Электронная библиотека » Александр Фомин » » онлайн чтение - страница 22


  • Текст добавлен: 14 января 2014, 00:50


Автор книги: Александр Фомин


Жанр: История, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 22 (всего у книги 26 страниц)

Шрифт:
- 100% +

Затем была экскурсионная и одновременно официальная поездка по США. Встречи, приемы, пресс-конференции. Несмотря на благожелательность публики, Мария сильно уставала. В конце концов, 28 июня ей пришлось досрочно прервать поездку из-за ухудшения состояния здоровья.

За время поездки в США мадам Кюри осознала простую истину: слава – не только тяжелое бремя, но и полезный инструмент, который можно использовать. Естественно, не в личных целях. С этого момента и практически до конца своих дней Мария Кюри совмещала научную работу с общественной деятельностью. Она принимала активное участие в создании Варшавского Института радия. Польша была наводнена плакатами и факсимильными обращениями Марии Кюри, в которых она призывала население покупать кирпичи для создания института. В 1929 году миссис Мелони опять организовала сбор средств для покупки второго грамма радия, уже для польских ученых. Мария совершила вторую поездку в США с целью отблагодарить американскую общественность от имени своих польских коллег. В 1932 году был открыт Институт радия. Участие в торжествах по этому поводу стало последним визитом Марии на родину.

В 1922 году совет Лиги наций избрал Марию Кюри членом комиссии по научному сотрудничеству. К своим обязанностям на этом поприще мадам Кюри подходила очень серьезно. Десятки поездок, организационная работа. Наша героиня занималась целым рядом проблем, решение которых должно было облегчить обмен сведениями между учеными всего мира: «…рациональная организация библиографии таким образом, чтобы научный работник сразу мог найти все сведения о полученных достижениях других ученых в той области, которую он изучает; единая система обозначений и терминологии в науке; унификация формата изданий; краткие рефераты работ, опубликованных в журналах; составление таблицы констант».

Как и раньше, волна славы, пришедшая из-за границы, охватила и Францию. 7 февраля 1922 года Медицинская академия единогласно приняла в свои члены мадам Кюри. Все другие претенденты на свободное место добровольно отказались подавать свои кандидатуры. В 1923 году была торжественно отпразднована двадцать пятая годовщина открытия радия. Мария Кюри получила ежегодную пенсию в сорок тысяч франков.

Тем временем Мария продолжала активную деятельность для поддержания работы Парижского Института радия. Еще в 1920 году барон Ротшильд создал фонд Кюри. Со временем благодаря популярности ученой поступления в фонд увеличились. Мария также неустанно посещала чиновников разного уровня, получала субсидии и кредиты. Она подбирала сотрудников в свою лабораторию, определяла направление их работы, неустанно следила за исследованиями. Организационная деятельность занимала много времени, но директор лаборатории успевала проводить и самостоятельные исследования. В период с 1914 по 1934 год сотрудники Института радия опубликовали 483 научных работы, из которых 31 одну выполнила лично Мария Кюри. Но с уверенностью можно сказать, что ни одна из работ, написанных в стенах института, не была обойдена ее вниманием.

В 1926 году произошло радостное событие – Ирен объявила о своем намерении выйти замуж за одного из самых талантливых и деятельных сотрудников Института радия Фредерика Жолио. Сама Ирен уже давно, с 1918 года, работала в лаборатории матери. В 1935 году чета Жолио-Кюри удостоится Нобелевской премии за открытие искусственной радиоактивности. Мария Кюри узнает о решении Нобелевского комитета, но до самой церемонии не доживет.

Болезнь и смерть

В декабре 1933 года Мария почувствовала сильное недомогание. Рентгеновский снимок показал крупный желчный камень. В этом отношении у нее была плохая наследственность. Старик Склодовский умер от желчно-каменной болезни. Была необходима операция. Но Мария боялась операции и старалась лечиться с помощью диеты и различных препаратов.

Она как бы пыталась убедить окружающих и прежде всего себя в том, что находится в хорошей форме. Развила бурную деятельность по постройке дома в Со, а пока переехала в квартиру в новом доме, построенном в Университетском городке. 66-летняя мадам Кюри каталась на коньках в Версале, вместе с Ирен ходила на лыжах в Альпах. Казалось бы, ее здоровье пошло на поправку.

На Пасху в Париж приехала Броня. Сестры отправились в автомобильное путешествие на юг. По дороге они заезжали во всевозможные красивые места. Эта любовь к красоте нанесла здоровью мадам Кюри серьезный удар. За время длинной дороги она перемерзла и простудилась. После возвращения в Париж врач поставил диагноз: грипп и переутомление (последнее заключение делали на протяжении сорока лет все врачи, осматривающие Марию). Грипп постепенно отступил, Мария даже смогла проводить Броню; сестры виделись в последний раз.

Мадам Кюри пыталась продолжать работу в лаборатории и занималась строительными хлопотами. Однако озноб и лихорадочное состояние не оставляли ее. Она долго отказывалась от вызова врача. Наконец, когда Ева настояла, несколько врачей осмотрели мадам Кюри и прописали постельный режим. Но упрямица не слушалась и продолжала ходить в институт. В один из майских дней ближе к концу работы она пожаловалась на жар и отправилась домой.

Опять были приглашены врачи, но они не могли поставить точный диагноз: грипп, бронхит? Обследование не обнаружило повреждений. Возможный вариант – воспалительный процесс, связанный с зарубцевавшимся еще в молодости туберкулезным очагом. Лечение – компрессы и банки. Мария вновь вернулась к работе. Близкие уговаривали ее отправиться в санаторий, но безуспешно.

Между тем состояние становилось хуже. Консилиум из четырех врачей не без колебаний поставил диагноз: возобновление туберкулезного процесса. Было принято решение о лечении в санатории. Перед отъездом мадам Кюри дала распоряжение одной из своих сотрудниц: «Надо тщательно упаковать актиний и хранить его до моего возвращения… Мы с вами вновь займемся нашей работой после моего отдыха».

Путешествие Мария перенесла очень плохо. В дороге она теряла сознание. В санатории обнаружилось, что легкие больной в порядке. И все же у нее была очень высокая температура. Врач провел анализы крови и убедился, что произошло резкое падение числа эритроцитов и лейкоцитов. Новый диагноз – злокачественная острая анемия.

3 июля температура упала. Мария Кюри считала, что это признак выздоровления. Однако и врачам, и ее дочери уже было понятно: состояние безнадежно. Ева умышленно не вызывала к постели умирающей родных, чтобы не омрачить последние часы матери страхом смерти.

Дальше был бред. То и дело проскальзывали фразы, связанные с наукой: «Параграфы глав надо сделать совершенно одинаковыми… Я думала об этом издании…» 4 июля Мария Кюри не перестала заботиться о науке даже в бреду агонии.

Только позже врачи установили причину недуга, прервавшего восхитительную жизнь восхитительной женщины. Стало понятно и бессилие их коллег, столкнувшихся с неизвестной доселе болезнью. Вот два заключения:


«Мадам Кюри может считаться одной из жертв длительного общения с радиоактивными веществами, которые открыли ее муж и она сама.

Мадам Мари Кюри скончалась в Санселльмозе 4 июля 1934 года. Болезнь – острая злокачественная анемия. Костный мозг не дал реакции, возможно, вследствие перерождения от длительной аккумуляции радиоактивных излучений».


Мария Склодовская-Кюри стала первой в мире жертвой лучевой болезни. Великое открытие убило своего великого автора. Через 36 лет радий отомстил одному из двух гениальных ученых, раскрывших миру его тайну.

6 июля в Со состоялись скромные похороны. По желанию Марии Кюри ее похоронили в одной могиле с Пьером. На памятнике добавилась надпись: «Мария Кюри-Склодовская. 1867–1934».

Изданная через год книга, которую Мари закончила перед смертью, явилась ее последним посланием «влюбленным в физику». В Институте радия, продолжавшем свою работу, этот огромный том вошел в его светлую библиотеку, присоединившись к другим творениям науки. На сером переплете имя автора: «Мадам Кюри, профессор Сорбоннского университета. Лауреат Нобелевской премии по физике. Лауреат Нобелевской премии по химии».

А заглавие – одно строгое лучезарное слово:

РАДИОАКТИВНОСТЬ.

Норберт Винер

Нужно иметь храбрость поверить в свои убеждения, иначе самое интересное, что могло прийти вам в голову, у вас из-под носа заберут другие, более отважные духом, но главное – это ведь единственное, ради чего по-настоящему стоит работать.

Н. Винер. «Я – математик»

Вот несколько правдивых историй из жизни науки.

В 2001 году двадцатипятилетний американец Мэтт Нэгл пострадал в драке. Ему вонзили нож в спину, повредив спинной мозг так сильно, что парень даже не мог самостоятельно дышать. После этого потерпевший научился управлять материальными объектами силой мысли. Набор телепатических сигналов пока невелик, но самое главное в наличии: Нэгл может регулировать освещение в комнате, переключать каналы телевидения и играть в компьютерные игры. В 2005 году он стал первым человеком, который научился управлять искусственной рукой – брать ею различные предметы, думая, что двигает своей собственной конечностью.

Тогда же ученые «скрестили» электронный прибор с одноклеточным организмом. Основой гибрида стала бактерия, изменяющая свой размер в зависимости от влажности воздуха. Ученые покрыли поверхность кремниевого чипа металлическими электродами, нанесли на нее культуру живых микробов, которые замкнули цепь и стали проводить ток. Теперь, когда меняется электропроводность «нано[35]35
  Нанометр — одна миллиардная часть метра (1 нм = 0,000 000 001 м).


[Закрыть]
-киборга», можно с уверенностью говорить о повышении или понижении влажности воздуха. Полученный гигрометр имеет огромное значение для высокоточных производств, фармацевтической промышленности, фундаментальных медицинских исследований и многих других отраслей, требующих строжайшего соблюдения заданных параметров внешней среды. Изобретатели предполагают, что создание бактериального биотехнического гибрида позволяет говорить о настоящем прорыве на пути к созданию более сложных искусственных организмов.

Ученые Калифорнийского университета смастерили самый маленький в мире электромотор, который работает благодаря перемешиванию атомов между двумя расплавленными металлическими каплями в наноскопической углеродной трубке. Размер устройства – менее 200 нанометров, но если гипотетически увеличить его до двигателя автомобиля Toyota Camray (225 лошадиных сил), то атомарный моторчик окажется в сто миллионов раз мощнее. Зачем нужен такой двигатель? Авторы проекта считают, что именно с его помощью сможет перемещаться по телу человека миниатюрный механический «доктор», обследуя организм и исцеляя заболевшие органы.

Что объединяет все перечисленные выше истории, кроме явственно исходящего от них духа научной фантастики? На первый взгляд, между ними нет никакой связи – разве что желание участников описанных событий попасть в Книгу рекордов Гиннесса (хотя, скорее всего, это было последним, о чем думали ученые, разрабатывая свои удивительные проекты). На самом деле все достигнутые успехи являются прямым следствием того, что в 1948 году американский ученый Норберт Винер представил на суд мировой общественности изобретенную им кибернетику – новую науку об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе. Винер придумал и науку, и ее название. Точнее, последнее он позаимствовал у Платона: kybernetike в переводе с греческого означает «искусство управления» (от kybernao – правлю рулем, управляю).

Случай Мэтта Нэгла – результат достижений нейрокибернетиков, вжививших ему сенсор «Braingate» в ту часть мозга, которая отвечает за двигательные функции. Сенсор связывает головной мозг Нэгла с компьютером, тот интерпретирует электрическую активность соответствующих участков коры, после чего выполняет пожелания человека. Бактериальный гигрометр – пример развития биологической кибернетики. Нано-моторчик для нано-доктора – образчик успехов медицинской кибернетики.

Приведенные примеры впечатляют в первую очередь тем, что имеют видимое практическое значение. Далеко не всегда плоды теоретических спекуляций приносят человечеству более или менее очевидную пользу – об этом свидетельствует, в частности, существование Игнобелевской премии {36}36
  Игнобелевская премия — своеобразный антипод Нобелевской премии. Происхождение названия таково: «Nobel» звучит практически так же, как «noble» – «благородная». Соответственно, «Ig Nobel» напоминает «ignoble» – «постыдный», «низкий». Игнобелевская премия существует с 1990 года и вручается в Гарвардском университете (США). Несмотря на очевидную пародийность, премия преследует вполне благую цель – поощрить людей с нестандартным мышлением и повысить интерес к науке. «Каждый наш лауреат сделал нечто, заставившее людей сначала засмеяться, а потом задуматься», – объясняет М. Абрахаме, редактор журнала «Annals of Improbable Research» («Анналы немыслимых исследований») и главный распорядитель Игнобелевки.


[Закрыть]
. Эта премия присуждается за достижения, «которые не могут или не должны быть воспроизведены» коллегами, т. е. фактически за самые ненужные и бесполезные открытия. В разное время премии удостаивали, например, за изобретение автомобильной сигнализации с использованием огнемета и гидромассажного агрегата для кошек и собак. Возможно, все эти открытия когда-нибудь найдут свое применение и окажется, что именно они стали базой для новой фундаментальной науки. Но пока что их практическая бессмысленность не вызывает сомнения.

Совсем по-другому обстояло дело с кибернетикой, которая зародилась не как наука, а как новая философия взаимоотношений человека и техники, построенная на умозрительных рассуждениях математика. Почти сразу оказалось, что она необходима, а ее выводы объясняют многие, ранее непонятные закономерности. Более того, сегодня результаты размышлений «бывшего вундеркинда» Винера нашли применение не только в исследовательских лабораториях – ими пользуется каждый (!), кто работает за компьютером и в сети Интернет.

Современные персональные компьютеры снабжены всевозможными интерактивными устройствами, а программы по многу раз переспрашивают, прежде чем совершить какое-либо действие. Уже трудно представить, что всего пятьдесят лет назад вычислительные машины весили не одну сотню килограммов и не имели даже клавиатуры и монитора. Общение с этими монстрами осуществлялось специально обученными людьми при помощи перфокарт и перфолент – картонок или бумажных лент с дырочками. Сама мысль о том, что общаться с компьютером сможет даже ребенок, вызывала снисходительную усмешку инженеров-полубогов – еще бы, разве под силу профану расшифровывать перфоленты и кодировать перфокарты?! Хотя и им, конечно, не раз приходила в голову мысль, что неплохо было бы упростить процесс взаимодействия с машиной, но вот как? Ответ на этот вопрос дал Норберт Винер и его последователи-кибернетики.

Рождение кибернетики было подготовлено всем ходом науки конца XIX – начала XX века: теорией относительности, расщеплением атома, развитием психологии и нейрофизиологии, новыми математическими теориями, появлением социологии, противостоянием позитивизма {37}37
  Позитивизм – философское направление, появившееся в первой половине XIX века. Исходит из тезиса о том, что подлинное, т. е. позитивное знание может быть получено лишь в рамках отдельных наук или их объединения и что философия как самостоятельный способ исследования реальности не имеет права на существование.


[Закрыть]
и феноменологии {38}38
  Феноменология — философское направление, основанное Э. Гуссерлем в начале XX века. Ее цель – непосредственное восприятие неких идеальных сущностей (феноменов) при помощи интуиции. Феноменология стала одним из истоков экзистенциализма и других течений современной философии.


[Закрыть]
, возникновением структурализма {39}39
  Структурализм – научное направление в гуманитарном знании, возникшее в 20-х годах XX века. Объект структурализма – культура как совокупность знаковых систем. Структурализм делает упор на качественных преобразованиях культуры; одновременно ведутся поиски широких типологических обобщений, общечеловеческих универсалий, всеобщих схем и законов деятельности интеллекта.


[Закрыть]
. Не меньшую роль в ее появлении сыграла и бурная политическая история первой половины прошлого столетия (чувствовалась потребность в прогнозировании социальных катаклизмов – слишком уж непредсказуемо вели себя политики). Все это потребовало переосмысления целого ряда фундаментальных подходов и понятий и даже – в какой-то степени – возврата в XVI век.

Господствовавшая с XVII века картезианская парадигма вела к узкой специализации и практически исключала универсальность знания: физика есть физика, лирика есть лирика, и граница между ними нерушима. Однако в XX веке оказалось, что без синтеза «взаимоисключающих» подходов прогресс невозможен. Знание оказалось не набором отдельных наук, а универсальной системой, в которой обращение к одному элементу приводит к подвижкам во всей конструкции.

Когда Винер решил сформулировать принципы кибернетики – дисциплины совсем новой и ни на какую другую не похожей, то глубокое знакомство с самыми разными сферами знаний оказало ему неоценимую услугу. Винер как бы воскресил традиции универсализма, процветавшие во времена Просвещения. Широта интересов сочеталась в ученом с глубоким убеждением в том, что наука – это целостный организм, а значит, необходимо слаженное взаимодействие ее отдельных отраслей. Он был врагом узкой специализации, дробления человеческого знания на бесчисленные изолированные ветви.

Эта история составляет видимую часть становления данного интеллектуального подхода. Что же до «подводной части айсберга», то, помимо общей тенденции развития идеи системного мышления, на появление кибернетики большое влияние оказали структура и динамика научного сообщества. Роль последнего для Винера неоценима: одобрение авторитетных ученых сразу же привлекло к «Кибернетике» внимание широких масс. Ученый мир давно знал Винера, а потому странноватый математический трактат с амбициозными экскурсами в философию, биологию и социологию не показался коллегам выходкой дилетанта – его не проигнорировали. А ведь такой результат был вполне возможен, окажись автором нового подхода «человек со стороны», какой-нибудь самоучка Джон Смит.

Несмотря на чудаковатый, а попросту – несносный нрав, в котором сам Винер охотно и даже с некоторым самодовольством признавался, число специалистов из разных областей знания, с которыми он не только дружил, но и выполнял работу, впечатляет. Сложно перечислить всех великих, с кем общался ученый. Вот лишь самые известные имена: Альберт Эйнштейн, Нильс Бор, Макс Борн {40}40
  Борн Макс (1882–1970) – немецкий физик, один из основателей квантовой механики, опубликовал около 350 научных работ, в том числе 20 научных и научно-популярных книг. За выдающиеся заслуги в развитии квантовой механики Борну была присуждена Нобелевская премия (1954).


[Закрыть]
, Феликс Клейн {41}41
  Клейн Феликс (1849–1925) – немецкий математик. Основные его работы посвящены неевклидовой геометрии, теориям непрерывных групп, алгебраических уравнений, эллиптических функций, атоморфных функций. Клейн стремился раскрыть внутренние связи между отдельными разделами математики, а также между математикой, физикой и техникой.


[Закрыть]
. В 1911–1913 годах Винер участвовал в работе семинара, который вел философ Джосайя Ройс {42}42
  Ройс Джосайя (1855–1916) – американский философ; с 1892 года – профессор истории и философии Гарвардского университета. Находился под сильным влиянием идей немецкой классической философии, главным образом И. Канта и Г. Гегеля, развивал концепцию «абсолютного волюнтаризма», согласно которой отдельные личности в совокупности составляют «универсальное сообщество», выполняющее волю «абсолютной личности», которая влечет человечество в потусторонний мир «божественной» гармонии. Ройсу принадлежат также работы по математической логике и основаниям математики.


[Закрыть]
; здесь он познакомился с профессором биохимии Гарвардского университета Лоуренсом Гендерсоном, чье научное и философское творчество – это применение системной идеологии к исследуемым объектам. Широчайший кругозор и эрудиция, чутье экспериментатора, глубокий анализ фактов и склонность к широким обобщениям, работа на стыке химии, биологии, биохимии, физиологии позволили Гендерсону применять системный подход, когда еще самого этого термина не существовало.

Винеровская кибернетика возникла не на пустом месте. Ее появление стало логическим венцом разрозненных попыток объединить науки в единую систему знаний, найти точки равновесия между живым организмом и материальным миром, определить формы взаимодействия человека с внешней средой (в том числе социальной). Ключевая мысль Винера состоит в том, что возможность передавать и получать информацию вовсе не является привилегией людей. Более того, нет непреодолимой границы между естественным человеческим разумом и искусственным разумом машины.

Норберт Винер был одним из самых блестящих и парадоксальных умов своего времени. Он оставил после себя большое научное наследство, сложное и противоречивое, во многом спорное, а во многом интересное и стимулирующее. И в этом наследстве первое место занимает «Кибернетика» – книга, провозгласившая рождение новой науки. Это главный труд Винера, итог всей его деятельности, который он сам называл «описью своего научного багажа».

Сама по себе эта книга не содержала каких-либо открытий, но она была нужна эпохе (как известно, общественное мнение откликается на интеллектуальные озарения лишь тогда, когда готово услышать от них некие важные для себя вещи). После Второй мировой войны в мире укрепилась вера в быстрое и простое решение всех человеческих проблем через развитие науки и техники. Эта вера привела к обожествлению чудотворцев-технократов, росту популярности научной фантастики, к всеобщему увлечению проблемой освоения космоса и возвращению моды на великих ученых. В подобной атмосфере общественное мнение никак не могло пройти мимо такого перла, как «искусственный разум». Соответственно, человек, который свел воедино разрозненные и не до конца осмысленные даже специалистами находки, придумал эффектное название и провозгласил великую цель, просто не мог не стать суперзвездой, «чем-то вроде фигуры общественного значения».

По своим научным достижениям Винер был одним из нескольких ученых, которые заслуживали занять это место. Но по сравнению с остальными своими «конкурентами» (за исключением разве что Андрея Колмогорова, достижениям которого сам Винер вполне отдавал должное), он выделялся куда более широким, чем они, социальным и гуманитарным кругозором и, разумеется, страстью популяризатора. Поэтому мировая слава Норберту Винеру досталась по заслугам.

* * *

Винер весьма облегчил задачу своих биографов, написав на склоне лет две книги воспоминаний: одну – о детстве и годах учения («Бывший вундеркинд»), другую – о профессиональной карьере и творчестве («Я – математик»).

Норберт Винер родился 26 ноября 1894 года в г. Колумбия (штат Миссури), в семье иммигранта. Его отец, Лео Винер (1862–1939), уроженец местечка Белосток, тогда принадлежавшего Российской империи, в молодости учился в Германии, а затем переселился за океан, в США. Там он со временем стал видным филологом, числился профессором современных языков в Миссурийском университете и к моменту рождения сына состоял профессором славянских языков Гарвардского университета в г. Кембридж близ Бостона (штат Массачусетс). В этом – американском – Кембридже в 1915 году обосновался Массачусетский технологический институт (MTI), ныне ведущий технический вуз страны. Таковым он стал не без участия Норберта Винера.

Лео Винер был последователем Л. Н. Толстого и переводчиком его произведений на английский язык (он перевел 24 тома сочинений русского графа). Как ученый проявлял весьма широкие интересы и не отступал перед рискованными гипотезами. Эти его качества унаследовал Норберт Винер, отличавшийся, по-видимому, большей методичностью и глубиной.

По семейному преданию, Винеры происходят от еврейского ученого и богослова Моисея Маймонида из Кордовы (1135–1204), лейб-медика при дворе султана Саладина Египетского. Норберт Винер с гордостью повторял эту легенду, не ручаясь, однако, за ее достоверность. Особенно восхищала его разносторонность Маймонида.

Будущий основатель кибернетики был в детстве «вундеркиндом», чему немало содействовал отец, занимавшийся с сыном по собственной программе. Норберт в семь лет читал Дарвина и Данте (тогда же им был написан первый научный трактат о дарвинизме), в одиннадцать окончил среднюю школу, в четырнадцать – высшее учебное заведение, Тафтс-колледж, где получил свою первую ученую степень бакалавра. «Из меня получился нелюдимый и неуклюжий подросток с весьма неустойчивой психикой», – пишет о своей жизни «чудо-ребенка» в книге «Бывший вундеркинд» создатель кибернетики Норберт Винер. После окончания Тафтс-колледжа он учился в магистратуре Гарвардского университета, в семнадцать лет стал магистром, а в восемнадцать – доктором философии по специальности «математическая логика». Титул доктора философии в данном случае не является только данью традиции, так как Винер сначала готовился к философской карьере, посещал семинар Дж. Ройса и лишь впоследствии отдал предпочтение математике. Общегуманитарная и философская подготовка юноши нашла себе место при выработке проекта новой науки и в книгах, которые он написал.

Гарвардский университет предоставил молодому талантливому доктору стипендию для поездки в Европу. В 1913–1915 годах Норберт Винер, по его собственному выражению, «вкусил радость свободного труда». Он посещает Кембриджский университет в Англии и Геттингенский в Германии, но в связи с войной возвращается в Америку и заканчивает свой вояж в Колумбийском университете (Нью-Йорк). Это учебное заведение показалось ему после Европы весьма провинциальным, он вспоминает: «Бесконечные претензии, которые я предъявлял всем и каждому по поводу того, что со мной недостаточно считаются, и неумение играть в бридж сделали меня притчей во языцех всего общежития».

В английском Кембридже Винер занимался у знаменитого Бертрана Рассела, который в начале века был ведущим авторитетом в области математической логики, и у Дж. X. Харди, известного математика, специалиста по теории чисел. Впоследствии Винер писал с самоиронией: «Рассел внушил мне весьма разумную мысль: человек, собирающийся специализироваться по математической логике и философии математики, мог бы знать кое-что и из самой математики».

Бертран Рассел – знаменитый английский философ, математик, логик и общественный деятель, лауреат Нобелевской премии в области литературы за 1950 год. Он прожил бурную жизнь: был пацифистом, социалистом (однако в пух и прах раскритиковал советскую власть после поездки в Россию в 1919 году), несколько раз сидел в тюрьме за свою общественную деятельность (когда это случилось в последний раз, ему было 89 лет), был трижды женат и умер в возрасте 97 лет от гриппа.

Рассел создал концепцию логического атомизма {43}43
  В соответствии с логическим атомизмом весь мир представляет собой совокупность не связанных друг с другом атомарных фактов. Философия логического атомизма утверждает существование множества единичных вещей и отрицает какое-либо единство, целостность, состоящую из этих вещей. Несостоятельность логического атомизма в конечном счете была признана и его сторонниками.


[Закрыть]
и заложил основы философии логического анализа {44}44
  Философия логического анализа является частью аналитической философии, сводящей данную область знания к анализу языковых и понятийных средств познания, исследованию преимущественно логических, логико-лингвистических, семиотических проблем.


[Закрыть]
. Особое место в работах ученого занимает разработка философских аспектов математики. Он показал, что математика идентична формальной логике и базируется всего на нескольких принципах.

Для получения фундаментального математического образования Винер отправился в Геттинген, где занимался у крупнейшего немецкого математика Давида Гильберта и слушал лекции феноменолога Эдмунда Гуссерля. Установившиеся личные связи с Гильбертом сыграли, пожалуй, определяющую роль в становлении Винера – основателя новой науки.

Математик-универсал Гильберт был убежден в целостности математической науки, а также в единстве математики и естествознания, что являлось нетипичным для того времени. В 1900 году он сформулировал 23 проблемы, решение которых, по мнению ученого, способствовало дальнейшему развитию математики (так и получилось – на сегодня решены 18 проблем из 23). Исследования Гильберта весьма значительно повлияли на развитие многих разделов математической науки. К 1922 году у него сложился обширный план формализации всей математики, и хотя проблема оказалась глубже и сложнее, чем представлялось изначально, вся работа и по сей день идет по путям, намеченным Гильбертом.

Винер смотрел на Гильберта как на математика, каким бы он хотел стать, «сочетавшего необычайную силу абстракции с житейским чувством физической реальности». Однажды Норберт Винер делал доклад в Геттингенском университете, где работал знаменитый немецкий математик. Насколько это было для него важно, становится понятным хотя бы из того, что много лет спустя основатель кибернетики посвятил данному событию более двенадцати страниц автобиографии. После доклада все, как обычно, отправились на совместный ужин, во время которого Гильберт начал распространяться о выступлениях, которые ему довелось выслушать за годы жизни в Геттингене, не преминув сказать несколько слов и о Винеровском «бенефисе»: «Доклады, с которыми выступают в наши дни, намного хуже, чем это было раньше. В мое время сделать доклад было искусством. Люди долго готовились к тому, что они хотели сказать, и их выступления были хорошими. Теперь же молодые люди больше не в состоянии сделать хорошего доклада. Особенно с этим плохо у нас, в Геттингене. Мне кажется, что самые плохие доклады в мире делаются в Геттингене. В этом году они были особенно плохи. Были – впрочем, нет, я совсем не слышал хороших докладов. Недавно это было совсем плохо. Но сегодня было нечто исключительное… Сегодняшний доклад был худшим из всех, когда-либо слышанных здесь».

В 1915 году Винер получил место ассистента на кафедре философии в Гарварде, но только на год. В поисках счастья он сменил ряд мест, работал на заводах «Дженерал электрик», был журналистом («несколько месяцев перебивался литературной поденщиной для газет»), попытался служить в армии США («необходимость жить в бараках приводила меня в отчаяние»), но не смог из-за плохого зрения. Вообще, переход к размеренной профессиональной карьере будущий ученый совершил лишь в 1919 году, когда устроился на кафедру математики MTI, где (с перерывами на многочисленные зарубежные поездки) проработал всю оставшуюся жизнь, немало способствуя превращению скромного высшего учебного заведения в кузницу нобелевских лауреатов.

В 1926-м после длительного периода ухаживания Винер вступил в брак с Маргаритой Энгеман, американкой немецкого происхождения. В семье родились две дочери – Пегги (уменьшительное от Маргарет; дочь назвали в честь матери) и Барбара. Надо отдать должное Маргарет – она была надежным другом, сиделкой и хозяйкой в доме у своего непростого в совместной жизни мужа. Они почти не расставались, даже во время многочисленных и продолжительных поездок в Европу и Китай. Общение в семье происходило на странной смеси английского и немецкого языков, причем ее глава часто употреблял «детские» окончания, а свою жену уважительно называл полным именем Маргарита (Marguerita) – совсем не по-английски. Свидетелей тому нет, это было нечто внутреннее, защищенное от внешних взглядов, почти интимное, но сохранились письма.

Отношения в семье хорошо иллюстрирует такой, например, забавный случай. Когда Винеры переехали на новую квартиру, жена положила мужу в бумажник листок, на котором записала их новый адрес, иначе он мог бы не найти дорогу домой. Тем не менее, в первый же день, когда ему на работе пришла в голову очередная идея, он полез в бумажник, достал оттуда листок с адресом, написал на его обороте несколько формул, понял, что идея неверна, и выкинул листок.

Вечером, как ни в чем не бывало, Винер поехал по своему прежнему адресу. Когда обнаружилось, что в старом доме уже никто не живет, он в полной растерянности вышел на улицу. Внезапно его осенило. Он подошел к стоявшей неподалеку девочке и сказал: «Извините, возможно, вы помните меня… Я – профессор Винер, и моя семья недавно переехала отсюда. Вы не могли бы сказать, куда именно?» Девочка выслушала его очень внимательно и ответила: «Да, папа, мама так и думала, что ты это забудешь!» Правда, сама дочь Винера через много лет на вопрос, насколько эта история соответствует истине, ответила: «Да, все примерно так и было, за исключением того, что папа прекрасно знал в лицо своих детей».

Винер очень любил «своих девочек», но не хотел, чтобы они повторили его судьбу «ребенка-вундеркинда», а тем более – чтобы они всю жизнь несли клеймо «дочерей Норберта Винера». О своих детях он писал так: «Мы не избежали обычных трений между родителями и детьми; мое научное положение, например, вызывало у них обеих некоторое чувство обиды. Пегги частенько говорила: «Мне надоело быть дочерью Норберта Винера. Я хочу быть просто Пегги Винер». Я не пытался перекраивать дочерей на свой лад, но уже сам факт моего существования неизбежно оказывал на них определенное давление, и с этим я ничего не мог поделать.

Я гордился ими, но не стремился сделать из них вундеркиндов. Особенное чувство удовлетворения я испытал однажды, когда Барбара, прочтя в учебнике какие-то рассуждения о латиноамериканцах, сказала: «Знаешь, папа, автор этой книги, кажется, относится к латиноамериканцам очень покровительственно. У них это, наверное, вызывает ненависть?» – «Черт возьми, – ответил я, – а ты здорово проницательна».


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации