не являющемся равновесием Нэша, минимум один игрок мог бы добиться более выгодных для себя результатов, переключившись на другое действие.

Такие соображения заставили нобелевского лауреата Роджера Майерсона возразить против критических замечаний в адрес равновесия Нэша, основанных на интуитивной привлекательности использования другой стратегии. В качестве контрдовода Майерсон просто переложил бремя доказывания на критика. «Когда меня спрашивают, почему участники игры должны вести себя так, как предписывает равновесие Нэша, – сказал он, – мой любимый ответ – спросить “Почему бы нет?” и предоставить сомневающемуся возможность предложить свой вариант того, что, по его мнению, должны делать игроки. Если этот вариант не является равновесием Нэша, тогда… мы можем продемонстрировать, что он бы свел к нулю собственную обоснованность, если бы игроки считали его точным описанием поведения друг друга»[63]63
  Roger Myerson, Game Theory (Cambridge, Mass.: Harvard University Press, 1991), p. 106.


[Закрыть]
.

А. Решение проблемы риска в равновесии Нэша

Некоторые критики утверждают, что концепция равновесия Нэша не уделяет должного внимания риску. В ряде игр можно найти стратегии, отличающиеся от стратегий равновесия Нэша тем, что они более безопасны, а значит, было бы целесообразнее выбрать именно их. Мы предлагаем два примера игр такого типа. Автор первого – профессор экономики Калифорнийского университета в Беркли Джон Морган; таблица этой игры представлена на рис. 5.3.

.

Рис. 5.3. Игра со спорным равновесием Нэша


Анализ наилучших ответов позволяет быстро определить, что в этой игре есть единственное равновесие Нэша, а именно сочетание стратегий А, А, обеспечивающее выигрыши 2, 2. Но вы, как и многие другие участники экспериментов, проведенных Морганом, можете подумать, что стратегия С весьма привлекательна по двум причинам. Во-первых, она гарантирует тот же выигрыш, что и при равновесии Нэша, то есть 2, тогда как, выбрав стратегию из равновесия Нэша А, вы получите выигрыш 2, только если другой игрок тоже выберет А. Зачем же идти на такой риск? Более того, если вы считаете, что другой игрок также может прибегнуть к подобному логическому обоснованию целесообразности выбора стратегии С, то вы совершили бы серьезную ошибку, предпочтя стратегию А, поскольку в таком случае вы получите выигрыш 0, тогда как могли бы получить 2, применив стратегию С.

Майерсон ответил на это так: «Не спешите. Если вы действительно считаете, что другой игрок рассуждает подобным образом и выберет стратегию С, то вам следует применить стратегию В, чтобы получить выигрыш 3. А если вы думаете, что другой игрок тоже так думает и выберет стратегию В, тогда вашим наилучшим ответом на стратегию В была бы стратегия А. А если вы полагаете, что другой игрок также это поймет, вы должны выбрать свой наилучший ответ на А, то есть стратегию А. Вот мы и вернулись к равновесию Нэша!» Как видите, критика в адрес равновесия Нэша и аргументы против нее – уже сами по себе нечто вроде интеллектуальной игры, причем довольно интересной.

Второй, еще более впечатляющий пример сформулировал экономист Стэнфордской бизнес-школы Дэвид Крепс. Таблица игры приведена на рис. 5.4. Прежде чем приступить к ее теоретическому анализу, вы должны представить, что действительно играете в нее в качестве игрока А. Какое из двух действий вы выбрали бы?

.

Рис. 5.4. Катастрофическое равновесие Нэша?


Запомните свой ответ на заданный выше вопрос, и продолжим анализ игры. Начав с поиска доминирующих стратегий, мы увидим, что у игрока А их нет, а у игрока Б есть. Выбор стратегии «налево» гарантирует игроку Б выигрыш 10, что бы ни сделал игрок А, тогда как в случае выбора стратегии «направо» (также при любых действиях игрока А) он получит выигрыш 9,9. Следовательно, игрок Б должен играть «налево». При условии, что игрок Б предпочтет «налево», игроку А лучше выбрать «вниз». Единственное равновесие Нэша в чистых стратегиях в этой игре – «вниз»/«налево», при таком ее исходе каждый участник получит выигрыш 10.

Проблема здесь в том, что многие (хотя и не все) люди, играющие роль игрока А, не выбирают стратегию «вниз». (А что выбрали вы?) Так поступают как те, кто много лет изучает теорию игр, так и те, кто никогда не слышал об этом предмете. Если у игрока А есть какие-либо сомнения по поводу выигрыша игрока Б или его рациональности, то для него гораздо безопаснее выбрать стратегию «вверх», чем равновесную стратегию «вниз». Но что если бы игрок А считал, что выигрыши совпадают с тем, что показано на рис. 5.4, а в действительности выигрыши игрока Б были бы совсем другими: выигрыш 9,9 соответствовал бы стратегии «налево», а выигрыш 10 – стратегии «направо»? Что если бы значение 9,9 было приближенным, а на самом деле точный выигрыш составлял бы 10,1? Что если бы у Б была совсем иная система ценностей или на самом деле он не относится к числу рациональных игроков и мог бы выбрать «неправильное» действие просто ради забавы? Очевидно, что наши исходные предположения о совершенной информации и рациональности действительно могут играть важную роль в процессе анализа, используемого нами при изучении стратегии. Колебания относительно игроков могут изменить те равновесия, наличие которых мы предсказали бы при обычных условиях, а также поставить под сомнение корректность концепции равновесия Нэша.

Однако реальная проблема со многими такого рода примерами не в том, что концепция равновесия Нэша неприемлема, а в том, что эти примеры иллюстрируют ее неподобающе упрощенным способом. Если в приведенном выше примере есть какие-то сомнения в выигрышах игрока Б, то этот факт должен стать неотъемлемой частью анализа. Если игрок А не знает выигрышей игрока Б, значит, это игра с асимметричной информацией (мы ее сможем обсудить только в главе 8). Но в данном примере представлена сравнительно простая игра такого типа, и мы можем без особого труда проанализировать ее равновесие.

Предположим, игрок А полагает, что существует вероятность p того, что выигрыши игрока Б при выборе стратегий «налево» и «направо» противоположны выигрышам, представленным на рис. 5.4; следовательно, (1 – p) – это вероятность того, что выигрыши игрока Б соответствуют информации на рисунке. Поскольку игрок А вынужден действовать, не зная фактических выигрышей игрока Б, он должен применить свою стратегию как «наилучшую в среднем». В данном примере расчеты достаточно просты, так как в каждом случае у игрока Б есть доминирующая стратегия; единственная проблема для игрока А – то, что в двух разных случаях у игрока Б разные доминирующие стратегии. С вероятностью (1 – p) доминирующая стратегия игрока Б – «налево» (случай, показанный на рисунке), а с вероятностью p его доминирующая стратегия – «направо» (противоположный случай). Таким образом, если игрок А выберет «вверх», то с вероятностью (1 – p) он будет играть против Б, применившего «налево», а значит, получит выигрыш 9; с вероятностью p игроку А предстоит вступить в игру с игроком Б, выбравшим «справа», и, стало быть, он получит выигрыш 8. Итак, статистическое, или взвешенное по вероятности среднее значение выигрыша игрока А при выборе стратегии «вверх» составляет 9(1 – p) + 8p. Аналогично статистическое, или взвешенное по вероятности, среднее значение выигрыша игрока А при использовании стратегии «вниз» равно 10(1 – p) – 1000p. Следовательно, для игрока А предпочтительнее стратегия «вверх», если

9(1 – p) + 8p > 10(1 – p) – 1000p, или p > 1 / 1009.

Таким образом, при наличии даже малейшей вероятности того, что выигрыши игрока Б противоположны выигрышам на рис. 5.4, игроку А лучше выбрать стратегию «вверх». В данном случае правильно выполненный анализ, основанный на рациональном поведении, не противоречит ни интуитивным догадкам, ни экспериментальным данным.

При выполнении этих вычислений мы исходили из предположения, что, столкнувшись с неопределенностью в отношении выигрышей, игрок А рассчитает их статистическое среднее значение в случае различных действий и выберет действие, обеспечивающее самое высокое среднестатистическое значение выигрыша. Это неявное допущение хотя и соответствует цели данного примера, но сопряжено с определенными проблемами. Например, оно подразумевает, что человек, столкнувшийся с двумя ситуациями, в одной из которых он выиграет или проиграет 10 долларов с вероятностью 50 на 50, а в другой выиграет 10 001 доллар и проиграет 10 000 долларов с той же вероятностью, должен выбрать вторую ситуацию, поскольку она обеспечивает среднестатистический выигрыш в размере 50 центов (1/2 × 10 001 – 1/2 × 10 000), тогда как первая принесет нулевой выигрыш (1/2 × 10 – 1/2 × 10). Однако многие сочли бы, что вторая ситуация гораздо рискованнее, а потому предпочли бы первую. Решить эту проблему достаточно легко. В приложении к главе 7 показано, как создание нелинейной шкалы выигрышей, соответствующих денежным суммам, позволяет человеку, принимающему решение, предусмотреть как риск, так и прибыль. А в главе 8 продемонстрировано, как можно использовать эту концепцию для того, чтобы понять, как люди реагируют на риск в своей жизни – например, разделяют его с другими или покупают страховку.

Б. Множественность равновесий Нэша

Еще одно критическое замечание в адрес концепции равновесия Нэша строится на наблюдении, что во многих играх присутствует множество равновесий Нэша, а значит, данная концепция неспособна определить исходы игры достаточно точно для того, чтобы давать однозначные прогнозы. Данный аргумент не требует от нас отказа от концепции равновесия Нэша, а скорее подразумевает, что при необходимости получить однозначный прогноз на основании нашей гипотезы мы должны включить некий критерий, который поможет нам решить, какое именно из множества равновесий Нэша выбрать.

В главе 4 мы изучили много координационных игр со множеством равновесий. Из всех этих равновесий игроки могут выбрать одно в качестве фокальной точки при наличии у них общих социальных, культурных или исторических знаний. Рассмотрим координационную игру, в которую сыграли студенты Стэнфордского университета. За одним игроком закрепили Бостон, за другим – Сан-Франциско. Затем каждому студенту вручили список из девяти американских городов (Атланта, Чикаго, Даллас, Денвер, Хьюстон, Лос-Анджелес, Нью-Йорк, Филадельфия и Сиэтл) и попросили выбрать подмножество городов. Оба делали выбор одновременно и независимо друг от друга и могли получить приз только при условии, что их выбор приведет к формированию двух непересекающихся подмножеств городов. Несмотря на наличие 512 других равновесий Нэша, если оба студента были американцами или гражданами США, довольно долго прожившими в стране, более чем в 80 процентах случаев они выбирали единственное равновесие по географическому принципу. Студент, за которым был закреплен Бостон, указывал все города к востоку от Миссисипи, а студент, которому соответствовал Сан-Франциско, – все города к западу от Миссисипи. Вероятность такой координации существенно снижалась, когда один или оба студента не были гражданами США. Тогда выбор порой делался в алфавитном порядке, но с гораздо меньшим уровнем координации по той же точке раздела[64]64
  См. David Kreps, A Course in Microeconomic Theory (Princeton: Princeton University Press, 1990), pp. 392–93, 414–15.


[Закрыть]
.

Характеристики самой игры в сочетании с общим культурным опытом могут способствовать сходимости ожиданий. В качестве еще одного примера множественности равновесий рассмотрим игру, в которой два игрока одновременно и независимо друг от друга записывают, какую долю от 100 долларов каждый из них хотел бы получить. Если сумма указанных ими чисел не превышает 100 долларов, каждый игрок получает то, что записал, если превышает, оба ничего не получают. Равновесие Нэша наблюдается в случае, если при любом значении x один игрок напишет x, а другой – (100 – x). Следовательно, в этой игре есть практически бесконечный диапазон равновесий Нэша. Однако на практике фокальной точкой чаще всего становится вариант 50 на 50. Данная социальная норма равенства или справедливости, кажется, насколько глубоко укоренилась, что стала почти инстинктивной: игроки, выбирающие 50 долларов, утверждают, что это очевидный ответ. Для того чтобы это действительно была фокальная точка, это не только должно быть очевидно для всех, но каждый должен знать, что это очевидно для всех, и все должны знать, что… Иными словами, такая очевидность должна быть общим знанием. Но так бывает далеко не всегда, что подтверждает ситуация, в которой один игрок – женщина из просвещенного, эгалитарного общества, считающая очевидным разделение 50 на 50, а другой – мужчина из патриархального общества, убежденный, что о каком бы дележе ни шла речь, мужчина должен получить в три раза больше женщины. В этом случае оба сделают то, что очевидно для нее и для него, и останутся ни с чем, поскольку очевидное решение для каждого из них не будет очевидным в качестве общего знания для обоих.

Фокальная точка часто возникает в результате случайного стечения обстоятельств, а создание фокальных точек там, где их на самом деле нет, – своего рода искусство, требующее пристального внимания к историческому и культурному контексту игры, а не просто ее математического описания. Это беспокоит многих специалистов по теории игр, которые предпочли бы, чтобы исход игры зависел исключительно от ее абстрактного описания: игроки и их стратегии должны быть определены числами безо всяких внешних ассоциаций. Мы с этим не согласны. На наш взгляд, исторический и культурный контекст так же важен для игры, как и ее сугубо математическое описание, и если он помогает выбрать уникальный исход игры из множества равновесий Нэша, то это, безусловно, плюс.

В главе 6 мы покажем, что игры с последовательными ходами могут иметь множество равновесий Нэша. Там же введем условие о достоверности, позволяющее выбрать конкретное равновесие; как оказалось, в его качестве выступает, по сути, равновесие обратных рассуждений, о котором рассказывалось в главе 3. В более сложных играх с асимметричностью информации или иными трудностями вводятся другие ограничения под названием уточнения, позволяющие идентифицировать и исключить из рассмотрения в некотором роде бессмысленные равновесия Нэша. В главе 8 мы рассмотрим один процесс подобного уточнения, выбирающий исход под названием совершенное байесовское равновесие. Обоснование такого уточнения зачастую имеет свою специфику в играх определенного типа; оно оговаривает, как игроки должны обновлять свою информацию, наблюдая за действиями других игроков. Каждая такая оговорка чаще всего абсолютно уместна в своем контексте, поэтому во многих играх не так уж трудно исключить большинство равновесий Нэша, а значит, и снизить неоднозначность прогнозирования.

Тогда как в одних играх может быть слишком много равновесий Нэша, в других они могут отсутствовать вообще. Мы приводили пример подобной игры в разделе 7 главы 4, а также уточнили, что равновесие Нэша можно восстановить, расширив концепцию стратегии на случайные комбинации стратегий. В главе 7 мы объясним и проанализируем равновесия Нэша в смешанных стратегиях. На более высоких уровнях теории игр существуют и более сложные примеры игр, в которых равновесия Нэша нет и в смешанных стратегиях. Однако такая дополнительная сложность не имеет отношения к рассматриваемым в данной книге типам анализа и областям применения, поэтому мы не будем затрагивать здесь эту тему.

В. Требования рациональности в равновесии Нэша

Как вы уже знаете, равновесие Нэша можно рассматривать как систему стратегических вариантов выбора каждого игрока, а также его убеждений в отношении выбора других игроков. В случае равновесия 1) выбор каждого игрока должен обеспечивать ему лучший выигрыш с учетом его убеждения в отношении выбора других игроков; 2) убеждение каждого игрока должно быть правильным, то есть его фактический выбор должен быть именно таким, каким он должен быть, по его твердому убеждению. Такова естественная интерпретация требований о взаимной согласованности рационального выбора отдельных игроков. Если у всех игроков есть общее знание того, что они рациональны, то как может один из них иметь рациональные убеждения в отношении выбора других игроков, не соответствующие рациональной реакции на его собственные действия?

Для того чтобы изучить этот вопрос, рассмотрим игру три на три, представленную на рис. 5.5. Анализ наилучших ответов позволяет быстро определить, что в ней всего одно равновесие Нэша, а именно R2, C2, обеспечивающее выигрыш 3, 3. В этом равновесии Строка выбирает вариант R2, исходя из убеждения, что Столбец сыграет C2. Почему Строка в этом убеждена? Потому что она знает Столбца как рационального игрока, но в то же время она должна считать, что Столбец убежден в ее выборе варианта R2 по той причине, что вариант С2 не будет его наилучшим выбором, если бы он полагал, что Строка сыграет либо R1, либо R3. Таким образом, суть этого утверждения состоит в том, что убеждения, полученные в результате рационального процесса формирования, должны быть правильными.

.

Рис. 5.5. Обоснование выбора посредством цепочки убеждений и ответных действий


Проблема такой аргументации состоит в том, что она ограничена одним циклом рассуждений об убеждениях. Продолжив их, мы можем обосновать и другие комбинации вариантов выбора. Например, можно рационально обосновать выбор Строкой варианта R1. Для этого отметим, что R1 – лучший выбор Строки в случае, если она убеждена, что Столбец сыграет С3. Почему Строка в этом убеждена? Потому что уверена, что Столбец убежден в том, что она выберет R3. Строка обосновывает это убеждение, считая, что Столбец убежден в том, что Строка убеждена в том, что Столбец сыграет С1, будучи убежденным в том, что Строка предпочтет вариант R1, будучи, в свою очередь, убежденной в том, что… Каждое звено этой цепочки убеждений абсолютно рационально.

Таким образом, рациональность сама по себе не объясняет равновесия Нэша. Существуют более сложные доводы такого рода, действительно позволяющие обосновать особый вид равновесия Нэша, при котором игроки могут поставить свои стратегии в зависимость от поддающегося наблюдению инструмента рандомизации (случайного выбора). Однако мы оставим эту тему для более углубленного изучения и сформулируем в следующем разделе более простую концепцию, отражающую то, что логически вытекает из общего знания игроков только об их рациональности.

3. Рационализация

Какие стратегические варианты выбора в играх можно обосновать, исходя исключительно из рациональности? В матрице игры на рис. 5.5 мы можем объяснить любую пару стратегий, по одной на каждого игрока, посредством применения той же логики, что и в разделе 2.В. Иными словами, можем обосновать любую из девяти возможных комбинаций. Следовательно, рациональность в чистом виде не позволяет нам сократить совокупность вероятных исходов игры или вообще спрогнозировать их. Присуще ли это всем играм? Нет. Например, если стратегия доминируемая, ее можно исключить из рассмотрения на основе одной только рациональности. А когда игроки осознают, что их соперники, будучи рациональными, не выберут доминируемые стратегии, исходя из такого общего знания можно выполнить итеративное исключение доминируемых стратегий. Лучшее ли это из доступных действий? Нет. Можно продолжить дальнейшее исключение стратегий, воспользовавшись несколько более сильным свойством, чем доминируемость в чистых стратегиях. Оно определяет стратегии, которые не могут быть наилучшим ответом. Стратегии, оставшиеся после такой процедуры исключения, называются рационализируемыми, а сама концепция – рационализацией.

Зачем вводить эту дополнительную концепцию, и что она нам дает? Что касается первого вопроса, полезно знать, насколько можно сузить совокупность возможных исходов игры на основании одной лишь рациональности игроков, не прибегая к правильности ожиданий относительно фактического выбора игрока. Иногда можно определить, что игрок не выберет то или иное действие или действия, даже если нельзя вычислить, какое именно действие он все же выберет. Ответ на второй вопрос зависит от контекста. Порой рационализация вообще не позволяет сократить совокупность исходов игры. Именно так было в примере три на три, представленном на рис. 5.5. Подчас рационализация позволяет это сделать только до определенной степени, но не до равновесия Нэша, если оно в игре всего одно, или не до совокупности равновесий Нэша, если их в игре несколько. Примером такой ситуации может служить расширенный до матрицы четыре на четыре предыдущий пример, который рассматривается в разделе 3.А ниже. Иногда сокращение совокупности возможных исходов игры приводит к определению единственного равновесия Нэша, причем в подобных случаях мы имеем его более веское обоснование, опирающееся исключительно на рациональность, без предположений о правильности ожиданий. Ниже в разделе 3.Б представлен пример игры с конкуренцией по количеству, в котором аргументация на основе концепции рационализации позволяет найти в ней единственное равновесие Нэша.

А. Применение концепции рационализации

Рассмотрим игру на рис. 5.6, аналогичную той, что приведена на рис. 5.5, но с дополнительной стратегией на каждого игрока[65]65
  Пример взят из статьи, в которой впервые была сформулирована концепция рационализации: Douglas Bernheim, Rationalizable Strategic Behavior, Econometrica, vol. 52, no. 4 (July 1984), pp. 1007–1028. См. также Andreu Mas-Colell, Michael Whinston, and Jerry Green, Microeconomic Theory (New York: Oxford University Press, 1995), pp. 242–45.


[Закрыть]
. Как отмечалось выше, девять комбинаций стратегий, в которые входит одна из первых трех стратегий для каждого из игроков, можно обосновать посредством цепочки убеждений игроков в отношении убеждений друг друга. Это верно и в увеличенной матрице. Но подходит ли такой способ для стратегий R4 и C4?

.

Рис. 5.6. Рационализируемые стратегии


Может ли Строка исходить из убеждения, что Столбец выберет стратегию C4? В его основе должны лежать убеждения Столбца в отношении выбора Строки. Могут ли они сделать стратегию С4 наилучшим ответом Столбца? Нет. Если Столбец полагает, что Строка сыграет R2, его наилучший ответ С2. Если Столбец считает, что Строка предпочтет R3, то его наилучший ответ С3. А если Столбец убежден, что Строка выберет R4, тогда его наилучший ответ либо С1, либо С3. Следовательно, С4 не может быть наилучшим ответом Столбца[66]66
  Обратите внимание, что в каждом случае лучший выбор для Столбца однозначно лучше стратегии С4. Следовательно, она не может даже претендовать на роль наилучшего ответа. Можно провести различие между слабой и строгой неспособностью стратегии быть наилучшим ответом, подобно тому как мы различали слабое и строгое доминирование. В данном случае наблюдается неспособность быть наилучшим ответом в строгом смысле.


[Закрыть]
. Это означает, что Строка, зная о рациональности Столбца, ни в коем случае не припишет ему выбор стратегии С4. Стало быть, Строка не должна исходить из убеждения, что Столбец сыграет С4.

Обратите внимание, что хотя стратегия С4 не может быть наилучшим ответом, она не является доминируемой по отношению к стратегиям С1, С2 и С3. Для Столбца она предпочтительнее стратегии С1 против стратегии Строки R3, предпочтительнее стратегии С2 против стратегии Строки R4 и предпочтительнее стратегии С3 против стратегии Строки R1. Если стратегия все же доминируемая, она тоже не может быть наилучшим ответом. Таким образом, «стратегия, которая не может быть наилучшим ответом», – более общая концепция, чем «доминируемая стратегия». Исключение таких стратегий возможно даже тогда, когда исключение доминируемых стратегий невозможно. Следовательно, исключение стратегий, которые не могут быть наилучшим ответом, способно сузить совокупность вероятных исходов игры в большей степени, чем исключение доминируемых стратегий[67]67
  Когда допускается использование смешанных стратегий (как в главе 7), чистая стратегия может быть доминируемой по отношению к комбинации других чистых стратегий. При таком расширенном определении доминируемой стратегии итеративное исключение строго доминируемых стратегий становится эквивалентом рационализации. Детали лучше оставить для углубленного курса теории игр.


[Закрыть]
.

Исключение стратегий, которые не могут быть наилучшим ответом, также можно выполнять в итеративном режиме. Поскольку рациональный игрок Строка не может исходить из убеждения, что рациональный игрок Столбец выберет стратегию С4, рациональный игрок Столбец должен это предвидеть. Учитывая, что R4 – наилучший ответ Строки только на стратегию С4, Столбец не должен думать, что Строка сыграет R4. Следовательно, R4 и С4 не могут входить в набор рационализируемых стратегий. Концепция рационализации действительно позволяет сократить совокупность возможных исходов данной игры.

Если в игре есть равновесие Нэша, оно будет рационализируемым и его можно подтвердить посредством простой системы убеждений, состоящей из одного цикла, как в представленном выше разделе 2.В. Но в более общем плане, даже если в игре нет равновесия Нэша, она может иметь рационализируемые исходы. Возьмем в качестве примера игру два на два, полученную из игры на рис. 5.5 или рис. 5.6, в которой оставлены только стратегии R1 и R3 для Строки и С1 и С3 для Столбца. Легко увидеть, что в этой игре нет равновесия Нэша в чистых стратегиях. Однако все четыре ее исхода рационализируемы посредством такой же цепочки убеждений, как выстроенная выше и охватывающая эти стратегии.

Таким образом, концепция рационализации представляет собой возможный способ решения игр с отсутствием равновесия Нэша. Что еще более важно, эта концепция подсказывает нам, как сократить совокупность вероятных исходов игры исключительно на основании рациональности.

Б. Рационализация может привести к равновесию Нэша

В некоторых играх итеративное исключение стратегий, которые не могут быть наилучшим ответом, может сократить всю совокупность возможных исходов до равновесия Нэша. Обратите внимание, что мы сказали «может», а не «должно». Но если подобное все же происходит, это очень полезно, поскольку позволяет подкрепить доводы в пользу равновесия Нэша путем утверждения, что оно следует исключительно из рациональных мнений игроков о рассуждениях друг друга. Интересно, что один класс игр, решаемых таким способом, играет важную роль в экономике. К нему относится конкуренция между компаниями при определении количества производимой продукции, когда они знают, что от ее общего объема на рынке зависит цена.

Мы проиллюстрируем игру такого типа в контексте небольшого прибрежного городка. В нем две некие рыбацкие лодки каждый вечер уходят в море, а утром возвращаются с уловом и выставляют его на рынок. Игра разыгрывается во времена, когда еще не было современного холодильного оборудования, поэтому вся рыба должна быть продана и съедена в тот же день. В океане неподалеку от города полно рыбы, поэтому владелец каждой лодки может решать, сколько рыбы поймать за ночь. Но каждый из них также знает, что избыток рыбы на рынке приведет к снижению цен и прибыли.

Предположим, что если одна лодка выставит на рынок R бочек рыбы, а другая S бочек, то цена P (в дукатах за бочку) будет равна P = 60 – (R + S). Допустим также, что две лодки и их команды несколько отличаются по эффективности рыбной ловли: затраты первой лодки на ловлю рыбы составляют 30 дукатов на одну бочку, тогда как второй – 36 дукатов на бочку.

Теперь мы можем записать формулы определения прибыли двух владельцев лодок U и V с учетом их стратегий R и S.

U = [(60 – R – S) – 30]R = (30 – S)R – R2,

V = [(60 – R – S) – 36]S = (24 – R)S – S2.

На основании этих формул выигрышей можно построить кривые наилучших ответов и найти равновесие Нэша. Как и в примере игры с ценовой конкуренцией из раздела 1, выигрыш каждого игрока представляет собой квадратичную функцию его собственной стратегии при условии неизменности стратегии другого игрока. Следовательно, в данном случае можно применить математические методы, изложенные в разделе 1 данной главы и в приложении к ней.

Наилучший ответ первой лодки R должен максимизировать значение U для каждого заданного значения S другой лодки. При использовании дифференциального исчисления это означает, что мы должны продифференцировать U по R при фиксированном значении S и приравнять производную к нулю, что дает следующее уравнение:

(30 – S) – 2R = 0; R = 15 – S / 2.

Подход без дифференциального исчисления использует результат, согласно которому значение R, максимизирующее значение U, равно R = B / (2C), где B = 30 – S, а C = 1. Это дает R = (30 – S) / 2, или R = 15 – S / 2.

Аналогичным образом уравнение наилучшего ответа второй лодки можно найти, выбрав значение S, максимизирующее значение V при каждом фиксированном значении R, что дает следующее значение:



Равновесие Нэша можно найти посредством совместного решения двух уравнений наилучших ответов для R и S, что не так уж трудно сделать[68]68
  Следует отметить некоторые интересные свойства этого решения, хотя они и второстепенны для наших целей. Значения количества разнятся, поскольку разнятся затраты: более эффективная лодка (с меньшими затратами) может продать больше продукции. Различия между затратами и количеством влекут за собой еще более существенные различия между полученной прибылью. Преимущество первой лодки перед второй по затратам составляет всего 20 процентов, но при этом первая лодка получает почти в четыре раза больше прибыли по сравнению со второй.


[Закрыть]
, поэтому мы просто приведем результаты. Количество: R = 12, S = 6; цена: P = 42; прибыль: U = 144, V = 36.

На рис. 5.7 представлены графики наилучших ответов двух рыбаков (обозначенные как BR1 и BR2 с указанием соответствующих уравнений), а также равновесие Нэша (обозначенное как N с указанием координат) на пересечении двух линий. Кроме того, на рис. 5.7 также показано, как сократить совокупность убеждений игроков в отношении выбора друг друга посредством итеративного исключения стратегий, которые не могут быть наилучшим ответом.

.

Рис. 5.7. Поиск равновесия Нэша с помощью рационализации


Какие значения S, по рациональному убеждению владельца первой лодки, выберет владелец второй лодки? Это зависит от того, какой улов, по мнению владельца второй лодки, получит владелец первой лодки. Но каким бы ни был этот улов, наилучшие ответы владельца второй лодки находятся в диапазоне от 0 до 12 бочек. Следовательно, владелец первой лодки не может рационально считать, что владелец второй лодки выберет что-то другое: все отрицательные варианты выбора (что очевидно) и все значения S, превышающие 12 бочек (что менее очевидно), исключаются. Точно так же владелец второй лодки не может рационально считать, что владелец первой лодки выловит рыбы меньше 0 или больше 15 бочек.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации