Электронная библиотека » Питер Браун » » онлайн чтение - страница 8


  • Текст добавлен: 14 ноября 2013, 07:27


Автор книги: Питер Браун


Жанр: Зарубежная образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 18 страниц)

Шрифт:
- 100% +

В противовес идеям Хокинса Хойл предположил, что круг Обри представлял собой саму эклиптику (воображаемый круг вокруг небес, по которому передвигались Солнце и планеты и в углу которой (5 1/4°) Луна вращалась вокруг Земли). Это была довольно новаторская идея, вполне в духе порой нестандартного подхода Хойла к космологическим проблемам. Но как такая модель действовала на практике?

На рис. 19, где схематически изображен круг ям Обри, Хойл взял за основу период полной Луны. Первая точка в Овне (ϒ) находится в яме Обри 14; S представляет положение Солнца; угол θ указывает солнечную долготу; М обозначает позицию Луны, спроектированную на эклиптике; N1 – нисходящую нодальную точку; С, в центре, – положение наблюдателя.

С течением времени точки S, M, N и N1 двигаются в указанном направлении (рис. 19). Отсюда следует, что S (Солнце) делает один оборот за год, но М (Луна) совершает один оборот в течение лунного месяца. Когда Луна расположена в N (восходящая нодальная точка), солнечное затмение происходит, когда Солнце находится грубо в пределах ± 15° N, а лунное затмение случается, если Солнце находится в пределах ± 10° N1. Другими словами, если Луна находится в N1, затмение Солнца произойдет, если Солнце расположено в пределах ± 15° от совпадения с Луной, а лунное затмение – если оно расположено грубо в пределах ± 10° с противоположной стороны от линии узловых точек орбиты Луны.

Идея Хойла заключалась в том, чтобы представить S, M, N и N1 маркерами, и если оператор знает, как передвигать эти маркеры, чтобы они отражали фактическое движение Солнца и Луны с разумной точностью, то он сможет предсказать почти каждое затмение. Он сможет это сделать, несмотря на то что лишь половина из них будет видна из точки нахождения наблюдателя.

Хойл считал, что это значительно улучшает предложенную Хокинсом систему предсказания широко разбросанных по времени затмений.

И Хойл предложил следующий modus operandi для передвижения маркеров:


1. Перемещать S против часовой стрелки через две ямы Обри каждые тринадцать дней.

2. Перемещать М против часовой стрелки через две ямы Обри каждый день.

3. Перемещать N и N1 по часовой стрелке через три ямы каждый день.


Рис. 19. Метод Хойла для предсказания затмений по ямам Обри


Хойл считал разумным предположить, что строители Стоунхенджа обладали знаниями о приблизительном количестве дней в году, количестве дней в месяце и периоде регрессии нодальных точек (18,6 года). Последний параметр следует из наблюдения за азимутом, по которому Луна восходит над горизонтом (колебания Луны).

Хойл отмечал, что когда периоды S, М и N известны с достаточной точностью, это предоставляет примерное «предписание», позволяющее наблюдателю ориентировки Стоунхенджа заранее предопределить, какими будут позиции S, М и N и, таким образом, предсказать любое предстоящее событие. Но все это будет работать лишь ограниченный период времени, поскольку заложенные в это предписание неточности заставят положения маркеров все больше отличаться от реальных позиций (в эклиптике) Луны, Солнца и восходящей узловой точки пересечения их орбит.

Первым станет отклоняться лунный маркер, так как предписание предусматривает лунный орбитальный период в 28 дней (вместо 27,32 дня). Вместе с тем корректировка лунного маркера (М) проводится дважды в месяц с помощью простого (практического) средства – выстраивания линии М против S во время полной Луны и путем ее совмещения с S в новолуние. Предписание для S дает орбитальный период в 364 дня, что, по мнению Хойла, было довольно близко к фактическому истинному периоду, так как позицию S можно скорректировать в четырех случаях каждый год. Это можно сделать методом практического наблюдения за ориентировками Стоунхенджа на фактическое летнее и зимнее солнцестояние, а также на равноденствие.

Хойл подчеркивал, что Стоунхендж построен также для определения момента, когда восходящая нодальная точка (N) становится в ϒ. Поместив N в ϒ, когда Луна восходит в самой дальней северной точке своей орбиты, калибровку маркера N можно делать раз в каждые 18,61 года. Поскольку погрешность одного оборота небольшая, маркер N, если изначально установлен правильно, в конце первого цикла отклонится только на 1° от истинной позиции. Тогда, если толерантность эклиптических предсказаний составляет примерно 5° по отношению к N в каждом цикле, это позволит предсказателю продолжать свою работу бесконечно без ощутимой неточности.

Вместе с тем Хойл признавал, что на практике минимальный азимут восхода Луны определить трудно и просто невозможно определить с помощью метода, который он впервые описал как модель работы ям Обри. Хойл продемонстрировал это графически путем пологого склона, задействованного в изменениях колебания минимального азимута (рис. 20). В этом месте Хойл выдвинул интересную идею о расположении маркеров в ориентировках Стоунхенджа – ям для столбов А1, 2, 3, 4, которые, по его мнению, имели регулярное и явно точное расположение. То, что Хокинс в своих теориях предположительно считал ошибками в ориентировках маркеров азимута, по мнению Хойла, было преднамеренным усилием заполучить более точные северные и южные экстремальные величины азимутов, когда Солнце и Луна кажутся «неподвижными» (солнцестояния). В девяти из двенадцати значений, которые Хокинс считал ошибочными (поскольку он предполагал, что строители Стоунхенджа намеревались наблюдать точные экстремальные значения азимута), Хойл считал возможным доказать, что такие явные ошибки можно исключить, поскольку строители не намеревались отмечать азимут точно из-за связанных с этим практических трудностей. Одним из особых случаев была ориентировка от центра к Пяточному камню, где ошибка азимута равнялась нулю. Это показалось Хойлу исключением из общего правила, и это могло быть связано с эстетическими и ритуальными действиями, когда строители придерживались направления на восход Солнца во время летнего солнцестояния. Другим необычным примером явилась ориентировка 91 – 94, которую Хойл опять же (но несколько произвольно) рассматривал как случай, где истинная ориентировка имела решающее значение.

Хойл также исследовал и другие методы, с помощью которых можно скорректировать маркер N. Один из таких методов был связан с ситуацией, когда полная Луна точно совпадает с равноденствием. Свидетельства того, что этот метод пытались использовать жрецы-астрономы Стоунхенджа, кроются в нескольких ориентировках. Однако Хойл отметил, что этот метод практически неработоспособен из-за неизбежных ошибок при определении путем практического наблюдения точного момента полной Луны, что может привести к большим ошибкам в позиционировании N, а также из-за низкого наклона орбиты Луны. Хойл рассуждал так: этот метод, если его когда-либо пытались использовать в Стоунхендже, мог бы вызвать фурор в те дни, ввиду значительной эмфазы, которую он возлагает на полную Луну и равноденствие, а это в действительности могло серьезно сказаться на традиционном определении даты Пасхи.

Хойл доказал, что калибровку затмения можно успешно провести почти полностью с помощью нумерологии. На деле S и N двигаются в противоположных направлениях. Солнце проходит через N за 346,6 дня, девятнадцать таких оборотов равны 65 858 дням, в то время как 223 лунации равны 65 853 дням. Поэтому после 223 лунаций маркер N должен соотноситься с S почти так же, как и прежде. Итак, если правильное отношение N к S известно наблюдателю в любое время, то N можно переустанавливать каждые 223 лунации (или раз в 18 лет и 11 дней). Эта почти полная сопоставимость достаточно точна для проведения удовлетворительных прогнозов в течение 500 лет и более. При этом S нужно установить как прежде, но преимущество заключается в том, что в этом случае N не требует никакого практического наблюдения для контроля за этой величиной, хотя без наблюдения коррекцию изначальной конфигурации невозможно определить, если эту проблему не рассматривать в обратном порядке. Хойл считал, что такую калибровку можно проработать методом проб и ошибок и предполагал, что именно такой метод, возможно, использовался для определения халдейского Сароса. И все же хоть и неохотно, но он признавал отсутствие свидетельств тому, что этот метод использовался в Стоунхендже.

Завершая изложение своих идей, Хойл приводит некоторые философские рассуждения, чтобы добавить несколько гуманистических оттенков к своей абстрактной цифровой аргументации. Основываясь на своих собственных исследованиях, он считал, что в связи с проблемой Стоунхенджа перед нами предстают несколько культурных особенностей. Предположив, что Стоунхендж придал Солнцу и Луне некоторые божественные черты, он задает вопрос: а что же относительно N? Во время затмения S и M исчезают, и тогда N может стать еще более могущественным богом. Но N не виден, и тогда Хойл задается вопросом: может ли это быть зарождением концепции невидимого и всемогущего бога, бога Исаии? Хойл рассуждает дальше: не могут ли М, N и S служить предпосылкой возникновения доктрины Святой Троицы: три в одном и один в трех лицах? По его мнению, было бы достаточно ироничным, если бы сами корни нашей современной культуры определялись божественными качествами узловой точки на лунной орбите. Однако Хойл, пересказывая свои собственные идеи, казалось, забыл про некоторые моменты из истории астрономии. Что бы произошло, если бы, как это отмечали некоторые комментаторы, древние китайцы не использовали эту же самую идею в своей концепции драконического месяца?


Рис. 20. График, показывающий минимальный азимут изменений орбиты Луны в Стоунхендже (по Хойлу, 1966)


Глава VII
СТОУНХЕНДЖ: РАСХОЖДЕНИЯ ВО ВЗГЛЯДАХ

Изложенные в журнале Nature идеи Фрэда Хойла привлекли к себе почти такое же общественное внимание, как и оригинальные работы Хокинса. В передовой статье в том же номере журнала новые идеи Хойла назывались «захватывающими», и не только из-за их оригинальности, но и из-за чистой практичности.

У каждого астронома, будь то любитель, наблюдающий в телескоп на своем заднем дворе, либо профессионал, использующий гигантский 200-дюймовый телескоп «Паломар», идеи Хойла действительно пробудили прагматический подход. В весьма убедительной манере он продемонстрировал, что Стоунхендж мог функционировать как неолитическая обсерватория, и эту идею во многом поддержала работа Ньюхэма «Стоунхендж: неолитическая обсерватория», которая была опубликована вслед за материалом Хойла в том же номере Nature. Идеи Хойла и Ньюхэма можно было также рассматривать как углубленное развитие ранних упрощенных лунных нотаций Маршака. Вполне вероятно, что они в течение долгого периода давали людям верхнего палеолита и мезолита возможность разглядеть движения Луны, а затем во времена неолита позволили строителям мегалита раскрыть наконец секреты эклиптического цикла Солнца и Луны. Таким образом, Стоунхендж мог представлять собой синтез накопленных за многие тысячи лет астрономических знаний таким же символическим путем, как 200-дюймовый стеклянный гигант «Паломар» делает это сегодня...

Хотя теории Хойла в некоторой степени потеснили ранние теории Хокинса, они, похоже, совпадали с основными идеями предсказания затмений. Используя более прагматический подход Хойла, современные астрономы сами могли воспользоваться методами жрецов-астрономов Стоунхенджа и в ходе этой работы признать эстетику связанных с этим цифровых методов. Но не все соглашались с тем, что эти идеи действительно были прагматическими, поскольку концепция нодальных камней вносила элемент абстракции в практическую теорию наблюдения и приписывала жрецам-астрономам Стоунхенджа интеллектуальные способности, сравнимые с возможностями теоретиков XX века. Но почему бы и нет?

В своей редакционной статье журнал Nature подчеркивал, что именно разумность идей, которые Хойл приписывал дизайнерам Стоунхенджа, была той частью его работы, которую труднее всего принять. В статье справедливо ставился вопрос, могли ли люди, которые еще не построили себе прочных домов, быть достаточно разумными, чтобы создать такой сложный инструмент, как Стоунхендж, как это утверждали астрономы. Такое же сомнение довольно часто высказывали и археологи.

Вместе с тем в статье также отмечался тот момент, что археологи могут, как правило, описывать только земные вещи из нижнего уровня сложности любого общества, но если бы археологи знали больше о жизни Британии примерно в –2500, то, может быть, тогда они смогли бы доказать, что идеи Хойла неправдоподобны.

Отсутствие каких-либо других археологических свидетельств в поддержку математических способностей людей Стоунхенджа не является убедительным доказательством того, что они не могли предсказывать затмения. В действительности, по моему собственному мнению, Хойл, занявшись проблемой Стоунхенджа, прочно опирался на методы, практикуемые тамильскими астрономами XIX века в Южной Индии, которые, несмотря на отсутствие глубоких математических знаний, могли предсказывать затмения прагматическим путем, манипулируя группами раковин, разложенными перед ними на земле.

Как Хокинс, так и Хойл признавали, что существует несколько возможных методов использования кругов Обри из 56 ям. Позднее Хокинс опубликовал отчет об упрощенном методе, в котором один камень передвигался на три ямы каждый год. При использовании такого метода круг ям Обри действовал как аналоговый компьютер, точно прослеживающий регрессию узловых точек лунной орбиты.

Собственная работа Ньюхэма в том же номере журнала Nature в значительной степени была оттеснена на второй план захватывающими идеями Хойла. Вместе с тем у Ньюхэма было несколько идей, соответствующих теории Хойла: оба старались показать, как ямы для столбов, сгруппированные в северной части монумента и не учтенные в ранних идеях Хокинса, каким-то образом были связаны с экспериментами мегалитических строителей по получению точных измерений Стоунхенджа.

Ньюхэм подверг сомнению значение так называемого 56-летнего эклиптического цикла Хокинса и использование ям Обри в качестве компьютера. Хотя он и не отбрасывал эту идею полностью, но подчеркивал, что, с его точки зрения, некоторые черты монумента бесспорно имели некое астрономическое значение. По его мнению, ямы для столбов, особенно сгруппированные вокруг входа на дамбу, явно представляли собой значимые элементы ориентировок. Похоже, эти ямы радиировали из центра круга Обри, располагались в пределах 10° по дуге к северу от Пяточного камня или линии солнцестояния и выстраивались грубо в шесть рядов, пересекая линию входа на дамбу.

Ньюхэм предполагал, что достаточно надежное значение колебаний азимута Луны можно найти, наблюдая за временным маркером, скажем деревянным столбом, и выстраивая линию каждый раз, когда зимой полная Луна появлялась над горизонтом каждый год. И действительно, ямы для столбов явно указывали на то, что эта процедура проводилась в течение многих лет, охватывая несколько 18,61-годовых нодальных циклов. Это, по мнению Ньюхэма, был достаточный срок, чтобы открыть 19-летнюю фазу, или метонический цикл, и, возможно, примерный предполагаемый 56-летний эклиптический цикл (3×18,61 = 55,83). Здесь Ньюхэм, подобно Хокинсу и Хойлу, также вводит своих читателей в заблуждение предположительной корреляцией между 19-летним метоническим (фаза Луны) циклом, 18,61-летним нодальным циклом и юлианским 19-летним эклиптическим циклом – этот момент уже упоминался в связи с идеями Хокинса. Но это не важно, так как существенно не нарушает его линию аргументации.

Сложным моментом работы Ньюхэма явился анализ азимутов ям для столбов у входа на дамбу, которые он сопоставил с рассчитанными на компьютере зимними восходами Луны в период с –2000 до –1000. Он изложил полученные результаты графически с помощью диаграммы, которая, по его мнению, показывала исключительно тесную взаимосвязь между последовательностью восходов и схемой расположения ям. С точки зрения Ньюхэма, полученная в результате корреляция выходила за пределы того, что можно считать простым совпадением.


Ньюхэм считал, что позиции и пространственное расположение четырех больших ям для столбов возле Пяточного камня указывают на их взаимосвязь с ямами у входа на дамбу, особенно в сочетании с камнем D и Пяточным камнем. Последовательность ям для столбов А явно указывает на ямы, ранее удерживавшие «столбы» гораздо больших размеров, чем столбы у входа на дамбу, и, по предположению Ньюхэма, имевшие более постоянный характер. Если к ним добавить камень В, то они составят семь маркеров, которые могут функционировать в качестве грубого наблюдательного «верньера». Сопоставленные в обратном направлении с заходом Солнца, они предоставляют способ определения времени возможного затмения Луны.

Ньюхэм считал, что хотя 56-летний цикл был предположительным, все же имелись основания считать, что строители Стоунхенджа обладали возможностью определять время вероятных затмений.

Подводя итог своим идеям, он делал вывод, что есть все основания предполагать наличие «явных лунных влияний» в Стоунхендже. По его мнению: а) маленький камень 11 (рис. 7, 16) в большом круге сарсенов был частью схемы строителей (и представлял собой отсчет половины дня), и таким образом круг сарсенов означал 29,5 дня лунного месяца; б) двойной круг или спираль ям Y и Z означал 59 дней двух лунных месяцев (двойную лунацию); существует также большая вероятность того, что комплекс из 59 голубых камней внутри круга сарсенов представлял еще один (более приемлемый) способ презентации той же самой идеи; в) на 19-летнюю фазу, или метонический цикл, указывают 19 голубых камней, расположенных внутри подковы трилитов. Если взвесить все эти свидетельства, они напрямую укажут на существование «исследовательского» центра, где люди мегалита наблюдали за Солнцем и Луной.

Помимо этого, самостоятельно Ньюхэм и французский архитектор Ж. Шаррье, который также провел исследование Стоунхенджа, отмечали, что «прямоугольник», сформированный четырьмя базовыми камнями, почти соответствует широте (в пределах нескольких километров), необходимой для того, чтобы азимуты Солнца и Луны разошлись на 90° в их экстремальных склонениях. Отсюда следует, что, по всей вероятности, широта Стоунхенджа (51,2°) была преднамеренно выбрана его строителями. Таким образом, местонахождение монумента было продиктовано астрономическими требованиями, а не наличием камней или другими факторами, подсказавшими выбор равнины Солсбери. Свидетельства, предоставленные геометрией четырех базовых камней, вероятно, являются наиболее убедительными из всех в поддержку астрономических идей Стоунхенджа.


В сентябре 1966 года долгожданная критика Аткинсоном книги Хокинса наконец появилась на страницах Antiquity под провокационным названием «Сияние Луны в Стоунхендже». Он уже критиковал эту работу в Nature в обзоре «Заблудившийся дешифратор», где использовал такие известные ныне эпитеты, как «тенденциозная, самонадеянная и неубедительная». В редакционной статье того же издания Antiquity Глин Даниэль с нескрываемым злорадством комментирует: «...двусмысленность самого названия не ускользнула ни от кого, и прежде всего от самого профессора Хокинса... У нас всех нет никакого желания выслушивать человека, который не потрудился прислушаться к мнению археологов и понять, что они хотели сказать...»

В преамбуле к этой обзорной статье Аткинсона говорилось, что подзаголовком к ней могло бы стать: «Археолог экзаменует астронома». Фактически стало ясно, что некоторые археологи теперь будут воспринимать Хокинса как полностью материализованную persona non grata реинкарнированного Локьера...

Аткинсон начал свое 2000-словное рассуждение с краткого обзора астрономических споров. Затем он мимоходом коснулся самонадеянности предположений Хокинса, так как все неукоснительно свидетельствовало о том, что «ни профессор Хокинс, ни его соратник Джон Б. Вайт (помогавший Хокинсу писать эту книгу) не являлись археологами». Аткинсон подчеркнул для своих читателей, что использование компьютера ни в коей мере не повышало ценности (или чего-либо другого) полученных результатов. Это было очень веским замечанием, поскольку, как бы это ни было удивительно, некоторые рядовые читатели книги Хокинса считали, что именно использование компьютера при изучении Стоунхенджа придало его идеям такой вес – простодушная точка зрения, широко распространенная и поныне.

Аткинсон предполагал, что планы Стоунхенджа, которыми пользовался Хокинс, не соответствовали поставленной задаче, а тот, о котором он говорил, был «ныне устаревшим планом министерства общественных работ». Он сетовал на то, что Хокинс произвольно принимал как значимую любую линию наблюдения в пределах ± 2° от направления азимута на восход. Это было совершенно нереалистично и давало погрешность примерно в 24 раза большую, чем ошибки, случающиеся в практических экспериментах по выстраиванию линии через пару шестов. В качестве иллюстрации того, какой такая ошибка может быть на практике, Аткинсон приводит следующий пример: что касается позиции Пяточного камня, то вполне допустимо переместить его на 3,6 м (12 футов) на северо-восток, и это не повлияет на ориентировку на восход Солнца во время летнего солнцестояния.

Утверждение о том, что, если исправить наклон Пяточного камня, это повлияет на точку восхода (что часто подчеркивал Хокинс), ведет к заблуждению. При этом не учитывались последствия 35-векового износа меловой поверхности камня, в результате чего линия наблюдения за горизонтом понизилась примерно на 45 см (18 дюймов). В контексте ориентировок Стоунхенджа I статистическая возможность, использованная Хокинсом, была ошибочной. Восемь ориентировок Стоунхенджа III также равнозначно были недопустимы...

В своем комментарии по поводу теории ям Обри Аткинсон не сомневался, что 56 ям могли использоваться именно так, как об этом говорил Хокинс, но использовались ли они в действительности таким образом – это уже другой вопрос. Он критиковал версию использования ям F, G и H, считая, что они сформировались «естественным» образом, например остались после деревьев. По его мнению, замечания Хокинса во введении к его книге были неудачными, когда тот заявлял: «Если я могу заметить какую-либо ориентировку, общую связь либо использование различных частей Стоунхенджа, это значит, что эти факты были известны и его строителям. Такая гипотеза привела меня ко многим невероятным шагам....»

В ретроспективе Хокинс не раз мог пожалеть о таком неудачном выборе фразеологии, которая предоставила в руки его критиков перманентное и существенное оружие.

Вместе с тем отношение Аткинсона к работе Хокинса не было полностью негативным, несмотря на «большие недостатки этой книги». Он признает, что она содержит некоторые интересные предположения. Идея о том, что полная Луна восходит над Пяточным камнем во время зимнего солнцестояния, дает «наилучшее объяснение Пяточного камня из всех, до сих пор предоставленных... если это будет доказано...». Он согласился с предположением, что широта Стоунхенджа выбрана не случайно (как ранее отмечали Ньюхэм и Шаррье). Такой выбор кажется преднамеренным, поскольку экстремальные северные и южные точки восходов и заходов Солнца и Луны во время солнцестояний располагались примерно под прямым углом друг к другу. Это соответствовало почти прямоугольному положению четырех базовых камней.

В заключение Аткинсон читает наставления Хокинсу, почти в стиле мудрого старого учителя и талантливого, но торопливого ученика, считая, что тот превзошел самого себя благодаря «его несомненному энтузиазму в изучении этого вопроса». Вдобавок ко всему Аткинсон считал, что Хокинс достоин благодарности за то, что привлек интерес историков к раннему развитию науки наблюдения и метрологии. В последнем абзаце он называет исследования профессора Тома в той же области как пример «скрупулезной работы», что свидетельствовало о принятии Аткинсоном и другими археологами теории Тома о мегалитических строениях (см. ниже).

Журнал Antiquity, который начиная со своего первого номера в 1927 году внимательно следил за дебатами вокруг Стоунхенджа, предложил Хойлу написать отзыв о теории Хокинса в свете его собственных идей.

В статье, озаглавленной «Споры о Стоунхендже», Хойл задает вопрос: «Как повели бы себя мы, если бы приземлились на планете в аналогичной ситуации и имели бы при себе лишь грубые веревки, камни и деревянные столбы?»

По мнению Хойла, человек подумал бы прежде всего об использовании очевидных движений Солнца для измерения времени, а также о методах определения ориентировки юг – север. Хойл считал, что строителей Стоунхенджа не интересовало направление север – юг, что, по его мнению, также указывало на то, что 24-часовое вращение Солнца – дневной оборот – совершенно не воспринималось его строителями как средство решения проблемы определения сезонов. Передвижение же Солнца вдоль линии горизонта вскоре было бы признано весьма значимым.

По предположению Хойла, используя только грубый материал, мы могли бы измерять углы с точностью до ± 0,3°, если целевая точка визирования располагалась бы примерно в 60 м (200 футах) от базисной. Хойл провел эксперимент по определению сезонов, считая, что точность в ± 0,3° достаточна для определения даты в году в пределах дня, за исключением близких к точкам солнцестояния значений. Затем, уточнив геометрию, связанную с направлениями на восход и заход Солнца, Хойл обрушил на читателей Antiquity поток рассуждений, разобраться в которых было трудно для многих, так как для этого требовались знания сферической тригонометрии. Хойл также объяснил методы определения направлений на восход и заход Луны. И опять, несмотря на то что здесь требовались знания лишь элементарной тригонометрии, для многих это оказалось трудной задачей, как на то позже недвусмысленно намекала Жакетта Хокс (см. ниже).

Возвращаясь к проблеме Стоунхенджа, Хойл рассчитал, что наклон линии горизонта над истинной плоскостью горизонта составлял 0,6°. Он предполагал, что восходы Солнца и Луны считаются, когда полная сфера находится на линии горизонта, и принял идею Хокинса о том, что восходы Солнца и Луны происходили в момент, когда эти тела располагались касательно к горизонту. Вдобавок нужно было рассчитать негативную коррекцию в 30' для эффектов атмосферной рефракции, что оказывало значительное воздействие на момент восхода Солнца или Луны, потому что, когда Солнце или Луна уже видны, фактически они еще находятся ниже горизонта на 14' (взяв диаметр в 32' для среднего противолежащего угла Солнца или Луны). Учитывая высоту небесного тела над горизонтом в 0,6°, мы получаем превышение в 22'. Это и есть значение ђ, которое Хойл использовал в своих таблицах. Ньюхэм фактически измерил значение истинного горизонта в Стоунхендже, а предположения Хойла впоследствии потребовали коррекций Ньюхэма.

Суть тезиса Хойла сводилась к тому, насколько значимы ориентировки, определенные Хокинсом. Их уже достаточно критиковал Аткинсон. Хойл сообщил своим читателям, что он тоже с подозрением относился к статистическим аргументам, основанным на данных, содержащих элемент субъективного суждения: «Если кто-то свободно трактует сами данные, он также может интерпретировать и окончательные результаты».

Учитывая точность примерно в ± 0,3°, получаемую с помощью современных грубых методов наблюдения, Хойл размышлял, как сравнить их с таблицей ориентировок Хокинса. Чтобы продемонстрировать, как это происходит, Хойл взял таблицы ориентировок Хокинса и вставил в них рядом с азимутами, измеренными Хокинсом, соответствующие азимуты, рассчитанные с учетом различных коррекций (используя ђ = 0,5°).

При этом Хойл допускал наличие малых вариаций ђ от одного азимута к другому, поэтому следовало ожидать различий порядка ± 0,5°.

Расхождения между измеренными и рассчитанными азимутами показали, что они выходят за рамки предполагаемой ошибки в ± 0,3°. Ошибки для Стоунхенджа III (круги сарсенов и трилитов) были еще больше. В двух случаях ошибка была довольно большой и превышала 5°. Здесь ожидалось несколько более крупных ошибок, связанных с трудностями выстроения камней в точные линии, но в целом анализ Хойла, похоже, выдерживает прежнюю критику Аткинсона.

Оставив на время вопрос о несоответствиях, Хойл счел теперь необходимым поставить вопрос: что же строители старались создать? Или, скорее, что бы сделали мы сами? Попытались бы мы фиксировать линии наблюдения точно к расчетным величинам? По мнению Хойла, это зависело от мотивировки. Если мотив предполагал получение полезной информации, датирование сезонов и предсказание затмений, то было бы неразумно выстраивать ориентировки точно на экстремальные направления орбиты, ввиду явного «стояния» Луны и Солнца в экстремальных позициях (солнцестояние). Хойл свел эту проблему к попыткам оценить на глаз самую нижнюю точку довольно плоской равнины. Теперь он достиг цели, поставленной в своей ранней работе, опубликованной в Nature (см. выше): более практично сдвинуть линию наблюдения на градус или два внутрь экстремальных позиций с тем, чтобы Солнце и Луну можно было видеть до и непосредственно после экстремального азимута. Экстремальный азимут лучше всего определять на полпути между этими двумя наблюдениями.

Хойл доказал, что эти несоответствия можно объяснить, предположив, что на самом деле это был modus operandi. С его точки зрения, это убедительно продемонстрировал тот факт, что в большинстве случаев его предположение было правильным, так как «ошибка» имела тот же знак, а это нельзя объяснить эффектом простого совпадения, все равно что при двадцати трех подбрасываниях монеты выпали бы девятнадцать решек. Если сделать это наудачу, то шансы будут почти равными. Статистически шанс получить девятнадцать из двадцати трех равнялся 1 к 1000.

Результаты всего этого, по мнению Хойла, были далекоидущими. Помимо того что Стоунхендж разрабатывался и строился как астрономическое устройство, последствия этой идеи требовали от его создателей определенного уровня интеллектуального развития, намного выше признанного уровня сообщества примитивных земледельцев. «Такую работу должны были выполнять истинные ньютоны или эйнштейны, но почему бы и нет?» – пишет Хойл.

Касаясь вопроса об определении равноденствий и затмений, он предположил, что характерные геометрические трудности определения времени равноденствий объясняли, почему линии наблюдения за равноденствиями, очевидно, не являлись значимой частью структур Стоунхенджа. Касаясь затмений, он ссылался на свою статью в Nature и повторял свои собственные идеи о том, что круг Обри служил неким инструментом для «оценки углов в пределах примерно одного градуса», а не счетным устройством, как считал Хокинс. Аткинсон спрашивал его: зачем для этого нужен круг с таким большим радиусом, когда можно было бы обойтись шаблонной деревянной доской с колышками, по которой можно перемещать камни? Хойлу самому было интересно знать, насколько большой должна была быть такая доска, чтобы добиться такой же точности, как и в круге Обри. Вместе с тем с точки зрения использования данный шаблон был слишком хрупким инструментом, особенно в промежутке времени, составлявшем двадцать лет. Использование нескольких досок могло бы привести к путанице. Более точной системой могло бы стать использование больших тяжелых камней, которые невозможно сдвинуть с места случайным толчком.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации