Текст книги "Загородный участок с нуля"
Автор книги: Юрий Шухман
Жанр: Хобби и Ремесла, Дом и Семья
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 15 (всего у книги 18 страниц)
Несколько замечаний по поводу соединений. В подобном случае нет никаких резонов использовать традиционные врубки, врезки и т.п. Весь мир давно уже перешел на металлические соединительные элементы, которые в настоящее время приобрели широкое распространение и у нас. Выбор их так широк, что любую конструкцию можно собрать как минимум несколькими вариантами. Но вот что интересно. Если традиционные соединения выполняются последовательно и быть отменены уже никак не могут, то очень многие металлические соединители по ходу сборки любой конструкции становятся избыточными, могут быть убраны без какого-либо ущерба, и тем самым переходят в разряд чисто технологических. Кроме того, они предопределяют вместо гвоздевого соединения использование шурупов или саморезов, что не только прогрессивно, но и превращает соединения, помимо всего прочего, в легкоразборные. Это делает металлические соединители еще более предпочтительными, а образчики подобного их использования рассмотрим ниже на конкретных примерах. И еще: пластины, в частности, легко режутся обыкновенной ножовкой по металлу (фото 5.5.2.12), а это дает возможность использовать один и тот же соединитель по ходу сборки конструкции несколько раз и в различных местах. Вот почему нижняя базовая рама коробки на начальном этапе сборки вполне может выглядеть как на фото 5.5.2.13.
Поскольку коробка в данном случае лишь имитация сруба и соединение венцов теми же нагелями очень проблематично, жестко связать конструкцию воедино решено вертикальными силовыми уголками, удобная сборка которых показана на фото 5.5.2.14. Кстати, единственное во всей конструкции гвоздевое соединение было использовано только потому, что под рукой не оказалось саморезов нужной длины.
Наступил черед сборки домика, для чего понадобилась ровная площадка. В качестве нее удобно использовать закрытый предназначенными для дальнейшей работы досками ствол колодца (фото 5.5.2.15).
Каждая доска нижнего венца была соединена саморезами с двумя уголками и как минимум с одной доской рамы (фото 5.5.2.16).
Доски последующих венцов соединяются саморезами с силовыми уголками до завершения коробки (фото 5.5.2.17).
Традиционно за коробкой следует крыша. Но специфика колодезного домика такова, что в конструкцию крыши обычно встраивается ворот, хотя многие им пренебрегают. Аргументация вкратце такова: «Зачем ворот с ведром, когда есть насос?» Конечно, «шпагу для дуэли, меч для битвы каждый выбирает по себе», но давайте уточним этот момент. Колодец нужен для бесперебойного снабжения водой. А бесперебойного обеспечения электроэнергией в нашем XXI веке у нас, увы, нет. Аварии с потерей электроснабжения в мегаполисах входят в историю (Нью-Йорк, Москва), а по всей нашей стране это явление на сегодняшний день в высшей степени обыденное. И что же, сидя без электричества, веселее оказаться и без воды? «Думайте сами, решайте сами – иметь или не иметь». В данном же случае решено, что ворот обязателен, а насос, разумеется, тоже будет.
А какие бывают вороты? Те же колодцекопатели используют оба возможных варианта: для выемки грунта – деревянный, а для установки колец – стальной. И, хотя столь «мощные» вороты для подъема ведра воды не нужны, на колодцах используются по сути те же два вида воротов (фото 5.5.2.18–5.5.2.19). Спору нет – стальные вороты хороши, но даже на фото не плохо видно, что для своего изготовления требуют весьма высокой квалификации, а потому доступны для самостоятельного изготовления далеко не всем. Гораздо «демократичнее» в этом смысле вороты деревянные, потому-то они куда как более распространены. Однако и они требуют при своем изготовлении неукоснительного соблюдения целого ряда условий.
Не верьте россказням о том, что сделать ворот из бревна «очень просто». Дескать, вбить в торцы по стальному прутку, один из которых загнут в виде рукоятки, а по краям стянуть бревно стальной лентой для предохранения его от раскалывания. И все!
Отнюдь и далеко… Но давайте по порядку. Во-первых, в идеале надо, чтобы выход любой полуоси ворота из торца располагался строго в его геометрическом центре. Во-вторых, необходимо, чтобы оси полуосей и бревна совпадали. На практике достичь идеального варианта простейшими методами представляется маловероятным. Чего стоит одно только «заколачивание» прутка в торец бревна. Надо попасть в центр и при вбивании обеспечить соосность. Не зря чаще всего в этом месте используется фланцевое соединение, при котором задача решается гораздо проще. Но, с другой стороны, сколько их – таких воротов крутятся по всей стране и во все времена. Так в чем же дело? А дело в допустимых от идеала отклонениях, которые позволяют вороту работать. В противном же случае сей, казалось бы, столь нехитрый механизм не будет работоспособным.
Процесс изготовления собственно ворота проиллюстрирован на фото 5.5.2.20–5.5.2.25, но, как теперь говорится, «это еще не все».
Понятно, что полуоси ворота должны вращаться в каких-то подшипниках, которые в жизни имеют весьма разнообразное исполнение. В данной конструкции изначально предполагался подшипник из петель для крепления висячего замка, который с некоторыми коррективами и был реализован. Дело в том, что в данном случае не нужен быстроразъемный подшипник, как это требуется колодцекопателям. Зато желательно ввести в подшипник скольжения пару металл—металл вместо металл—дерево, что требует меньших усилий и более долговечно. Сборка задуманного подшипника вызвала затруднения, в силу чего конструкция видоизменилась, в которой появился аналогичный подшипнику коленвала двигателя внутреннего сгорания вкладыш и ограничитель боковых перемещений, сделанный из петли для навесного замка (фото 5.5.2.26). Та же петля фиксирует ворот и от осевого перемещения при размещении отверстия петли в кольцевой канавке полуоси, имеющей несколько больший, чем это отверстие, диаметр. В данном случае сделано было именно так (фото 5.5.2.27).
Определившись с конструкцией и порядком сборки подшипников, можно переходить к изготовлению и монтажу крыши. Здесь все начиналось с рамы, аналогичной таковой у коробки. На ней устанавливалась выполненная из стоек и конькового бруска П-образная рама (фото 5.5.2.28). В реально имевшем место случае эта рама получилась несколько закрученной (все элементы не лежат в одной плоскости) и была выправлена при установке стропил с помощью соединительных пластин (фото 5.5.2.29), которые впоследствии все были сняты за ненадобностью.
Про крышу, казалось бы, тоже давно все известно, в том числе и про стропила, и про обшивку фронтонов, и про многое другое. Но рационализация всегда возможна (фото 5.5.2.30). Здесь видно, что стропила одного ската крыши выполнены, что называется, по классике, а соответствующие им стропила противоположного ската образуются досками обшивки фронтонов, которые, всего-то, и пускаем под требуемым для этого углом. Впоследствии на выпусках первых из обшивочных досок и на дополнительных стойках как на каркасе строим козырек над рабочим (содержащим дверцу) скатом, усиленный добавочными силовыми элементами (фото 5.5.2.31). А пока по меньшей мере можно обшивать крышу (фото 5.5.2.32). Поскольку крыша обшивалась вагонкой толщиной всего лишь 13 мм, конструкция потребовала усиления фальшстропилами – по одному на каждом скате (фото 5.5.2.33). На рабочем скате это усиление служит еще и местом крепления петель дверки. Некоторую проблему представляло пропускание рукоятки ворота через обшивку фронтона (фото 5.5.2.34), которое возможно несколькими способами, но лучшим оказалось простейшее решение, когда обшивочная доска попросту одевается на рукоятку (фото 5.5.2.35).
Теперь о дверке. Обычно в подобных случаях ее выпиливают из готового ограждения и собирают на поперечинах и раскосе, расположенных на изнаночной стороне. Но можно и иначе (фото 5.5.2.36). Здесь часть ската разделена на три доли, одна из которых и есть дверка. При изготовлении такой дверки требуется тщательное торцевание составляющих ее отрезков вагонки, что также возможно разными способами. Можно, например, закрепить на плоскости набор дощечек, предварительно отторцевав их по ровной планке. Окончательное (чистовое) торцевание можно выполнить даже электрорубанком. Изнаночную поверхность дверки, равно как и другие внутренние поверхности домика, крайне желательно обработать средством против плесени. Выровнять дверной проем удобно с помощью электролобзика (фото 5.5.2.37). Наконец, собрать дверку было решено на листе фанеры, а поскольку требуемого размера не нашлось, использовались два куска причудливого обрезка (фото 5.5.2.38), что на качестве изделия не сказалось, а при наличии огрехов в стыках дверки с ее проемом они неминуемо скрываются накладными элементами (фото 5.5.2.39).
Рис. 5.5.2.3. Устройство монолитного бетонного колодца:
1 – внутренняя обечайка опалубки, 2 – наружная обечайка опалубки, 3 – соединительные рейки, 4 – арматура, 5 – бетонная труба, 6 – приямок для глиняного замка
Если говорить о колодезном домике как о постройке, пусть и маленькой, то в наше время неизбежно встает вопрос о ее внешнем виде. Теперь все хотят не только функциональности, но и красоты. В данном случае результат достигнут морилками, о чем речь выше велась, а поскольку постройка дворовая (фото 5.5.2.40), был использован еще и лак для наружных работ. Дабы не уподобляться «потемкинской деревне», резонно достойными выполнить все фасады (фото 5.5.2.41).
Рис. 5.5.2.4. Подкапывать под стенками надо как бы в стороны – «колоколом»
О постройке как таковой на этом можно было бы и закончить, но вернемся еще раз к функциональности. Как-то не очень впечатляет насосный шланг, вытащенный из проема дверки. А почему бы не ввести его в домик через специальный ввод (фото 5.5.2.42)? Для этого насос сначала помещается внутрь, изнутри вытаскивается наружу электрошнур, снаружи внутрь протаскивается и подсоединяется к насосу шланг (фото 5.5.2.43). Ведро оказалось удобным повесить не на привычном ржавом гвозде, а на для этого и предназначенном кронштейне душевого распылителя, которого давно нет и в помине (фото 5.5.2.44).
Рис. 5.5.2.5. Колодец Р. Телегина:
1 – навершие, 2 – отмостка, 3 – глиняный замок, 4 – бетонная труба, 5 – водоприемник, 6 – гравийный фильтр
А теперь о ведре. Точнее, о том, как набрать им воды из колодца. После полуторачасовых упражнений в этом виде спорта стало ясным, что тренироваться надо еще долго. Выяснилось также, что таких, кому это надо, много. Известны многочисленные шутки над провинциалами, впервые попавшими в метро, у С. Малежика даже песня есть на эту тему, правда, вполне доброжелательная. Так вот, горожанин с ведром у колодца выглядит ничуть не лучше. И тут, как в известном фильме: «Надо что-то делать». А выход каждый из нас наблюдает по многу раз в день – это колеса автомобилей, а точнее, установленные на них балансировочные грузики. Прекрасно («легким движением руки») устанавливается такой грузик и на ведре (фото 5.5.2.45). Видно, что он «как тут был». А какой эффект? При резком опускании (бросании с небольшой высоты) ведра на поверхность воды оно само зачерпывает воду, и – крутите ворот. Конечно, некоторый небольшой навык нужен и здесь, но это уже совсем другое дело.
Но если это почему-либо не устраивает, можно и отливать кольца самому, как это сделал большой мастер самостроя Р. Телегин из г. Раменское Московской обл. Сам он написал об этом так.
В строительном магазине приобрел три листа оцинкованного железа 1 × 2 м, цемент М500 из расчета 1 мешок (50 кг) на одно кольцо, 1 м3 песка и столько же гранитного щебня, арматуру ∅6–8 мм.
Работу надо начинать с изготовления опалубки для литья колец (рис. 5.5.2.3). Чертят на земле диаметр будущего колодца (я взял его равным 80 см). Внутри этого круга чертят вторую окружность – граница внутренней стенки. Толщина стенки кольца 8 см, следовательно, внутренний диаметр будет 64 см. Лист оцинкованного железа скручивают в трубу по границе внутреннего диаметра, загибают края, пробивают 3–4 отверстия и через две деревянные рейки стягивают шурупами-саморезами.
Точно так же делают внешнюю стенку опалубки. Разница лишь в том, что края внешней стенки загибают наружу, а внутренней – внутрь колодца. Лист внешней стенки удлиняют надставкой, соединяемой с основным листом шурупами-саморезами через рейку снаружи. Теперь готовые цилиндры относят на место, где будет располагаться колодец, и вставляют их друг в друга.
Песок и цемент перемешивают в сухом виде до образования однородной серой массы, затем подливают воду и вновь перемешивают уже раствор. После приобретения раствором консистенции негустой сметаны высыпают в него щебень и опять хорошо перемешивают. Работа пойдет быстрее, если щебень предварительно смочить. Приблизительный расход материала на одно кольцо: мешок цемента М500, 12 ведер песка, 12 ведер щебня. Соотношение частей цемента, песка и щебня в смеси должно быть равно 1:3:3 соответственно.
Заполнив пространство между кольцами на треть, вставляют арматурные штыри и привязывают к ним проволокой два арматурных кольца. Вместо арматуры можно использовать толстую проволоку. Равномерно заполняют бетоном опалубку до конца, не забывая штыковать раствор куском арматуры и постукивать по стенкам деревянным бруском, чтобы не было пустот. Круглая форма опалубки не требует никакой боковой поддержки, ее не распирает в стороны.
Через двое суток опалубку можно аккуратно снять, открутив шурупы, так как в течение 2–3 дней она не понадобится. Через 4–5 дней кольцо можно вкапывать в землю. Советую копать обычной штыковой лопатой, укоротив ее до удобного размера (рис. 5.5.2.4). Можно посоветовать начинать делать колодец в яме глубиной 1 м; тогда верхний слой почти не будет держать стенки колодца, и он будет мягко скользить вниз по сырому грунту.
Далее все происходит по одной и той же схеме. Кольцо вкапывают в грунт, на него надевают опалубку, заполняют бетоном, выдерживают 4–5 дней, закапывают снова до уровня земли и так до тех пор, пока не появится водоносный слой.
Очень важно в процессе отливки колец не допустить прерывания вертикальной арматуры – из готового кольца она должна выступать на 20–30 см и к ней прикручивают проволокой арматуру следующего кольца. Таким образом получается непрерывная монолитная труба, которой не страшны зимнее вспучивание грунта, а также осенняя и весенняя распутица, когда в колодец грязная вода проникает между кольцами.
Воду в новом колодце надо несколько раз вычерпать, потом еще раз прочистить дно и засыпать щебнем толщиной 20–30 см (рис. 5.5.2.5).
Устройство навеса на колодце каждый выбирает по своему вкусу. Я же хочу напомнить: не забудьте в последнем кольце выпустить анкеры, к которым будет крепиться каркас навеса. В качестве анкера можно использовать длинные болты или просто обрезки арматуры.
Последовательность бетонных и земляных работ не слишком утомляет. Каждый из этапов отнимает 2–4 часа. Большие перерывы позволяют браться за следующую отливку как в первый раз с новыми силами.
С учетом всех затрат колодец глубиной 5 м получается в пять раз дешевле «покупного», а если сделать его глубже, то разница будет еще больше.
6. Теплицы и парники
6.1. О чем идет речь
Большая часть территории России расположена в зоне умеренного климата с коротким и не всегда теплым летом и холодной зимой, с постоянными угрозами заморозков весной, ранним летом и осенью. Поэтому, чтобы получать хорошие урожаи, культивировать растения надо в закрытом грунте, используя различные укрытия, теплицы, парники. А для любителей экзотики, каковых достаточно, другого пути просто нет.
В идеальном варианте выращивание в парниках и теплицах рассады овощных культур и цветов позволяет получать ранние урожаи и иметь витаминную продукцию на протяжении практически всего года.
Обычно урожай овощей, получаемый с единицы площади грядки в парниках и теплицах, в три—пять раз выше, чем в открытом грунте. Однако для защищенного грунта важно правильно выбрать сорта растений, определить оптимальные сроки посева, использовать эффективные агротехнические приемы и соответствующую теплицу или парник. Но чтобы сделать правильный выбор, надо предварительно познакомиться хотя бы с основными типами и конструкциями парников и теплиц.
Издавна на индивидуальных садовых и приусадебных участках наибольшее распространение получили теплицы с солнечным обогревом, которые позволяют в весенне-летний период выращивать ранние овощи, рассаду и цветы.
По конструкции парники и теплицы весьма разнообразны. Каркас может иметь различные форму и конструкцию и быть металлическим или деревянным (фото 6.1.1–6.1.2).
Теплицы бывают односкатными, двухскатными (шатровыми), арочными, полуарочными, блочными, пристенными, котлованными. Они могут быть стационарными (неразборными) и переносными (сборно-разборными). Покрытие (ограждение) теплиц может быть выполнено из стекла, светопрозрачной пленки или жестких полимерных материалов, например, сотового поликарбоната (фото 6.1.1).
Обычно чем больше габариты теплицы, тем дешевле единица ее полезной площади. Но лучше начинать с теплицы, в которой предусмотрено наращивание дополнительных секций.
Привычно утилитарная функция теплиц как бы изначально не предполагает их использования для эстетического оформления дачных или садовых участков. А между тем вполне возможно применение близких по форме к полусфере парников в качестве элементов архитектурного оформления участка. Поскольку размеры их могут быть весьма различны (тут и парники поменьше – для отдельных цветочных клумб, и теплицы солидных размеров – для выращивания овощных культур), то уже само их количество и взаимное расположение является средством художественного оформления территории участка.
С функциональной точки зрения «сферические» укрытия привлекают повышенным соотношением площадей, занятых растениями и необходимых для проходов. Они экономичны, так как на единицу объема требуют минимума площади ограждения, а значит, и минимума конструкционных материалов (фото 6.1.3). Многочисленные малогабаритные варианты таких теплиц часто делают в виде сварных конструкций, но не только.
Теплицу можно полностью остеклить, а можно одну или несколько стен обшить досками или выложить из кирпича до высоты размещения стеллажей. Так, если растения будут выращивать на грядках, то для создания большей освещенности требуется полностью остекленная теплица. Если большинство культур предполагают высаживать в горшочки, то необходима установка стеллажей, тогда низ стен может быть сплошным.
Хорошими теплоизоляционными свойствами обладают стены, наполовину выполненные из кирпича или дерева, что снижает затраты на обогрев теплицы. Дополнительную защиту от холода без заметного уменьшения интенсивности освещения обеспечит обшивка досками северной стены.
При выборе теплицы принимают во внимание такие факторы, как свободный доступ к растениям, светопроницаемость покрытия, прочность и эксплуатационные свойства теплицы. Например, в местах с сильными ветрами срок службы теплиц с пленочным покрытием резко сокращается. Удобство доступа к растениям обеспечивает определенная размерность дверей, а также высота в карнизе и под коньком. Часто теплицу ставят на фундамент из кирпича, бревен или бетона, увеличивая таким образом ее высоту.
Светопроницаемость покрытия важна лишь зимой и ранней весной: летом света поступает гораздо больше, чем требуется растениям.
Интересно применение теплиц, перемещаемых над растениями. Это позволяет рациональнее организовать возделывание культур. Например, весной с одного конца участка под таким укрытием высаживают салат, а спустя какое-то время теплицу передвигают на место, отведенное под томаты.
Легкие металлические и пленочные переносные парники без труда перемещают по участку и устанавливают в нужном положении на одиночных грядках (фото 6.1.4).
Стационарные парники традиционного типа ставят на фундамент из кирпича или дерева.
Простейшим парником для закаливания растений может служить остекленная или обтянутая пленкой рама, помещенная над неглубоким котлованом (фото 6.1.5).
Нередко укрытия делают в виде отдельных секций, каждая из которых представляет собой миниатюрную теплицу, открытую с торцевых сторон. При установке секции соединяют. Существуют укрытия тоннельного типа из полос эластичной синтетической пленки. Их продольно натягивают на каркас из металлических дуг и сверху дополнительно удерживают дугами. Концы пленки прикалывают. Вентилируют укрытие, приподнимая пленочное покрытие с подветренной стороны.
Укрытия традиционной формы из листов стекла, скрепленных зажимами, ставят как тент или домик. Покрытые пленкой проволочные каркасы образуют тентовое укрытие.
Строительство теплиц и укрытий. Опорные конструкции теплиц обычно делают из дерева, дюралевого профиля или стали. Хорош дюралевый профиль, поскольку элементы каркаса из него легки и прочны, им несложно придать нужную форму, скрепив болтами или заклепками при установке.
Металл – прекрасный проводник тепла, поэтому на металлическом каркасе теплиц наблюдается конденсация влаги, что доставляет определенные неудобства. Хорошая теплопроводность означает также, что в металлических конструкциях температура воздуха бывает ниже и охлаждаются они быстрее деревянных, но эти различия незначительны.
Разнообразные конструкции из дерева требуют ухода, регулярной покраски и герметизации рам, иначе строительный брус быстро гниет в стыках.
Тщательно собранная и установленная на фундамент из кирпича или бетона теплица из деревянного бруса прослужит достаточно долго. Этому также способствуют предварительная пропитка дерева. Основным материалом для укрытий служат стекло и полимерные пленки и листы. Стекло крепят обычно с помощью скоб, снабженных пластиковыми прокладками. Тоннельные укрытия поддерживают проволочными дугами.
Остекление теплиц. В течение долгого времени единственным материалом, применяемым для покрытия теплиц, было листовое оконное стекло. Сегодня же все большую популярность завоевывает пленочное покрытие и сотовый поликарбонат.
Для теплиц лучше всего брать стекло кондиционное. Подходящее для парников стекло пропускает до 90% падающего солнечного света и задерживает ультрафиолетовые лучи. Ультрафиолетовый свет необязателен для развития растений, а его излишек может быть даже вреден.
Остекление – это закрепление стекла в несущей конструкции теплицы. Существует несколько способов остекления. Согласно традиционному способу каждый лист стекла укладывают на замазку и закрепляют мелкими штифтами (гвоздями). Этот способ используют до сих пор, но в несколько измененной форме: вместо замазки применяют незатвердевающие герметизирующие средства. В металлических теплицах штифты заменяют зажимами.
Укрепление стекла замазкой или мастикой создает прочный воздухонепроницаемый слой и снижает потери тепла. Тем не менее все более популярным становится применение различных профилей-уплотнителей. Листы стекла вставляют в пазы специально подобранного сечения.
Двойное остекление с помощью полиэтиленовой пленки используют редко, в основном из-за недостаточного сохранения зимой искусственного тепла. Пленку в теплице укладывают так, чтобы между нею и стеклом оставалось воздушное пространство. Даже чистая полиэтиленовая пленка поглощает до 15% падающего света. На ней быстро конденсируется влага, а в холодную погоду образуются крупные капли, что также резко снижает светопроницаемость. Постоянно присутствующая влага на пленке приводит к появлению зеленых водорослей. Интенсивность проникания света в теплицу существенно уменьшается как раз в то время, когда требуется его максимальное количество. Поэтому двойное остекление делают только на северной стороне теплицы или на стороне, подверженной действию сильных ветров.
К пленочным покрытиям относят прежде всего полиэтиленовую пленку и менее распространенные поливинилхлоридную и полипропиленовую пленки. Они имеют определенные преимущества: дешевле стекла и не бьются. Однако покрытия из полиэтиленовой пленки, в частности, разрушаются под воздействием ультрафиолетовых лучей. Кроме того, за счет электростатического притяжения на пленке собираются мелкие частицы пыли, что снижает ее светопроницаемость. Исходно эластичная полиэтиленовая пленка под разрушительным действием ультрафиолетового света теряет свои свойства, растрескивается и легко рвется под порывами ветра. И все же ее применяют и во все больших масштабах.
Очень важно, чтобы пленочное покрытие было плотно натянуто на каркас теплицы.
Солнечный свет и теплица. В солнечную погоду при отсутствии вентиляции или средств затенения температура внутри теплицы быстро возрастает. Солнечные свет и тепло достигают поверхности земли в виде коротковолнового излучения, легко проникающего через стекло и пленочное покрытие. Оно нагревает все находящиеся на пути объекты – пол, стеллажи, почву, горшки и растения. Предметы в свою очередь излучают часть поглощенного потока в виде длинноволновой части спектра. Стекло же препятствует выходу вновь образованного длинноволнового излучения. Именно за счет него и наблюдается нагрев воздуха в помещении. После захода солнца, или как только теплица оказывается в тени, тепло из нее выходит с потоком воздуха через неизбежные зазоры или в виде теплового излучения от прочных стен и каркаса.
Поступающее в теплицу с пленочным покрытием излучение рассеивается, образуя длинноволновые лучи, не задерживающиеся внутри. Поэтому после захода солнца сооружения с пленочным покрытием, включая парники и укрытия, охлаждаются быстрее остекленных конструкций. В принципе для большинства климатических зон эти различия незначительны. При нагреве воздуха внутри теплицы устанавливаются конвекционные потоки и воздух начинает циркулировать, меняя характер своего движения в зависимости от формы, размера теплицы и способа ее вентиляции. Теоретически конвекционные потоки нагревают все пространство, на деле же образуются места сосредоточения холодного и теплого воздуха.
Хорошее стекло пропускает, как уже говорилось, около 90% падающего светового потока, который включает и свет, отраженный от различных поверхностей. Чтобы в теплицу проникло максимальное количество солнечного света, он должен падать под углом 90°. Если угол больше или меньше 90°, некоторая часть света рассеивается. Летом света для растений более чем достаточно, зимой же его явно недостаточно. Зимой в средних широтах угол падения солнечного света составляет порядка 15°. Таким образом, слегка наклоненные стены теплицы находятся под прямым углом к световому потоку, обеспечивая его максимальное проникновение в теплицу.
Для нахождения оптимальной формы теплиц, обеспечивающей должную светопроницаемость, проведено много исследований. Результатом их стали конструкции теплиц округлой формы. Немаловажен и угол наклона остекленной поверхности. Среди существующих конструкций оптимальными являются теплицы шатрового типа с большими, ступенчато наклоненными остекленными панелями.
Положение солнца меняется в течение дня, описывая траекторию дуги примерно 60° зимой и 120° и более – летом. Поэтому на плоскую поверхность свет падает под оптимальным углом лишь в короткий промежуток времени. В конструкциях теплиц округлой формы эта проблема решается установкой остекленных рам под разными углами.
Для максимального использования солнечного света от низко стоящего зимнего солнца теплицы размещают так, чтобы их длинная ось была ориентирована по возможности с запада на восток. В этом положении сведены к минимуму тени от элементов каркаса, а солнечные лучи проникают в теплицу под самым оптимальным углом.
Расположение теплицы. Чаще всего выбор места на садовом участке ограничен, особенно если участок небольшой. Но даже если для установки теплицы есть всего одно-единственное место, его нужно подготовить так, чтобы создать самые благоприятные условия для выращивания растений. Основные условия при выборе места – хорошая освещенность солнцем и защищенность от господствующих ветров. Последнее условие особенно важно при выращивании растений в зимнее время. Создание защиты от ветра сокращает потери тепла, которые могут быть гораздо больше допустимых, особенно в периоды резкого похолодания.
Лучше всего под теплицу подходит хорошо осушаемый участок с ровной поверхностью почвы. Если местность с уклоном или бугристая, надо, насколько это можно, выровнять ее. При выравнивании старайтесь сохранить снимаемый верхний почвенный слой. Это особенно важно при установке теплиц, остекленных до уровня земли или с почвенными грядками. Чрезмерное уплотнение ведет к нарушению структуры почвы и потере плодородия, затрудняет дренаж.
Если место сырое, необходимо провести какой-либо дренаж. Иногда сооружают бетонное основание чуть выше уровня окружающей почвы. При необходимости предусматривают вокруг теплицы водостоки для сбора воды. Если теплицу устанавливают на склоне, то дренажную систему подводят так, чтобы она собирала и отводила стекающую сверху воду. Если участок под теплицу отводят летом, необходимо учесть тени, отбрасываемые высокими строениями или деревьями в зимнее время.
Теплица принесет большую отдачу, а выращиваемые на ней растения получат больший уход, если у нее удобный выход. Вне зависимости от расположения к теплице должны вести дорожки с твердым покрытием. По ним на тачке удобно подвозить грузы – мешки с почвенной смесью, горшки, растения.
Защита теплицы. Для отдельно стоящей теплицы можно подобрать место, защищенное от господствующих ветров. Чем сильнее и холоднее ветер, обдувающий остекленную поверхность теплицы, тем значительнее потери тепла, которые порой составляют до 50%.
Даже не затеняющие остекленную поверхность теплицы деревья создают сложности из-за падающих с листвы капель дождя. Серьезные повреждения могут наносить теплице упавшие сломанные ветки. Корни растущих вблизи деревьев могут разрушать фундамент теплицы и проникать во внутренние грядки.
Если на участке нет надежно защищенного места, находят возможность создания такой защиты в виде живой изгороди или забора. Ветрозащитные ограждения с северной, северо-восточной и северо-западной сторон ставят на расстоянии, по крайней мере в три раза превышающем высоту теплицы.
Нередко теплицы присоединяются к стенке капитального строения, которая играет роль термоаккумулятора и тем самым способствует суточному выравниванию температур в теплице.
Вентиляция и проветривание теплицы. Так называемый парниковый эффект вызывает быстрый подъем температуры внутри теплицы от падающего на нее солнечного света, а застоявшийся воздух служит идеальной средой для распространения болезней и вредителей.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.