Текст книги "Открытия и изобретения ХХ века. Энциклопедия"
Автор книги: Николай Надеждин
Жанр: Справочники
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 38 страниц)
Глава 4
Самолёт братьев Райт – начало авиации
Почему, за счёт каких сил летает воздушный шар? В оболочке воздушного шара заключён некоторый объём газа, который легче воздуха. Это может быть горячий воздух, водород или инертный газ (например, гелий). Подъёмная сила выталкивает газовый пузырь вверх. А сам воздушный шар уравновешивается балластом – грузом, подвешенным в нижней части шара. Когда удельный вес газа, заполняющего оболочку шара, и удельный вес атмосферного воздуха выравниваются (а на высоте воздух разрежен и имеет меньшую плотность), набор высоты полёта прекращается. Точнее, здесь надо учитывать и вес газа, заполняющего шар, и вес самого шара, вместе с балластом и пассажирами. Уменьшая плотность заполняющего оболочку шара газа (подогревая воздух газовой горелкой или жаровней) или стравливая лёгкий газ, пилот регулирует высоту полёта. Так же работает и дирижабль, с тем отличием, что установленный под оболочкой двигатель, оборудованный воздушным винтом, придаёт дирижаблю горизонтальное ускорение. Это и позволяет осуществлять управляемый полёт на воздухоплавательном аппарате легче воздуха.
Совсем другие силы удерживают в полёте аппараты тяжелее воздуха – планеры, самолёты, вертолёты, автожиры, дельтапланы и другие типы летательных аппаратов. Собственно, с планеров всё и началось.
Человек очень давно стал смотреть в небо. Его внимание привлекали птицы, которые с видимой лёгкостью преодолевали огромные расстояния и, вообще, жили в трёхмерном мире, перемещаясь не только по горизонтали, но по вертикали. Механизм птичьего полёта долгое время вводил изобретателей в заблуждение – полёт всегда ассоциировался с машущими движениями крыльев. Птица в буквальном смысле опирается на воздух оперением крыльев. При махе вверх перья свободно пропускают воздух, а при махе вниз перья смыкаются, образуя воздухонепроницаемую плоскость. Поворот перьев и самих крыльев назад придают птице горизонтальную скорость. Гибкость крыльев и хвост позволяют свободно лавировать в воздухе – быстро менять направление полёта, взлетать и приземляться.
Первые модели летательных аппаратов тяжелей воздуха имитировали птичий полёт. Это был ошибочный путь, поскольку птицы специально приспособлены к полёту самой природой. Они имеют лёгкий и прочный трубчатый скелет (кости полые, похожи на трубки), очень мощную мускулатуру и сложное оперение. Для того, чтобы поднять человека в воздух мало одних крыльев, нужны и мускулы, способные преодолеть силу тяжести. Так вот, чтобы человек взлетел подобно птице, у него при обычном весе в 70 килограммов должна быть мускулатура слона…
В то же время, люди издавна запускали летающие модели, которые правильней было бы назвать парящими. Пример – бумажный голубь, изобретённый в незапамятные времена, и такой же древний воздушный змей. Потребовалось очень много времени, чтобы понять механизм полёта. На это ушли даже не столетия – тысячелетия. Но к середине XIX века правильные выводы всё же были сделаны. Полёт планера происходит благодаря подъёмной силе, возникающей набегающим на кромку крыла потоком воздуха. Плоское крыло как бы разрезает воздушный поток. И когда планер попадает в восходящие потоки тёплого воздуха, он подхватывается этим потоком и устремляется вверх. В нисходящем потоке холодного воздуха планер (бумажный голубь) снижается вместе с потоком.
Но первые большие модели либо летали очень плохо, либо не летали вовсе. Потребовались годы исследований в области нарождающейся аэродинамики, чтобы изобрести крыло, в котором подъёмная сила была бы способна поднять в воздух не только лёгкую бумажную модель, но и большой планер, да ещё и с пилотом. Одним из пионеров аэронавтики был немецкий инженер Отто Лилиенталь (годы жизни 1848—1896). Человек, так и не доживший до первых полётов самолётов, сделал для науки и практического воздухоплавания так много, что именно его следует назвать одним из «отцов-основателей» авиации.
С 1871 года и до конца жизни Лилиенталь скрупулёзно изучал полёт птиц. Первым результатом исследований стала книга «Полёт птиц, как основа авиации», выпущенная в 1889 году. Но Лилиенталь не ограничивался сухой теорией. Он построил множество планеров, которые сам же и испытывал. В общей сложности он совершил около 2000 полётов и, благодаря этим опасным экспериментам, разработал теорию строения самолётного крыла.
Эффект подъемной силы крыла возникает в потоке встречного воздуха. Изогнутый профиль крыла (верхняя поверхность выполнена дугообразной) создает разность давлений под и над крылом. Верхняя изогнутая поверхность обладает большим сопротивлением, а потому над создается разрежение. Нижняя ровная поверхность обладает меньшим сопротивлением, а потому под ней образуется давление воздуха. Крыло удерживается давлением воздуха до тех пор, пока оно находится в набегающем воздушном потоке. Как только движение воздуха относительно крыла прекратится, прекращается и действие подъемной силы. При этом величина подъемной силы зависит от площади крыла и от скорости воздушного потока (то есть от скорости движения самого крыла). При малых скоростях подъемной силы может оказаться недостаточно для удержания крыла в воздухе. Важным достижением Лилиенталя были расчеты равновесия планера. Исследователь работал над балансирными планерами и пришел к выводу, что центр тяжести всей конструкции должен приходится на центр крыла. Лилиенталем были разработаны летательные аппараты двух основных типов – монопланы, планеры с одноярусным крылом, и бипланы, планеры с двухъярусным крылом. Именно эти конструкции и были взяты за основу первыми авиастроителями.
Отто Лилиенталь всегда испытывал свои планеры сам. Он не мог рисковать жизнью других людей, понимая опасность этих экспериментов. Его яркая жизнь оборвалась 9 августа 1896 года. Во время полёта случилось несчастье – исследователь упал с 15-метровой высоты и разбился. Это была одна из первых жертв в истории мировой авиации. И совершенно невосполнимая потеря. Можно только представить, сколько бы успел сделать Лилиенталь, доживи он до начала эпохи самолётостроения…
Идея управляемого полёта на аппарате тяжелее воздуха не давала покоя многим талантливым людям. Примерно в те же годы свой самолёт построил русский морской офицер (а в конце жизни, с 1886 года, даже контр-адмирал) Александр Фёдорович Можайский (годы жизни 1825—1890). Наши историки почитают Можайского, как изобретателя первого в мире самолёта. Но это не совсем так – «воздухоплавательный снаряд» Можайского был построен в 1881 году, изобретатель получил на него патент (по бытовавшей тогда в России терминологии привилегию), но этот аппарат так никогда в воздух не поднялся. Он был слишком тяжёл и несовершенен с точки зрения аэродинамики. В качестве двигателя использовался паровой двигатель, не развивавший достаточной мощности. Поэтому назвать Можайского изобретателем самолёта можно по такому же праву, как Леонардо да Винчи изобретателем вертолёта и танка…
17 декабря 1903 года два американских энтузиаста воздухоплавания и изобретателя, братья Райт – Уилбер (годы жизни 1867—1912) и Орвилл (годы жизни 1871—1948) выкатили на поле неуклюжий аппарат собственной конструкции под гордым названием «Флайер». Дело было в США. Аппарат был выполнен по схеме биплана – два крыла были установлены одно над другим. 12-сильный 100-килограммовый двигатель внутреннего сгорания был установлен на нижнем крыле. Мотор развивал 1400 оборотов в минуту и посредством цепной передачи приводил во вращение два толкающих винта – пропеллера, установленных симметрично позади крыльев. Пропеллеры имели диаметр в 2,6 метра. Рядом с двигателем, на том же нижнем крыле, была закреплена гондола для пилота и тросовая система управления воздушными рулями.
Поскольку прототипов самолётов не существовало и существовать на тот момент не могло, все расчёты братья Райт провели самостоятельно. Сами же изготовили и двигатель, и пропеллеры. Первым же важным открытием стало осознание того, что пропеллер не может быть универсальным. Его надо рассчитывать специально под конкретный двигатель. Кстати, а почему пропеллеры имели такой большой диаметр? Причины две. Первая – двигатель был низкооборотным и относительно слабосильным, поэтому конструкторы решили оснастить его большими винтами, чтобы лучше реализовать мощность мотора. И вторая – Райт жили в Америке, где использовалась английская система мер. 2,6 метра – это сотня дюймов.
Крыло «Флайера» было крайне примитивным. Тканевая обшивка натягивалась на каркас. В боковом разрезе крыло представляло собой пологую дугу, нижняя часть несущей плоскости была открытой. Но тогда ещё не существовало элементарных понятий аэродинамики и рассчитать более эффективную конструкцию крыла Райт попросту не могли.
У первого самолёта не было никакого шасси. На земле «Флайер» стоял на паре деревянных брусьев. К брусьям крепилась двухколёсная тележка, которая двигалась по узкому деревянному настилу – рельсу. А в движение её приводили помощники конструкторов, которые тянули тележку при помощи верёвки, перекинутой через колесо блока.
Первый же полёт был успешным – самолёт пролетел 36,6 метра и продержался в воздухе 12 секунд. Конечно, сегодня этот результат мы бы назвали, скорее не полётом, а прыжком. Но в тот день, 17 декабря 1903 года, Райты ещё трижды поднимали «Флайер» в воздух, увеличив дальность полёта до 260 метров, а длительность до 59 секунд. На этом полёты «Флайера» и завершились. Следующая модель самолёта братья назвали «Флайер-2». И это уже был настоящий самолёт…
Спустя ровно 100 лет Америка решила отметить первый полёт «Флайера» реконструкцией этого великого события. Была построена точная копия первого в мире самолёта. Были возведены и деревянный рельс и разгонная тележка. Даже метеорологические условия были выбраны примерно такие же, какими они были 100 лет назад. При большом стечении народа мотор был запущен, ассистенты взялись за конец верёвки, напряглись и… самолёт не полетел. Ни с первой, ни со второй, ни с какой бы то ни было вообще попытки. «Флайер», точнее, его копия, оказался совершенно неработоспособным аппаратом. Позже эксперты заявили, что «Флайер» братьев Райт не мог летать в принципе, поскольку был неверно спроектирован. А Уилбер и Орвилл Райт этого не знали и – полетели. Такая вот любопытная история…
Спустя пять лет, в 1908 году, братья, воодушевлённые успешными испытаниями второго самолёта, основали первую авиастроительную компанию – во Франции. В следующем 1909 году такие же компании были основаны в США и в Германии. А в 1913 году появилась четвёртая компания братьев Райт – в Великобритании. Эпоха мировой авиации стартовала стремительно и энергично. Всего через 11 лет в воздухе Америки и Европы уже летали быстрые и вёрткие военные самолёты. И это были далеко не громоздкие «этажерки», вроде «Флайера».
Как это обычно и случается, толчком к развитию новой технологии стала война. Неповоротливые и уязвимые дирижабли, неуправляемые аэростаты тоже были грозным оружием. Но самолёты легко расправлялись и с теми, и с другими. А вскоре появился новый вид оружия – бомбардировщики, которые без помощи артиллерии, точно и без потерь могли уничтожать наземные цели противника.
К середине Первой мировой войны в воздухе развернулась настоящая воздушная война. Асы одной стороны сталкивались с асами другой воюющей стороны. Это было время «воздушных рыцарей», создавших свой кодекс ведения воздушного боя. И главным их оружием были истребители – лёгкие трипланы, бипланы и монопланы (самолёты с тремя, двумя или одним рядом крыльев) с пулемётным вооружением, выпускающиеся ведущими авиастроительными компаниями Европы. Самолётостроение развивалось семимильными шагами. К концу войны в 1918 году в небе летали совсем другие самолёты, нежели четырьмя годами раньше.
Этот период самолётостроения можно называть «классическим». И самолёты того далёкого времени вовсе не сошли со сцены и не канули в лету. Как и старинные автомобили, они выпускаются до сих пор небольшими компаниями – копии, конечно. Особой популярностью пользуются маленькие бипланы и монопланы 30-х годов, которые сочетают черты «классической» конструкции самолёта – с открытой кабиной, поршневым бензиновым двигателем со звёздообразным расположением цилиндров и воздушным охлаждением – и современные материалы, дюралюминии и пластик. В США, где самолётный спорт наиболее распространён и множество небольших самолётов используется частными лицами в качестве личного транспорта, подобные «реплики» пользуются особой популярностью, наряду с общеизвестными «Сесснами» – рабочими лошадками неба, в которых легко угадываются те же классические черты самолётов первой трети ХХ века.
Глава 5
Электронная лампа – начало электроники
История великих изобретений – это, прежде всего, история жизни, поиска и упорства талантливых людей. Иногда на поиски истины уходят десятилетия, иногда – целая жизнь… На изобретение первого электронного прибора, вакуумного диода, английскому физику Джону Амброзу Флемингу (годы жизни 1949—1945) потребовалось двадцать лет. Два десятка лет труда, исследований, экспериментов и ошибок.
Изобретение электронной лампы связано с изобретением обычной осветительной лампы накаливания и именем одного из величайших изобретателей в истории Томаса Эдисона. Дело было в Англии, в лондонской компании Эдисона, где Флеминг работал «советником по электричеству». Сотрудники компании экспериментировали с различными материалами, пытаясь добиться приемлемой продолжительности работы ламп накаливания. В 1882 году Флеминг обратил внимание на то, что лампы, легко перегоравшие от малейшего сотрясения, меняют цвет стеклянной колбы. Когда лампа перегорала, колба покрывалась изнутри лёгким налётом материала нити. И только узкая U-образная полоска напротив перегоревшей нити оставалась чистой. Полоска эта в точности повторяла форму нити накаливания. Флеминг предположил, что в момент наибольшего накала нить испускала молекулы углерода или металла, в зависимости от того, из какого материала была изготовлена нить (эксперименты проводились с самыми разными материалами – конструкторы искали самый долговечный). В конце 1882 и начале 1883 годов учёный провёл ряд экспериментов, подтвердивших его гипотезу. В том же 1883 году этот феномен заметил и сам Эдисон, который работал в Америке. В результате этот процесс получил название «эффекта Эдисона», хотя мастер так и не смог найти ему внятного объяснения. В октябре 1884 года за «эффект Эдисона» взялся другой учёный – Вильям Прис. Он пришёл к тому же выводу, что и Флеминг – стекло колбы подвергалось бомбардировке молекулами углерода нити накаливания. Но констатацией факта дело и закончилось.
Спустя четыре года, в 1888 году, Флеминг работает со специальными лампами накаливания, в колбы которых вмонтирована металлическая пластинка. Эта пластинка должна была работать в качестве отражателя. Но Флеминг подключил к ней гальванометр и… заметил, что, при подключении к нити накаливания положительного электрода батареи питания на пластинке появляется электрический ток, то есть стрелка гальванометра отклоняется. Флеминг изменил полярность – подключил к нити накаливания отрицательный электрод батареи. Тока на пластинке нет. Учёный повторяет опыты и убеждается, что ток в лампе идёт только в одном направлении. Флеминг даёт название электродам лампы. Нить, к которой подключен отрицательный вывод батареи питания, он называет катодом, а принимающую заряды пластинку – анодом.
Прошло ещё несколько лет. Наступил ХХ век. Флеминг продолжал свои исследования в области электротехники, но из его головы не шла одна мысль – как, каким образом можно использовать удивительный «эффект Эдисона» на практике. Должно же быть ему хоть какое-то применение? И тут Флеминг, который был, как и многие учёные того времени, увлечён изобретением Маркони, подумал, что вакуумная лампа может использоваться как выпрямитель переменных токов, в том числе и применяемых в радио высокочастотных. Он решил попробовать лампу в качестве детектора волн в радиоприемнике Маркони, заменив ею капризный когерер (пробирку с металлическими опилками). Флеминг собрал две схемы – первая представляла собой колебательный контур с двумя лейденскими банками (источниками постоянного тока) в деревянных корпусах и с индукционной катушкой, вторая схема включала электронную лампу и гальванометр. Обе схемы были настроены на одинаковую частоту.
Здесь мы процитируем мемуары самого Джона Флеминга. «Было приблизительно 5 часов вечера, когда аппарат был закончен. Мне, конечно, очень хотелось проверить его в действии. В лаборатории мы установили две эти схемы на некотором расстоянии друг от друга, и я запустил колебания в основной цепи. К моему восхищению я увидел, что стрелка гальванометра показала стабильный постоянный ток. Я понял, что мы получили в этом специфическом виде электрической лампы решение проблемы выпрямления высокочастотных токов. „Недостающая деталь“ в радио была найдена и это была электрическая лампа! Я сразу понял, что металлическая пластина должна быть заменена металлическим цилиндром, закрывающим всю нить, чтобы „собрать“ все испускаемые электроны. У меня в наличии имелось множество угольных ламп накаливания с металлическими цилиндрами, и я начал использовать их в качестве высокочастотных выпрямителей для радиотелеграфной связи. Этот прибор я назвал колебательной лампой. Ей было сразу же найдено применение. Гальванометр заменили обычным телефоном. Замена, которая могла быть сделана в то время с учетом развития технологии, когда повсеместно использовались искровые системы связи. В таком виде моя лампа широко использовалась компанией Маркони в качестве датчика волн. 16 ноября 1904 года я подал заявку на патент в Великобритании».
Это был первый в мире электронный радиоприёмник. Свою лампу Флеминг назвал «аудионом», но общепринятое название – «диод», то есть лампа, состоящая из двух электродов – пришло позже, в 1907 году, когда американский изобретатель Ли де Форест (годы жизни 1873—1961) усовершенствовал прибор Флеминга. Он дополнил электронную лампу ещё одним электродом, расположив его между катодом и анодом. Этот третий электрод был управляющим. При подаче на него положительного напряжения, эмиссия электронов резко увеличивалась, а ток на аноде возрастал. Таким образом, новая лампа, названная по числу электродов «триодом», могла служить не только как детектор радиоволн, но и как усилитель электрических сигналов. Универсальный детектор-усилитель получил название «аудион Фореста», но позже это название было забыто.
Изобретение триода подстегнуло других конструкторов. В 1911 году трое немецких инженеров, Либен, Рейкс и Штраус, сконструировали триод с промежуточным электродом в виде сетки из перфорированного листа алюминия. Сетка увеличивала площадь управляющего электрода и усиливала эмиссию. А в 1913 году немец А. Мейснер (годы жизни 1883—1958) открыл способность триода генерировать и усиливать электромагнитные колебания. Он построил на основе триода первый ламповый радиопередатчик, который использовал для передачи телеграфных и телефонных сигналов.
У электронных вакуумных ламп было множество недостатков. Стеклянная лампа хрупка и плохо переносит вибрации. Поэтому электронные приборы того времени быстро выходили из строя. Для промышленных и военных применений приходилось выпускать лампы особой конструкции с повышенной прочностью деталей. Катод, выполненный в виде нити накала, потреблял большое количество электроэнергии. Даже самые небольшие радиостанции и радиоприёмники приходилось оснащать либо сетевыми понижающими трансформаторами, либо громоздкими и ёмкими батареями постоянного тока. Поэтому портативной в полном смысле электронной техники на вакуумных лампах создано так и не было (кроме, конечно, специальных «шпионских» моделей радиостанций, приёмников, а потом и магнитофонов). Наконец, сам процесс термоэлектронной эмиссии, переноса вещества электрода, истощает катод. Лампа не может служить долгое время, это не заложено в её конструкцию.
Но обратимся к практике. В наше «цифровое время» остаётся достаточно энтузиастов, которые старинный и безнадёжно аналоговый немецкий радиоприёмник не променяют ни на какой суперсовременный полупроводниковый Hi-end. Эти люди не без основания утверждают (и мы об этом обязательно ещё поговорим), что звук старого лампового приёмника, выпущенного в Германии в 30-е годы, не может сравниться со звучанием самой современной акустической системы – настолько он хорош, глубок, мягок. В приёмниках этих любителей хорошего «лампового» звука работают триоды (диоды, пентоды), выпущенные 50, 60 и даже 70 лет назад! Эти старинные лампы работают и будут работать ещё очень долго. Более того, существует целый рынок старых радиоламп – исправных, конечно. Лампы выпуска 30-40-х годов пользуются особым спросом, хотя большинство предложений относятся к 50-60-м годам прошлого века.
Качественно выполненная вакуумная лампа – прибор очень долговечный и надёжный. Электронные лампы выпускаются и сегодня, правда, в небольших количествах. Они применяются в высококачественной (так называемой «аудиофильской») аппаратуре звуковоспроизведения, как, скажем, проигрыватели виниловых грампластинок. Кроме того, специальные электронные лампы выдерживают очень большие токи и обладают впечатляющим коэффициентом усиления. Эти лампы применяются в выходных контурах радиопередатчиков высокой мощности, например, в усилителях широковещательных радиостанций и, к слову, в любительской радиопередающей аппаратуре.
Электронная лампа давно уступила место полупроводниковым приборам. Но в некоторых областях она успешно применяется до сих пор. Другое дело, что такого широкого распространения, как в первой половине минувшего века, «ламповая электроника» уже никогда не получит. Это замечательная технология, но эпоха её безраздельного господства осталась в далёком прошлом.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.