Текст книги "Теории всего на свете"
Автор книги: Ричард Докинз
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 24 (всего у книги 29 страниц)
Природа умнее нас
Теренс Дж. Сейновски
Специалист по вычислительной нейрофизиологии, профессор Института Солка; автор книги The Computational Brain («Мозг-вычислитель»)
Мы полагаем, что важнейшие решения в нашей жизни – какую работу выбрать, где жить, на ком жениться – мы принимаем сознательно. Однако целый ряд свидетельств, полученных биологами, указывает на противоположное: процесс принятия решений происходит в древней системе мозга, именуемой базальными ядрами, и в их мозговые цепи наше сознание доступа не имеет.
Научный путь, приведший к такому выводу, начался с исследования пчел. Рабочие пчелы летят на весеннее поле за нектаром, который они идентифицируют по цвету, запаху и форме цветка. Цепь обучения в пчелином мозгу замыкается на VUMmx1 – единичный нейрон: он получа ет сенсорный сигнал, а чуть позже – сообщение о степени ценности нектара, таким образом учась предсказывать нектарную ценность данного цветка в следующий раз, когда пчела с ним встретится. Эта отсрочка играет важную роль. Здесь важнее всего именно предсказание, а не просто ассоциация. Та же идея является стержнем темпорально-дифференциального (ТД-) обучения, которое включает в себя освоение последовательности решений, приводящих к определенной цели, и особенно эффективно в нестабильных и ненадежных средах – скажем, в мире, где мы живаем.
В глубине среднего мозга у нас таится небольшой набор нейронов, который имелся и у наших самых ранних позвоночных предков; он подает сигналы и корковой мантии, и базальным ядрам. Нейроны эти вырабатывают нейротрансмиттер под названием допамин: он оказывает огромное влияние на наше поведение. Допамин именуют «молекулой вознаграждения», но еще важнее награды способность этих нейронов предсказывать награждение: насколько я буду рад, если получу эту работу? Допаминовые нейроны, играющие центральную роль в мотивационных процессах, реализуют ТД-обучение – как и нейрон VUMmx1.
ТД-обучение решает проблему отыскания кратчайшего пути к цели. Этот алгоритм действует в реальном времени, поскольку обучение происходит посредством непрерывного исследования и посредством выявления ценности промежуточных решений на пути к цели. При этом создается некая «функция внутренней ценности», которую можно использовать для предсказания последствий действий. Допаминовые нейроны оценивают текущее состояние всей коры в целом и сообщают мозгу, каков оптимальный план действий, исходя из текущего состояния. Во многих случаях оптимальным вариантом является догадка, но поскольку эффективность догадок можно улучшать, ТД-обучение со временем вырабатывает функцию ценности прогностических возможностей. Допамин служит источником «нутряного предчувствия», которое у нас иногда бывает: из этого вещества и делается интуиция.
Когда вы рассматриваете различные варианты действий, мозговые цепочки оценивают каждый сценарий, и прогнозируемая ценность каждого решения оценивается по промежуточному содержанию допамина для каждого случая. Уровень допамина связан также с уровнем мотивации, так что высокое содержание допамина не только указывает на высокий уровень ожидаемого вознаграждения, но и подразумевает, что вам потребуется более высокий уровень мотивации, чтобы достигнуть цели. С двигательной системой в буквальном смысле то же самое: более высокий уровень допаминового тонуса обеспечивает более быстрые движения. Кокаин и амфетамины вызывают такое сильное привыкание именно вследствие повышения допаминовой активности при их приеме: они словно взламывают внутреннюю мотивационную систему мозга. Снижение содержания допамина в организме приводит к агедонии – неспособности испытывать удовольствие. Утрата допаминовых нейронов ведет к развитию болезни Паркинсона – неспособности самостоятельно действовать и мыслить.
ТД-обучение обладает такой высокой эффективностью, поскольку позволяет объединять ценностную информацию множества разных аспектов – к примеру, сравнивая яблоки и апельсины. Оно играет такую важную роль, ибо рациональное принятие решений бывает весьма затруднительным, когда мы имеем дело с большим количеством переменных параметров и неизвестных величин. Обладание внутренней системой, умеющей быстро снабжать нас удачными догадками, несет в себе громадные преимущества и может даже спасти нам жизнь в тех случаях, когда срочно требуется решение. ТД-обучение зависит от нашего жизненного опыта, от былых переживаний. Оно извлекает самое существенное из этого опыта даже спустя долгое время после того, как отдельные подробности уже забылись.
ТД-обучение также дает объяснение многим экспериментам, которые ставили психологи, обучая крыс и голубей выполнять несложные задания. Алгоритмы психологического подкрепления при обучении считаются слишком слабыми для объяснения сложных моделей поведения, поскольку при этом обратная связь со стороны среды минимальна. Тем не менее обучение методом подкрепления распространено почти у всех видов и играет важнейшую роль в возникновении самых сложных форм сенсорно-моторной координации – таких, например, как игра на фортепиано или речь. Обучение методом подкрепления оттачивалось сотнями миллионов лет эволюции.
Насколько сложную проблему можно решить с помощью ТД-обучения? «TD-Gammon» – компьютерная программа, которая учится играть в нарды, просто сражаясь сама с собой. Трудность такого подхода в том, что награда приходит лишь в конце партии, так что неясно, какие именно ходы были хорошими и привели к победе. Вначале программа ничего не знает об игре кроме правил. Играя сама с собой много раз и применяя алгоритмы ТД-обучения, программа постепенно поднимается от уровня новичка к уровню опытного игрока, попутно придумывая и запоминая хитроумные стратегии, похожие на те, что используются игроками-людьми. Сыграв сама с собой миллион раз, программа достигла чемпионского уровня и открыла новый метод позиционной игры, изумивший специалистов-людей. Такие же принципы, примененные к игре го, позволили компьютерам достичь впечатляющего мастерства; не за горами их выступление на профессиональном уровне.
Когда речь идет об огромном количестве возможных исходов, полезно применять методы предварительного отбора, отсечения незначимых вариантов. Внимание и работоспособная память позволяют нам сосредоточиваться на самых важных элементах проблемы. Обучение методом подкрепления становится еще эффективнее благодаря сознательной (декларативной) памяти, которая отслеживает уникальные объекты и события. Когда у приматов в ходе эволюции появился более крупный мозг, соответствующее увеличение емкости памяти чрезвычайно улучшило их способность принимать сложные решения, позволив осуществлять более длинные последовательности действий для достижения целей. Мы – единственный вид, который изобрел систему образования и который ввергает себя в долгие годы уроков и экзаменов. Отложенное вознаграждение может восприниматься как нечто ожидающее нас лишь в далеком будущем (в некоторых случаях – в воображаемой жизни после смерти): такова власть допамина над нашим поведением.
В начале когнитивной революции 1960‑х даже самые блестящие умы не могли представить себе, что обучение с подкреплением может служить причиной разумного поведения. Ум ненадежен. Природа умнее нас.
Насаждая случайность
Майкл Нортон
Адъюнкт-профессор бизнес-администрирования Гарвардской бизнес-школы
Пол Мейер, скончавшийся в 2011 году, известен прежде всего благодаря так называемой процедуре Каплана – Мейера, применяемой для оценки выживаемости. Однако Мейер также сыграл важнейшую роль в широком распространении бесценного объяснительного средства – рандомизированного эксперимента. Нарочитая сухость термина маскирует его элегантность, которая в руках лучших исполнителей достигает уровня искусства. Попросту говоря, такие эксперименты представляют собой уникальное и мощное средство получения ответов на вопрос, интересующий ученых из самых разных областей: как нам узнать, работает что-то или нет?
Возьмем вопрос, каждый год всплывающий в прессе: полезно или вредно для нас красное вино? Мы многое выясним насчет того, как действует эта жидкость, опрашивая людей об их режиме потребления напитка и состоянии здоровья, а затем ища корреляции между первым и вторым. Однако для того, чтобы избирательно оценить воздействие красного вина на здоровье, требуется задать людям много вопросов – обо всем, что они потребляют (о еде, о лекарствах, которые они принимают), об их привычках (здесь и физическая активность, и сон, и секс), об их прошлом (об «истории болезней» не только самого человека, но и его родителей, бабушек и дедушек) и т. п. – а уж затем попытаться просеять эти факторы, чтобы выделить роль вина. Только представьте длину такой анкеты и продолжительность соответствующего исследования!
И тут рандомизированные эксперименты коренным образом меняют наш подход. Мы принимаем как данность, что люди отличаются друг от друга по множеству вышеописанных (и других) параметров, но справляемся с этим разнообразием, случайным образом выбирая людей, которым поручаем или пить красное вино, или не пить его. Если любители пончиков, никогда не занимающиеся физическими упражнениями, с равной вероятностью попадают и в «винную группу», и в «контрольную группу» (ту, которой не дают вина), мы можем довольно уверенно оценить усредненное влияние красного вина вне зависимости от других факторов – как бы «поверх» их. Звучит просто? Что ж, это действительно довольно просто, но всякий раз, когда столь простая методика позволяет достичь столь многого, уместно назвать ее изящной.
Количество экспериментов в общественных науках сильно выросло в 1950‑е годы (к этому периоду относятся и работы Мейера). В последние годы экспериментальная деятельность в этой сфере вновь переживает взлет благодаря широкому применению рандомизированных экспериментов в самых разных сферах – от медицины (скажем, при проверке результатов применения когнитивно-поведенческой терапии) до политологии (опыты по оценке явки на избирательные участки) и образования (изыскания, при которых родителям предлагают платить детям за школьные успехи). Этот экспериментальный метод начал просачиваться и в публичную политику, оказывая на нее немалое влияние: так, президент Обама назначил Касса Санстейна, специалиста по поведенческой экономике, главой Службы информации и нормативно-законодательного регулирования Белого дома, а британский премьер-министр Дэвид Кэмерон учредил Группу поведенческих исследований.
Рандомизированные эксперименты, конечно, не являются идеальным инструментом. Некоторые важные вопросы не поддаются решению с их помощью, а в неподходящих руках этот метод может даже принести вред – как печально известный эксперимент по исследованию сифилиса, некогда проведенный в алабамском городе Таскиги[77]77
Многолетний эксперимент над представителями бедного афроамериканского населения Таскиги (1932–1972). Испытуемые не получали должного лечения, в результате некоторые из них погибли. Один из врачей, проводивших эти изыскания, во всеуслышание заявлял, что относится к изучаемым в рамках эксперимента людям «как к материалу для исследований, а не как к больным». – Прим. перев.
[Закрыть]. Однако все более широкое применение метода свидетельствует о его гибкости, нередко позволяющей получать нужные объяснения.
Объединение электричества и магнетизма
Лоуренс М. Краусс
Физик, космолог (Аризонский университет); автор книги A Universe from Nothing («Вселенная из ничего»)
В недавней истории науки я не могу найти другого столь же красивого и глубокого, а в конечном счете и столь же изящного объяснения, каким, на мой взгляд, является сформулированное еще в XIX веке объяснение примечательной связи между двумя всем известными, но, казалось бы, довольно далекими друг от друга природными силами – электричеством и магнетизмом. Для меня здесь сосредоточены лучшие черты науки. Идея сочетает в себе неожиданные эмпирические открытия с необычайно простым и элегантным математическим описанием, которое объяснило гораздо больше, чем планировалось, попутно породив технологию, и сегодня питающую нашу современную цивилизацию.
Чудноватые опыты с лягушками и электрическими цепями в итоге привели, во многом благодаря счастливой случайности, к открытию, которое сделал ученый-самоучка и при этом величайший экспериментатор своего времени – Майкл Фарадей. Он обнаружил, что между магнитами и электрическими токами существует некая странная связь. Ученые тогда уже хорошо знали, что движущийся электрический заряд (или ток) создает вокруг себя магнитное поле, способное отталкивать или притягивать другие магниты, оказывающиеся поблизости. Оставалось неясным, способны ли магниты создавать какую-то электрическую силу в заряженных предметах. Фарадей случайно обнаружил: включая или выключая рубильник и тем самым включая или выключая электрический ток и создавая магнитное поле, которое со временем росло или ослабевало в течение тех периодов, когда это магнитное поле менялось, в расположенном поблизости проводе внезапно возникала некая сила, которая приводила в движение находящиеся в проводе электрические заряды, тем самым создавая ток.
Фарадеевский закон индукции (как его стали называть) – не только описание основополагающего принципа, управляющего всеми генераторами электроэнергии (от гидроэлектростанции на Ниагарском водопаде до всевозможных АЭС), но и теоретическая загадка, для решения которой потребовался незаурядный ум величайшего физика-теоретика фарадеевских времен Джеймса Клерка Максвелла. Он понял: результат, полученный Фарадеем, заставляет предположить, что именно переменное магнитное поле (яркое понятие, введенное самим Фарадеем, поскольку он увереннее чувствовал себя с образами, чем с алгеброй) порождает электрическое поле, которое, в свою очередь, толкает заряды провода, тем самым создавая в нем электрический ток.
Требования математической симметрии в уравнениях, которым подчиняются электрические и магнитные поля, привели к пониманию того, что магнитное поле возникает при изменении электрического поля, а не просто при перемещении зарядов. Отсюда не только компактный (умещающийся на майку) набор математически корректных и согласующихся друг с другом уравнений, известных каждому студенту-физику (некоторые их даже любят) и носящих название уравнений Максвелла, но и закрепление как физической реальности того, что иначе оставалось бы лишь плодом воображения Фарадея. Мы говорим про поле – некую количественную характеристику, связанную с каждой точкой пространства и времени.
Более того, Максвелл осознал, что если меняющееся электрическое поле создает в результате поле магнитное, то постоянно меняющееся электрическое поле (скажем, если все время то увеличивать, то уменьшать заряд), вероятно, даст постоянно меняющееся магнитное поле. А это, в свою очередь, породит постоянно меняющееся электрическое поле, которое, в свою очередь, породит постоянно меняющееся магнитное поле – и так далее. Подобное «возмущение» поля выйдет за пределы своего источника (нашего колеблющегося заряда) со скоростью, которую Максвелл рассчитал при помощи своих уравнений. Их параметры были получены экспериментальным путем – при измерении силы электрического взаимодействия между двумя известными зарядами и силы магнитного взаимодействия между двумя известными токами.
На основании этих двух фундаментальных свойств природы Максвелл вычислил скорость распространения таких возмущений и обнаружил, что она в точности равна ранее измеренной скорости света! Так он доказал, что свет действительно представляет собой волну, причем, как продемонстрировал Максвелл, волну электрических и магнитных полей, которая движется в пространстве с фиксированной скоростью, определяемой двумя фундаментальными природными константами. Это позволило Эйнштейну, примерно поколение спустя, показать, что постоянство скорости света требует пересмотра наших представлений о пространстве и времени.
Так из опытов с лягушками и дифференциальных уравнений выросла одна из самых красивых универсальных теорий физики – слияние электричества и магнетизма в единую теорию электромагнетизма. Теория Максвелла объясняла то, что позволяет нам наблюдать окружающую Вселенную, а именно – природу света. Ее практическое применение породило механизмы, которые питают энергией нашу цивилизацию, и принципы, которые легли в основу действия практически всех нынешних электронных приборов. Природа же самой этой теории породила целый ряд дальнейших загадок, позволивших Эйнштейну прийти к новым прозрениям касательно пространства и времени.
Неплохо для опытов, в чьей пользе сомневался Гладстон (или королева Виктория – в зависимости от того, какому историческому анекдоту вы верите): придя к Фарадею в лабораторию, сие историческое лицо изволило осведомиться, вокруг чего столько суматохи и какая польза от всех этих экспериментов. По преданию, ответ Фарадея гласил: «А какая польза от новорожденного младенца?» или же (моя любимая версия): «Польза? Ну, когда-нибудь эта штука станет такой полезной, что вы начнете брать с нас налоги за нее!» Красота, изящество, глубина, практичность, приключения, интеллектуальный восторг! Наука в лучших своих проявлениях!
Пушистые резиновые ленты
Нил Гершенфельд
Директор Центра элементарных частиц и атомов Массачусетского технологического института; автор книги Fab: The Coming Revolution on your Desktop – from Personal Computers to Personal Fabrication («Фабы: грядущая революция на вашем рабочем столе – от персонального компьютера до фабрикации личности»)
Я изучал электродинамику в Суортморе, у профессора Марка Хилда и по его лаконичному учебнику, описывающему еще более лаконичный набор уравнений – уравнения Максвелла. В четырех строчках, всего в 31 символе (даже меньше, если похитрить со способами записи) уравнения Максвелла сумели объединить явления, считавшиеся не связанными друг с другом (динамику электрического и магнитного полей), предсказать новые эффекты, стать предвестием грядущих теоретических достижений (в том числе доказательства волновой природы света и формулировки специальной теории относительности) и будущих технологий (позволивших, в частности, создать волоконную оптику и коаксиальные кабели, а кроме того, разработать методики беспроводной передачи сигнала – в том числе и для Интернета).
Но больше всего мне запомнилось не максвелловское объяснение электромагнетизма, славящееся красотой и своими замечательными следствиями, а объяснение Хилда про линии электрического поля, похожие на пушистые резиновые полоски: они стремятся быть как можно короче (так ведет себя резина), но не хотят находиться совсем уж рядом друг с другом (словно покрыты мехом). Это легко схватываемое описание (пускай и не количественное, а только качественное) сослужило мне хорошую службу, когда я разрабатывал всевозможные устройства. Более того, оно позволяет глубже вглядеться в природу уравнений Максвелла.
Образы в науке помогают нам строить умозаключения о режимах бытия, в которых наш разум еще не приспособился действовать. Объединение природных взаимодействий не относится к области повседневного опыта, однако объяснение таких вещей вполне может к ней относиться. Понимание, что нечто в точности похоже на нечто другое, является одним из проявлений объектно-ориентированного мышления, которое помогает формировать большие мысли на основе малых идей.
Я понял, что такое фаза Берри в спинорном виде, когда попытался вращать кистью руки, вертикально держа в ней стакан. Я разобрался в том, что такое спиновое эхо при ядерно-магнитном резонансе, размахивая руками и при этом вращаясь вокруг своей оси. Выравнивание уровней Ферми полупроводников в зоне перехода стало для меня понятным, когда его объяснили мне, сравнив с наполнением ведер водой. Подобно сравнению линий электрических полей с пушистыми резиновыми лентами, такое сопоставление отражает аналогии между уравнениями, которые описывают эти процессы. В отличие от слов образы порой способны давать неожиданно точное описание, связывая знакомый опыт с незнакомой формализацией явления.
Принцип инерции
Ли Смолин
Физик (Канадский институт теоретической физики «Периметр»); автор книг The Trouble with Physics («Трудности с физикой»), The Life of the Cosmos («Жизнь космоса») и других
Мое излюбленное научное объяснение – принцип инерции. Он объясняет, почему мы не ощущаем движения Земли. Этот принцип, возможно, стал наименее интуитивно очевидным и притом наиболее революционным достижением во всей истории науки. Его независимо выдвинули Галилей и Декарт, а в последующие столетия он лег в основу бесчисленных успешных объяснений в области физики. Принцип инерции дает ответ на очень простой вопрос: как будет двигаться свободный объект (то есть такой, на движение которого не оказывают влияние никакие внешние силы или иные внешние воздействия)?
Чтобы ответить на этот вопрос, нам понадобится определение движения. Что мы имеем в виду, говоря, что предмет движется? Согласно современным представлениям, движение следует описывать лишь относительно наблюдателя.
Представьте себе объект, находящийся в состоянии покоя относительно вас: к примеру, кошку, спящую у вас на коленях. Другим наблюдателям может казаться, что она движется. Причем в зависимости от того, как перемещается наблюдатель, ему может казаться, что кошка совершает движения разного рода. Скажем, если наблюдатель вращается вокруг вас, ему покажется, что кошка вращается вокруг него. Таким образом, чтобы понять вопрос о движении свободных объектов, нам следует отнести этот вопрос к особому классу наблюдателей. Итак, вот ответ:
Есть особый класс наблюдателей, по отношению к которым все свободные объекты кажутся либо находящимися в состоянии покоя, либо движущимися по прямой с постоянной скоростью.
Тем самым я сформулировал принцип инерции.
Его сила – в его совершеннейшей всеобщности. Если наш «особый наблюдатель» видит, как свободный объект движется по прямой линии с постоянной скоростью, этот наблюдатель будет воспринимать и все другие свободные объекты движущимися таким образом.
Предположим теперь, что такой наблюдатель – это вы. Всякий наблюдатель, который по отношению к вам движется по прямой с постоянной скоростью, также будет воспринимать все свободные объекты как движущиеся с постоянной скоростью и по прямой. Подобные наблюдатели образуют обширное сообщество, все участники которого движутся друг относительно друга. Эти особые наблюдатели именуются инерциальными наблюдателями.
Отсюда сразу же следует важнейшее умозаключение: неподвижность не абсолютна. Объект может находиться в состоянии покоя по отношению к одному инерциальному наблюдателю, но другие инерциальные наблюдатели при этом будут воспринимать этот объект как движущийся, причем непременно по прямой и с постоянной скоростью. Вышесказанное можно выразить в виде такого принципа:
Наблюдая объекты в движении, невозможно отличить наблюдателей, находящихся в состоянии покоя, от других инерциальных наблюдателей.
Всякий инерциальный наблюдатель может вполне убедительно заявить, что это он находится в состоянии покоя, а все остальные движутся. Это так называемый принцип относительности Галилея. Он объясняет, почему Земля движется, своим движением не вызывая у нас головокружения.
Чтобы оценить революционность этого принципа, имейте в виду, что физики XVI столетия могли путем несложного наблюдения опровергнуть заявление Коперника о том, что Земля вращается вокруг Солнца. Возьмите шар и уроните его с вершины башни. Если Земля вращается вокруг своей оси и вокруг Солнца со скоростями, которых требовал Коперник, шар упадет далеко от башни. На самом же деле он падает близ ее основания. Что и требовалось доказать: Земля находится в состоянии покоя.
Но это доказательство подразумевает абсолютность движения, определяя движение по отношению к наблюдателю, который пребывает в состоянии покоя и по отношению к которому те объекты, на которые не воздействуют внешние силы, тоже рано или поздно приходят в состояние покоя. Изменив дефиницию движения, Галилей мог бы заметить: тот же самый эксперимент показывает, что Земля, возможно, действительно движется.
Принцип инерции стал одной из основополагающих идей Научной революции XVII столетия. Более того, он содержал в себе предпосылки и других революций в науке. Почему? Обратимся к формулировке Галилеева принципа относительности, где указано условие: «наблюдая объекты в движении». Долгие годы считалось, что когда-нибудь мы сумеем осуществить наблюдения иного рода, которые покажут, какие инерциальные наблюдатели в действительности движутся, а какие находятся в состоянии покоя. Эйнштейн разработал свою специальную теорию относительности, попросту убрав это условие. Его принцип относительности гласит:
Невозможно отличить наблюдателей, находящихся в состоянии покоя, от других инерциальных наблюдателей.
Но и это еще не всё. Спустя десятилетие после появления специальной теории относительности принцип инерции породил очередную революцию – общую теорию относительности. Принцип подвергся еще одному обобщению: вместо «движущимися по прямой с постоянной скоростью» появилось «движущимися по геодезической линии в пространстве-времени». Геодезическая линия – обобщение прямой линии, распространяющееся на искривленные пространства, кратчайшее расстояние между двумя точками. Теперь принцип инерции звучит так:
Существует особый класс наблюдателей, по отношению к которым все свободные объекты кажутся движущимися по геодезическим линиям в пространствевремени. Это наблюдатели, находящиеся в состоянии свободного падения в гравитационном поле.
Отсюда следует обобщение:
Невозможно отличить друг от друга наблюдателей, находящихся в свободном падении.
Это умозаключение стало принципом эквивалентности Эйнштейна, одним из основных положений его общей теории относительности.
Но действительно ли принцип инерции справедлив? Пока его справедливость проверяли в условиях, когда энергия движения частицы не более чем на 11 порядков выше, чем масса этой частицы. Впечатляет, но остается множество ситуаций, в которых принцип инерции может не сработать. И лишь эксперименты способны показать нам, станет ли такое несрабатывание залогом новых научных революций.
Каким бы ни оказался результат подобных опытов, этот принцип все равно остается единственным научным объяснением, которое так долго продержалось незыблемым, которое доказали в таком огромном диапазоне масштабов и которое породило столько переворотов в науке.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.