Текст книги "Стратегические игры. Доступный учебник по теории игр"
Автор книги: Авинаш Диксит
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 18 (всего у книги 72 страниц) [доступный отрывок для чтения: 23 страниц]
В данном приложении представлен простой метод выбора переменной X для получения максимального значения переменной, которое является ее функцией, скажем Y = F(X). В наших примерах практического применения теории игр эта функция в большинстве случаев будет квадратичной, а именно Y = A + BX + CX2. Для таких функций мы выведем формулу X = B / (2C), используемую в данной главе. Мы сформулируем общую идею с помощью дифференциального исчисления, а затем предложим альтернативный подход, в котором это исчисление не применяется и который опирается исключительно на квадратичную функцию[84]84
Безусловно, мы приводим здесь только самый короткий, самый быстрый способ анализа, исключив из рассмотрения все вопросы, связанные с функциями, у которых нет производных, с функциями, точка экстремума которых находится вне того интервала, на котором они определены, и т. д. Одним читателям будет известно все, что мы здесь скажем, другие узнают намного больше. Тем читателям, которые захотят изучить эту тему еще глубже, следует обратиться к любому учебнику по математическому анализу.
[Закрыть].
Метод дифференциального исчисления проверяет значение X на оптимальность посредством анализа того, что произойдет со значением функции в случае других значений по любую сторону от X. Если на самом деле X не максимизирует Y = F(X), то результатом увеличения или уменьшения X должно быть уменьшение значения Y. Исчисление предоставляет нам возможность быстро выполнить такую проверку.
Рисунок 5П.1 иллюстрирует основную идею. На нем представлен график функции Y = F(X), для которого мы использовали функцию, подходящую для наших примеров практического применения теории игр, хотя сама идея носит абсолютно универсальный характер. Начнем с любой точки P с координатами (X, Y) на этом графике. Рассмотрим несколько отличающееся значение X, скажем (X + h). Пусть k – это итоговое изменение Y = F(X), то есть точка Q с координатами (X + h, Y + k) также находится на графике. Наклон хорды, соединяющей точки P и Q, – коэффициент k / h. Если значение этого коэффициента положительное, то h и k имеют одинаковый знак: при увеличении X увеличивается и Y. Если значение коэффициента отрицательное, то h и k имеют противоположные знаки, и в случае увеличения X значение Y уменьшается.
Рис. 5П.1. Иллюстрация к производной функции
Если теперь мы проанализируем все меньшие изменения h значения X и все меньшие изменения k значения Y, хорда PQ будет приближаться к касательной к данному графику в точке P. Наклон этой касательной – и есть предельное значение k/h, называемое производной функцией Y = F(X) в точке X. Символически эта производная записывается как F´(X) или dY / dX.
Для нашей квадратичной функции имеем
Y = A + BX + CX2 и Y + k = A + B(X + h) – C(X + h)2.
Мы можем найти формулу для k следующим образом:
k = [A + B(X + h) – C(X + h)2] – (A + BX–CX2) =
Bh – C[(X + h)2 – X2] =
Bh – C(X2 + 2Xh + h2 – X2) =
(B – 2CX)h – Ch2.
Тогда k / h = (B – 2CX) – Ch. В пределе, когда значение h стремится к нулю, k/h = (B – 2CX). Последнее выражение и есть производная нашей функции.
Теперь используем эту производную для проверки на оптимальность. На рис. 5П.2 проиллюстрирована эта идея. Точка M дает самое высокое значение Y = F(X). Функция возрастает по мере приближения к точке M слева (точка L) и убывает после удаления от точки M направо (точка R). Следовательно, производная F´(X) должна быть положительной при значениях X меньше M и отрицательной при значениях X больше M. По условию непрерывности производная в точке M должна равняться нулю. На обычном языке это означает, что график функции должен быть плоским в точке максимума, точнее, касательная в этой точке должна быть горизонтальной.
Рис. 5П.2. Оптимум функции
В нашем примере с квадратичной функцией производная равна F´(X) = B – 2CX. Проверка оптимальности подразумевает, что функция имеет оптимум в точке, значение производной в которой равно 0, то есть в точке X = B/2C. Это и есть та формула, которая приведена в данной главе.
Необходимо выполнить еще одну дополнительную проверку. Если перевернуть график функции, то точка M станет минимальным значением перевернутой функции и в этой самой нижней точке график также будет плоским. Таким образом, для общей функции F(X) установление значения F´(X) равным 0 позволяет получить значение X, которое обеспечивает как минимум, так и максимум. Как же провести различие между этими двумя возможностями?
В точке максимума функция возрастает слева и убывает справа. Следовательно, производная будет положительной при значениях X меньше предполагаемого максимума и отрицательной при значениях X больше предполагаемого максимума. Иными словами, производная, которая рассматривается как функция от X, убывает в этой точке. Убывающая функция имеет отрицательную производную. Стало быть, производная производной, которая называется второй производной исходной функции и записывается как F´(X) или d2Y / dX2, должна иметь отрицательное значение в точке максимума. Согласно той же логике вторая производная должна иметь положительное значение в точке минимума – именно это и отличает два случая.
Что касается производной F´(X) = B – 2CX в нашем примере с квадратичной функцией, то применение той же процедуры с h, k по отношению к F´(X), что и в случае F(X), показывает, что F˝(X) = – 2C. Значение этой производной будет отрицательным при положительном значении C; именно из такого предположения мы исходили, формулируя задачу в данной главе. Проверка F´(X) = 0 называется условием максимизации первого порядка функции F(X), а F˝(X) < 0 – условием второго порядка.
Для того чтобы закрепить эту идею, применим ее в конкретном примере с наилучшим ответом Xavier’s, который мы рассматривали в данной главе. У нас была такая формула:
Пx = – 8(44 + Py) + (16 + 44 + Py) Px – 2(Px)2.
Это квадратичная функция от Px (при неизменном значении цены другого ресторана Py). Наш метод позволяет получить ее производную:
Условие первого порядка для Px для максимизации Пx состоит в том, что эта производная должна быть равной нулю. Установив такое значение производной и определив ее значение относительно Px, получим то же уравнение, что и в разделе 1.П. (Условие второго порядка: d2Пx / dPx2 < 0, и оно удовлетворено, поскольку вторая производная равна −4.)
Мы надеемся, что метод с применением дифференциального исчисления покажется вам достаточно простым и вы сможете использовать его в нескольких местах книги, например в главе 11, посвященной коллективному действию. Однако если вы находите его слишком сложным, предлагаем альтернативный метод без исчисления, который работает в случае квадратичных функций. Перегруппируем члены уравнения, описывающего эту функцию, таким образом:
Y = A + BX–CX2 =
В окончательном варианте формулы X присутствует только в последнем члене, где содержащий это значение квадрат вычитается (помните, что C > 0). Все выражение максимизируется в случае, если его вычитаемый член становится минимальным, что и происходит, если X = B / 2C. Что и требовалось доказать!
Такой метод дополнения до полного квадрата работает для квадратичных функций, поэтому применим к большинству примеров, рассматриваемых в книге. Однако мы должны признать, что в нем присутствует некий элемент магии. Метод с использованием дифференциального исчисления носит более общий методологический характер, так что изучение основ дифференциального исчисления окупится сторицей.
Глава 6. Сочетание последовательных и одновременных ходов
В главе 3 мы рассматривали игры исключительно с последовательными ходами, а глава 4 и глава 5 посвящены играм только с одновременными ходами. Мы сформулировали концепции и методы анализа, применимые к чистым типам игр, такие как дерево игры и равновесие обратных рассуждений для игр с последовательными ходами, и таблицы выигрышей и равновесие Нэша в играх с одновременными ходами. Однако в реальной жизни многие стратегические ситуации содержат элементы взаимодействия обоих типов игр. Кроме того, хотя мы использовали дерево игры (экстенсивную форму) в качестве единственного метода иллюстрации игр с последовательными ходами и таблицу игры (стратегическую форму) как единственный метод иллюстрации игр с одновременными ходами, каждая из этих форм представления применима к играм любого типа.
В данной главе мы проанализируем многие из этих возможностей. Сначала покажем, как игры, сочетающие последовательные и одновременные ходы, решаются с помощью комбинации деревьев игр и таблицы выигрышей, а также подходящего объединения анализа равновесия обратных рассуждений и равновесия Нэша, затем рассмотрим последствия изменения характера взаимодействия в конкретной игре. В частности, проанализируем результат изменения правил игры в целях преобразования игры с последовательными ходами в игру с одновременными ходами и наоборот и изменения порядка ходов в игре с последовательными ходами. Эта тема позволяет сравнить равновесия, найденные посредством концепции обратных рассуждений в игре с последовательными ходами, с равновесиями, найденными с помощью концепции равновесия Нэша в одновременной версии той же игры. На основании такого сравнения мы расширим концепцию равновесий Нэша на игры с последовательными ходами. Оказывается, равновесие обратных рассуждений – частный случай равновесия Нэша, обычно называемый уточнением.
1. Игры с одновременными и последовательными ходамиКак уже неоднократно отмечалось ранее, большинство реальных игр, с которыми вы столкнетесь, будут состоять из множества более мелких компонентов, причем каждый может подразумевать игру либо с одновременными, либо с последовательными ходами, поэтому игра в целом потребует от вас знания обоих типов. Самый очевидный пример стратегического взаимодействия, содержащего как последовательную, так и одновременную составляющую, – это игры между двумя (или более) игроками, продолжающиеся на протяжении длительного периода. За год совместного проживания в комнате вы можете сыграть с соседом в ряд разных игр с одновременными ходами: ваши действия в любой из них зависят от истории вашего общения до нынешнего момента и ваших ожиданий в отношении дальнейших коммуникаций. Кроме того, любые спортивные соревнования, взаимодействие между конкурирующими компаниями в отрасли и политические отношения – все это последовательно связанные серии игр с одновременными ходами. Анализ таких игр подразумевает использование набора инструментов, представленных в главе 3 (дерево игры и равновесие обратных рассуждений), главе 4 и главе 5 (таблица выигрышей и равновесие Нэша)[85]85
Иногда одновременная составляющая такой игры содержит равновесия в смешанных стратегиях; это требует применения инструментов, которые мы представим в главе 7. В данной главе мы будем упоминать об этой возможности там, где это уместно, а также предоставим вам шанс применить такие методы в упражнениях к следующим главам.
[Закрыть]. Единственное различие состоит в том, что фактический анализ усложняется по мере увеличения количества ходов и взаимодействий.
А. Двухэтапные игры и подыгры
Наш основной иллюстративный пример таких ситуаций касается двух вымышленных крупных телекоммуникационных компаний CrossTalk и GlobalDialog. Каждая из них решает, стоит ли инвестировать 10 миллиардов долларов в покупку волоконно-оптической сети; решение обеими принимается одновременно. Если ни одна не выберет инвестиции, это конец игры. Если одна сделает инвестиции, а другая нет, то компания-инвестор должна установить цены на телекоммуникационные услуги. Она может назначить либо высокую цену, позволяющую привлечь 60 миллионов клиентов, каждый из которых принесет компании операционную прибыль в размере 400 долларов, либо низкую цену, позволяющую привлечь 80 миллионов клиентов, каждый из которых обеспечит компании операционную прибыль в размере 200 долларов. Если обе компании купят волоконно-оптические сети и выйдут на рынок, то ценообразование станет второй игрой с одновременными ходами. Каждая компания может установить либо высокую, либо низкую цену. Если обе предпочтут высокую цену, они разделят рынок поровну и каждая получит 30 миллионов клиентов и операционную прибыль 400 долларов на одного клиента. Если обе выберут низкую цену, они тоже разделят рынок поровну и каждая получит 40 миллионов клиентов и операционную прибыль 200 долларов на одного клиента. Если одна компания установит высокую цену, а другая низкую, то компания с низкой ценой получит все 80 миллионов клиентов, а компания с высокой ценой не получит ничего.
Взаимодействие между CrossTalk и GlobalDialog представляет собой двухэтапную игру. Из четырех возможных комбинаций вариантов выбора в случае игры с одновременными ходами на первом (инвестиционном) этапе одна комбинация завершает игру, две приводят к принятию решения только одним игроком на втором этапе (ценообразования), а четвертая сводится к игре с одновременными ходами (игре в ценообразование) на втором этапе. Игра в графическом виде представлена на рис. 6.1.
.
Рис. 6.1. Двухэтапная игра, состоящая из последовательных и одновременных ходов
В целом рис. 6.1 иллюстрирует дерево игры, но более сложное, чем в главе 3. Его можно представить как своего рода «дом на дереве» с несколькими уровнями, показанными в разных частях одного двумерного рисунка, как будто вы смотрите на него с вертолета, зависшего непосредственно над ним.
Первый этап игры отображен в виде таблицы выигрышей в верхнем левом квадранте рис. 6.1. Вообразите его как первый этаж дома на дереве, на котором находятся четыре «комнаты». Комната, расположенная в северо-западном углу, соответствует ходам «не инвестировать», которые делают на первом этапе обе компании. Если принятые решения приводят компанию в эту комнату, дальше у нее нет никаких вариантов выбора, а значит, можно ассоциировать эту комнату с концевым узлом дерева из главы 3 и показать выигрыши в ячейке таблицы (в данном случае для обеих компаний он составляет 0). Тем не менее все остальные комбинации действий двух компаний ведут в другие комнаты, в которых компании делают дальнейший выбор, поэтому мы еще не можем показать выигрыши в этих ячейках. Вместо этого мы показываем ветви, ведущие на второй этаж. В комнатах, расположенных в северо-восточном и юго-западном углах, отображены только выигрыши компании, решившей не инвестировать; ветви, исходящие из каждой из этих комнат, приводят нас к решениям соответствующей компании на втором этапе. Комната в юго-восточном углу приводит к многокомнатной структуре второго этажа дома на дереве, которая представляет игру в ценообразование второго этапа, разыгрываемую лишь в случае, если обе компании инвестировали на первом этапе. Эта структура второго этажа состоит из четырех комнат, соответствующих четырем комбинациям ходов двух компаний в игре в ценообразование.
Все ветви и комнаты второго этажа подобны концевым узлам дерева игры, а значит, мы можем показать выигрыши в каждом из этих случаев. Выражены они в виде операционной прибыли каждой компании за вычетом предшествующих инвестиционных затрат и исчисляются в миллиардах долларов.
Рассмотрим ветвь, ведущую в юго-западный угол на рис. 6.1. Игра перемещается в этот угол, только если CrossTalk решит инвестировать в покупку волоконно-оптической сети. Тогда при выборе высокой цены операционная прибыль CrossTalk составит 400 долларов × 60 миллионов = 24 миллиарда долларов, и после вычитания 10 миллиардов инвестиционных затрат будет получен ее выигрыш – 14 миллиардов долларов, что мы записываем как выигрыш 14. В том же углу при выборе CrossTalk низкой цены ее операционная прибыль составит 200 долларов × 80 миллионов = 16 миллиардов долларов, что после вычитания первоначальных инвестиций даст выигрыш в размере 6 миллиардов долларов. В этой ситуации выигрыш GlobalDialog равен 0, как отображено в юго-западном углу рис. 6.1; выигрыш 0 компании CrossTalk при аналогичных расчетах для GlobalDialog показан в северо-восточной комнате таблицы игры, соответствующей первому этапу.
Если обе компании решат инвестировать, обе перейдут к игре в ценообразование, отображенной в юго-восточном углу рисунка. Если обе компании предпочтут высокую цену на втором этапе, каждая получит операционную прибыль 400 долларов × 30 миллионов (половина рынка), или 12 миллиардов долларов; после вычитания 10 миллиардов долларов инвестиционных затрат у каждой компании останется по 2 миллиарда долларов чистой прибыли, или выигрыш 2. Если обе компании выберут низкую цену на втором этапе, каждая получит операционную прибыль 200 долларов × 40 миллионов = 8 миллиардов долларов и после вычитания 10 миллиардов долларов инвестиционных затрат останется с чистым убытком в размере 2 миллиардов долларов, или выигрышем −2. И наконец, если одна компания установит высокую цену, а другая низкую, то вторая получит прибыль 200 долларов × 80 миллионов = 16 миллиардов долларов, что обеспечит ей выигрыш 6, тогда как первая вообще не получит операционной прибыли и просто потеряет вложенные 10 миллиардов долларов с выигрышем −10.
Как и в любой многоэтапной игре, представленной в главе 3, мы должны решить эту игру в обратном порядке, начиная с игры второго этапа. В двух задачах с принятием решений о ценообразовании каждой компанией мы сразу же видим, что выбор высокой цены приносит более крупный выигрыш. Мы фиксируем это, выделив данный выигрыш более крупным шрифтом.
Игру в ценообразование, разыгрываемую на втором этапе, необходимо решать с помощью методов, представленных в главе 4. Несложно заметить, что она относится к категории «дилемма заключенных». «Низкая цена» – это доминирующая стратегия для каждой компании; следовательно, исход игры – комната в юго-восточном углу таблицы игры второго этажа: каждая компания получает выигрыш −2[86]86
Как всегда в случае дилеммы заключенных, если бы компании могли вступить в сговор и установить высокие цены, обе получили бы более высокий выигрыш 2. Однако такой исход игры не является равновесным, поскольку у каждой компании остается соблазн обмануть другую, чтобы обеспечить гораздо более высокий выигрыш 6.
[Закрыть].
Обратные рассуждения показывают, что на первом этапе следует оценивать каждую конфигурацию ходов, сначала проанализировав равновесие в игре второго этапа (или оптимальное решение на втором этапе) и полученные в результате выигрыши. Это позволит подставить только что рассчитанные выигрыши в ранее незаполненные или частично заполненные комнаты на первом этаже дома на дереве. Такая подстановка дает нам первый этаж с известными выигрышами, представленный на рис. 6.2.
.
Рис. 6.2. Инвестиционная игра первого этапа (после подстановки выигрышей, полученных методом обратных рассуждений на основании равновесия на втором этапе)
Теперь можем использовать методы из главы 4 для решения этой игры с одновременными ходами. Вы должны сразу же распознать игру, представленную на рис. 6.2, как игру в труса. В ней два равновесия Нэша, каждое из которых сводится к выбору одной компанией стратегии «инвестировать», а другой – «не инвестировать». Компания-инвестор получит огромную прибыль, поэтому каждая компания предпочтет то равновесие, в котором она будет инвестором, а другая компания – нет. В главе 4 мы кратко описали способы, позволяющие выбрать одно из двух равновесий, и указали на то, что каждая компания может попытаться получить предпочтительный исход, но это приведет к тому, что обе решат инвестировать и обе понесут убытки. На самом деле именно это и произошло в реальной игре такого рода. В главе 7 мы проанализируем данный тип игр более подробно и покажем, что они имеют третье равновесие Нэша – в смешанных стратегиях.
Исходя из анализа рис. 6.2, в нашем примере в игре первого этапа нет единственного равновесия Нэша. Это не особо серьезная проблема, поскольку мы можем оставить решение неоднозначным в той степени, в которой это было сделано выше. Было бы гораздо хуже, если бы единственное равновесие Нэша отсутствовало в игре второго этапа. Тогда было бы очень важно указать точный принцип выбора исхода игры с тем, чтобы определить выигрыши на втором этапе и использовать их в процессе обратных рассуждений в отношении первого этапа.
Игра в ценообразование второго этапа, показанная в нижней правой ячейке таблицы на рис. 6.1, – одна часть полной двухэтапной игры. При этом она представляет собой полноценную игру с полностью заданной системой игроков, стратегий и выигрышей. Для того чтобы точнее описать двойственную природу этой игры, ее называют подыгрой полной игры.
В более общем смысле подыгра – это часть многоходовой игры, которая начинается в определенном узле исходной игры. При этом дерево подыгры – просто часть дерева полной игры, в котором этот узел выступает в качестве корня, или начального узла. В многоходовой игре столько подыгр, сколько и узлов принятия решений.
Б. Конфигурации многоэтапных игр
В многоуровневой игре, представленной на рис. 6.1, каждый этап включает игру с одновременными ходами. Однако так бывает не всегда. Элементы игр с одновременными и последовательными ходами могут смешиваться и сочетаться друг с другом в любой комбинации. Мы приведем еще два примера, чтобы внести ясность в этот вопрос и закрепить идеи, рассмотренные в предыдущем разделе.
Первый пример – несколько измененный вариант игры между компаниями CrossTalk и GlobalDialog. Предположим, одна из них (скажем, GlobalDialog) уже инвестировала 10 миллиардов долларов в покупку волоконно-оптической сети. CrossTalk знает об этом и теперь должна решить, делать ли тоже такую инвестицию. Если CrossTalk откажется, то GlobalDialog останется только определиться с ценой. Если CrossTalk решит инвестировать, то две компании сыграют в описанную выше игру в ценообразование второго этапа. Дерево такой многоэтапной игры содержит условные ветви в начальном узле, а также подыгру с одновременными ходами в одном из узлов, к которому ведут эти исходные ветви. Полное дерево игры представлено на рис. 6.3.
.
Рис. 6.3. Двухэтапная игра в случае, когда одна компания уже сделала инвестиции
После построения дерева проанализировать игру не составит труда. На рис. 6.3 анализ методом обратных рассуждений показан посредством использования крупного шрифта для равновесных выигрышей, вытекающих из игры или решения на втором этапе, а также жирных линий для выбора CrossTalk на первом этапе. Иными словами, CrossTalk приходит к выводу, что инвестиции приведут ее к дилемме заключенных, которая оставит компанию с выигрышем −2, тогда как отказ от инвестиций обеспечит выигрыш 0. В итоге CrossTalk предпочитает второе. GlobalDialog получит выигрыш 14 вместо −2, который бы она получила в случае выбора CrossTalk стратегии «инвестировать», но CrossTalk интересует максимизация собственного выигрыша, а не намеренное уничтожение компании GlobalDialog.
Однако этот анализ показывает, что GlobalDialog может попытаться оперативно инвестировать средства в покупку волоконно-оптической сети, прежде чем CrossTalk примет решение, гарантирующее ей самый предпочтительный исход всей игры. А CrossTalk может попробовать обойти GlobalDialog аналогичным образом. В главе 9 мы проанализируем некоторые методы под названием «стратегические ходы», позволяющие игрокам обеспечить подобные преимущества.
Наш второй пример связан с футболом. Накануне каждого матча тренер команды нападающих выбирает игру, которую они будут вести; в то же время тренер команды защиты дает игрокам инструкции в отношении их размещения на поле, чтобы противостоять нападению. Следовательно, перед нами игра с одновременными ходами. Предположим, у команды нападения всего две альтернативы – безопасная и рискованная игра, а команда защиты может подготовиться к ответу на любой из вариантов. Если команда нападения настроена на рискованную игру и квотербек видит расстановку игроков защиты, позволяющую противодействовать такой игре, он может изменить игру у линии розыгрыша мяча. А команда защиты, в свою очередь, может отреагировать изменением своей расстановки. Таким образом, мы имеем игры с одновременными ходами на первом этапе, а одна из комбинаций вариантов выбора ходов на данном этапе приводит к подыгре с последовательными ходами. На рис. 6.4 показано полное дерево этой игры.
.
Рис. 6.4. Игра с одновременными ходами на первом этапе, за которым идут последовательные ходы
Это игра с нулевой суммой, в которой выигрыши команды нападения исчисляются в количестве ярдов, которое она рассчитывает получить, а выигрыши команды защиты прямо противоположны и исчисляются в количестве ярдов, которые она намерена уступить. Безопасная игра команды нападения обеспечивает ей 2 ярда, даже если команда защиты готова к такой игре; если не готова, игра будет ненамного успешнее и обеспечит 6 ярдов. Рискованная игра, в случае если команда защиты к ней не готова, принесет команде нападения 30 ярдов. Однако если команда защиты к ней готова, нападающие потеряют 10 ярдов. Эта совокупность выигрышей, −10 у команды нападения и 10 у команды защиты, показана в концевом узле, в случае если нападение не изменит игру. Если же изменит (вернется к безопасной игре), выигрыши составят 2, −2, если команда защиты отреагирует, и 6, −6 – если не отреагирует. Эти же выигрыши получат команды, если команда нападения изначально запланирует безопасную игру.
На рис. 6.4 ветви, выбранные в последовательной подыгре, представлены жирными линиями. Нетрудно увидеть, что, если команда нападения изменит игру, команда защиты отреагирует на это, чтобы обеспечить выигрыш −2, а не −6, и что команда нападения изменит игру, чтобы получить выигрыш 2 вместо −10. В ходе обратных рассуждений мы должны разместить полученную совокупность выигрышей 2, −2 в правой нижней ячейке таблицы выигрышей игры с одновременными ходами, протекающей на первом этапе. Далее мы увидим, что в этой игре отсутствует равновесие Нэша в чистых стратегиях. Причина та же, что и в игре в теннис из раздела 7 главы 4: один игрок (команда защиты) стремится согласовать ходы (выбрать расстановку, позволяющую противостоять игре команды нападения), тогда как другой (команда нападения) старается их рассогласовать (поймать команду защиты на неправильной расстановке). В главе 7 мы покажем, как вычислить равновесие в смешанных стратегиях в этой игре. Получается, что команда нападения должна выбирать рискованную стратегию с вероятностью 1/8, или 12,5 процента.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?