Электронная библиотека » Андрей Барановский » » онлайн чтение - страница 13


  • Текст добавлен: 19 июня 2023, 17:41


Автор книги: Андрей Барановский


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 13 (всего у книги 27 страниц)

Шрифт:
- 100% +

б) Период кровоизвлечения. После разрушения достаточного количества сосудов пиявка начинает за счет перистальтических сокращений стенок глотки заглатывать кровь вместе с выделяющимся в ранку секретом собственных слюнных желез. Это видно по периодически пробегающим по телу животного волнам сокращений. Каждая волна «гонит» проглоченную порцию крови к задним мешкам, начиная с которых идет заполнение желудка. Эти волны, вначале достаточно редкие, следуют все чаще и чаще. Пиявка постепенно увеличивается в размерах. Как уже указывалось, между глоткой и желудком имеется мышечный сфинктер, позволяющий создать достаточное разряжение при присасывании, а также впоследствии насосать в глотку порцию крови. Предполагаем, что питание происходит не непрерывно, а дискретно, по мере наполнения глотки кровью, что вызывает возникновение волны сокращения, перегоняющей кровь в желудок. В свою очередь скорость заполнения глотки определяется степенью повреждения сосудов.

в) Период свободного сосания. Если до этого волны сокращений чередовались периодами покоя, то следующий период – период свободного сосания – характеризуется непрерывным, друг за другом, возникновением волн сокращений: новая волна возникает в области головного конца в момент окончания предыдущей на хвосте. Этот период имеет большое клиническое значение, так как появление признаков свободного сосания, по нашему мнению, свидетельствует о достижении определенных качественных изменений в зоне действия (зона действия – участок тканей, непосредственно прилежащий к месту прикрепления пиявки, в пределах которого первично распространяется вводимый ею секрет, происходит кровоизвлечение из поврежденных микрососудов, и возникают ответные реакции организма).

Если есть признаки свободного сосания, это говорит о разрушении достаточного количества микрососудов и полной блокаде механизмов свертывания, что позволяет пиявке свободно заглатывать истекающую кровь. Надо отметить, что свободного сосания пиявке удается достичь далеко не всегда, но если оно появляется, увеличение объема тела происходит очень быстро. Пиявка раздувается на глазах и не позже чем через 3–5 минут отваливается, чему предшествует так называемый период «последнего глотка».

г) Период «последнего глотка». Когда, казалось бы, пиявка готова лопнуть от насосанной крови, она отрывает зад-нюю присоску, создающую перегиб на вздувшемся теле, чтобы освободившееся место заполнить еще несколькими глотками пищи.

При заполнении желудка пиявки кровью и достижении определенной степени растяжения его стенок происходит торможение соответствующих нервных центров (Lent C. M., Dickinson M. H., 1987), челюсти вновь «втягиваются» к глотке, и пиявка отпускает свою жертву (до этого момента она продолжает цепко держать ее, насасывая кровь).

Давно замечено, что оторвать присосавшееся животное крайне сложно, недаром в народе говорят: «Присосался, как пиявка». Исследования показывают, что в момент питания пиявка не реагирует на большинство раздражителей – свет, касание ее тела. Даже нанесение болевых раздражений небольшой силы не заставят ее отпустить свою жертву. Более того, у поевшего животного невозможно вызвать реакции пищевого поведения, так как соответствующие нервные центры рефрактерны, а следовательно, пиявка, «вкусившая» крови и даже по какой-либо причине не насосавшая полностью, не будет искать другого места и не будет наносить новых укусов.

Длительность стадии кровоизвлечения может быть различной: от 15 минут до 2 часов и более, что определяется рядом факторов, обусловленных как состоянием животного, так и местом приставки и обменными процессами в тканях. Так, например, при постановке пиявок на слизистые оболочки (полость рта, влагалище, носовая полость), где «получить пищу» значительно легче, пиявки почти всегда «добиваются» признаков свободного сосания, а общая длительность процедуры с момента приставки до самостоятельного «отхождения» пиявки редко превышает 30 минут. Характер протекания периода кровоизвлечения дает врачу много информации и позволяет делать прогноз эффективности проведенной процедуры.

После еды животное, находящееся в естественной среде обитания (водоеме), как уже говорилось, становится малоподвижным и стремится где-нибудь спрятаться. Это и понятно, ведь карманы ее желудковой кишки полностью заполнены, тело вздулось, распираемое поглощенной кровью. В таком состоянии пиявка может легко стать добычей хищников, поэтому и ищет затененные, защищенные места.

Наши измерения показывают, что в первые 7 дней после еды происходит некоторое уменьшение массы пиявок, что связано с экскрецией воды из поглощенной крови. По данным C. M. Lent и соавторов (1988), экскреция плазмы и обусловленное ею повышение концентрации форменных элементов в поглощенной пиявкой крови начинается уже в процессе питания животного и длится 4–6 дней. Поглощенная кровь в течение всего срока нахождения в желудковой кишке пиявки остается в жидком виде, то есть не сворачивается. Кроме того, она не «портится», а следовательно, блокированы процессы «распада» белков. Механизмы, обусловливающие эти два явления (длительное несвертывание крови и ее консервацию), изучены крайне слабо, и если относительно первого мы что-то знаем благодаря изучению клинических эффектов гирудотерапии, то второе во многом остается тайной за семью печатями.

Большинство исследователей связывают несвертывание крови с действием биологически активных веществ, выделяемых слюнными железами пиявки и заглатываемых ею вместе с кровью. Как будет показано далее, состав компонентов этих веществ обеспечивает блокирование всех основных механизмов инициирования первичного и вторичного свертывания, а также разрушение сгустков в случае их образования. Кроме того, возможно, в этом процессе принимает участие Aeromonas hydrophila (см. главу о бактериях-симбионтах 2.3). И, наконец, хотя это и не доказано к настоящему времени, возможно, какую-то роль играет и выстилка желудка. В любом случае обращает на себя внимание чрезвычайная длительность сохранения жидкого состояния крови, что совершенно очевидно требует дополнительных исследований. Так, неясно, происходит ли однократное поглощение веществ слюнных желез во время питания или/и в последующем они по мере необходимости выделяются и/или заглатываются животным? Каковы механизмы, стимулирующие бактерии-симбионты на выработку нужных для пиявки веществ в необходимом количестве, в том числе и «пиявочные витамины», и как регулируется этот процесс?

Один раз наевшись, пиявки могут достаточно долго обходиться без пищи. В западной литературе наиболее часто, со ссылкой на различные работы C. M. Lent и данные R. T. Sawyer (1986), указывают срок от 6 до 12 месяцев. С нашей же точки зрения, говоря о периоде голодания пиявки, прежде всего необходимо четко различать два понятия:

● время, которое пиявка сможет прожить после того, как она максимально наелась;

● время, через которое она вновь готова поглощать пищу.

О каком периоде идет речь в работах C. M. Lent, не совсем ясно. Если же говорить о максимальном периоде выживания взрослой половозрелой пиявки массой 5–6 г, то после кормления в условиях искусственного содержания она может обходиться без пищи около 2–2,5 лет. В течение года идет постепенное потребление запасов крови, содержащейся в желудке животного, а в течение следующего периода пиявка живет за счет собственных тканей и в результате может потерять в массе до 80–85 %. При этом она не только худеет, но и уменьшается в длину, как бы проходя обратное развитие, что также представляет определенный интерес для исследований. В естественных условиях, где пиявка вынуждена вести гораздо более активный образ жизни, скорость потребления пищевых запасов идет быстрее. Кроме того, ослабленное животное, скорее всего, станет добычей других хищников.

Несмотря на способность столь долго голодать, медицинская пиявка готова вновь потреблять пищу уже через месяц после кормления, а иногда и раньше, однако при создании условий, максимально приближенных к природным, делает это неохотно и легко отваливается. С каждым месяцем голодания она становится все агрессивнее и активнее при отыскании пищи и нападении, а примерно через 4–5 месяцев достигает так называемой «терапевтической годности», то есть достаточной активности при отыскании пищи, нападении и насасывании крови. Однако отметим, что в это время ее желудок еще содержит остатки крови животного, на котором она питалась последний раз.

При гистологических исследованиях слюнных железистых клеток в этот период голодания в их цитоплазме обнаруживается большое количество содержащих секрет пузырьков (гранул), которые увеличиваются до 1 мкм и полностью заполняют не только тело клетки, но и весь выводной канал (Забкувене Д. В., Синявичене Д. П., 1976), свидетельствуя о максимальной готовности животного к еде (к лечебному применению). При этом в работах американских исследователей показано, что степень заполнения тел клеток гранулами у искусственно выращиваемых животных значительно выше, чем у диких, что безусловно говорит об их более высокой ценности для лечения.

Таким образом, знание основных закономерностей пищевого поведения пиявок в естественных условиях и при искусственном содержании, а также определяющих их механизмов позволяет получить максимальный лечебный эффект от применения медицинских пиявок.

2.5. Биологически активные вещества секрета слюнных желез медицинских пиявок

Как уже указывалось в главе, посвященной истории гирудотерапии (глава 1), в течение многих веков пиявок использовали исключительно в качестве средства для местного кровопускания. И лишь в конце XIX века, в 1884 году, J. B. Haycraft первый получил из пиявки вещество, препятствующее свертыванию крови, названное впоследствии гирудином. Эта работа положила начало научному этапу развития гирудотерапии, но лишь через 70 лет, в 1955 году, F. Markwardt выделил это вещество в чистом виде. До настоящего времени большинство врачей рассматривают пиявку лишь как источник гирудина, действием которого объясняется блокада механизмов свертывания крови. На самом же деле секрет слюнных желез Hirudo medicinalis представляет собой чрезвычайно сложную композицию биологически активных веществ. Сегодня их насчитывается около 20, однако можно с уверенностью сказать, что изучены далеко не все.

Одной из наиболее сложных задач, стоящих перед исследователями, является получение секрета слюнных желез. Ввиду того, что железы не образуют отдельного органа, который можно было бы выделить хирургическим путем, исследования проводились экстрагированием веществ из тканей передней части тела животного, отсекаемого на уровне VII (по J. B. Haycraft) или X (по S. Apathi) сегмента. Полученные вещества в дальнейшем подвергались различным способам очистки.

Лишь в 1985 году российскими учеными И. П. Басковой и Г. И. Никоновым был разработан способ получения слюны, основанный на способности пиявки выделять секрет в ответ на раздражение концентрированным раствором хлористого натрия соответствующих рецепторов области присоски. Второй способ был предложен М. Rigbi и соавторами в 1987 году и состоял в кормлении пиявки имитирующим кровь раствором. Пиявка вместе с раствором заглатывала и выделяемую слюну, а после кормления содержимое желудка выдавливалось и исследовалось. Этот метод чаще всего используется сегодня западными исследователями. Он позволил открыть многие из известных к настоящему времени соединений. Однако понятно, что содержимое желудка или, как его называют в работах западных авторов, «разведенная слюна пиявки» (leech diluted saliva), недостаточно точно отражает реальный состав секрета железистых клеток, поскольку содержит примесь веществ, выделяемых пищеварительными железами пиявки, бактерией-симбионтом или иной флорой.

Совместно с С. С. Сергеевой нами выполнена работа (материал патентуется), позволившая на основе электрофизиологических исследований разработать метод получения достаточного количества чистого секрета, лишенного каких-либо посторонних примесей. Животное при этом минимально травмируется и впоследствии способно к спариванию и размножению.

Полученный секрет оказался, как уже было указано, достаточно сложным комплексом, на 85–90 % состоящим из воды. В сухом остатке можно выделить три больших группы веществ:

● белки и пептиды;

● липиды;

● полисахариды.

И около 8 % соединений сухого остатка нами не идентифицировано.

Мы провели анализ динамики выделения гликопротеидов, полисахаридов, гирудина, бделлинов, дестабилазы и гиалуронидазы в секрете, полученном по методу М. Rigbi и соавторов в модификации И. П. Басковой (Баскова И. П. и др., 2001). Полученные результаты подтверждают данные И. П.Басковой и соавторов о том, что в процессе питания животное выделяет секрет различного состава. Мы считаем, что выделение на разных стадиях питания животного слюны различного состава функционально обосновано и обеспечивает решение различных задач. Сначала – разрушение тканей и микрососудов жертвы, затем – блокаду механизмов гемостаза, а на последнем этапе – противодействие защитным реакциям, развивающимся в тканях в ответ на повреждение. Полученные результаты дают достаточно серьезные основания считать, что железистые клетки неоднородны и вырабатывают секрет различного состава. Учитывая вышесказанное, нам представляется целесообразным объединить известные к настоящему времени биологически активные соединения медицинских пиявок в четыре группы.

2.5.1. Литические соединения

Они обеспечивают проникновение веществ слюны, разрушение тканей жертвы, расширение раны, расплавление микрососудов. Кроме того, литические соединения влияют на проницаемость межклеточного матрикса дермы. При фракционном отборе слюны в процессе питания пиявки вещества этой группы обнаружены нами только в первых и в средних, но не встречаются в последних порциях секрета. К этой группе мы относим ряд соединений, охарактеризованных ниже.

1. Пептидаза (дестабилаза) впервые выделена и описана в 1985 году (Баскова И. П., Никонов Г. И.). В литературе рассматривается как фермент, разрушающий определенный тип связей в молекуле белка – ε-(γ-глутамил) – лизиновых. ε-(γ-глутамил) – лизиновые-изопептидные связи, образующие поперечные сшивки («кросс-линкинги»), широко представлены в плазменных, мембранных и структурных белках.

В частности, этот тип связей образуется при стабилизации фибрина, а их разрушение обеспечивает фибринолитическую активность секрета. Пептидаза представляет собой чрезвычайно интересное соединение, способное воздействовать на функциональную активность различных клеток: эндотелиоцитов, лимфоцитов, тромбоцитов, макрофагов и др.

2. Гиалуронидаза – фермент, катализирующий реакции гидролитического расщепления и деполимеризации гиалуроновой кислоты и родственных ей соединений – кислых мукополисахаридов. Учитывая, что гликозоаминогликаны гиалуроновой кислоты входят в состав базальной мембраны (на которой расположены клетки зародышевого слоя эпидермиса), межклеточного матрикса, а также базальных мембран капилляров, она играет большую роль не только как фактор проникновения, но и в возникновении последующих физиологических реакций. Следует отметить, что в составе слюны пиявки обнаружены две гиалуронидазы. Они отличаются по способности воздействовать на хондроитинсульфат.

3. Коллагеназа впервые выделена в 1987 году М. Rigbi и соавторами. Она вызывает гидролиз волокон коллагена I типа и сходна с коллагеназой человека. Возможно, коллагеназа участвует в ингибировании коллаген-индуцированной агрегации тромбоцитов.

2.5.2. Антигемостатики

Они препятствуют развитию механизмов свертывания крови, чем обеспечивают свободное истечение крови из поврежденных сосудов во время всего периода питания пиявки. Антигемостатики начинают выделяться с момента разрушения микрососудов и появления крови в ранке, поэтому обнаруживаются в средней фракции слюны. Попадая с кровью в кишечник животного, поддерживают ее в жидком состоянии. Следует отметить, что в составе секрета слюны пиявки обнаружены вещества, блокирующие все основные механизмы активации системы свертывания крови (первичный и вторичный). К числу соединений этой группы следует отнести следующие.

1. Калин – ингибитор адгезии и агрегации тромбоцитов, а также активации фактора Виллебранда. Впервые описан R. Munro и соавторами в 1991 году и имеет молекулярную массу в 65 кДа.

2. Апираза – ингибитор агрегации тромбоцитов инициированной АДФ. Впервые выделена в 1987 году M. Rigbi и соавторами. Описаны две ее изоформы – низко– и высокомолекулярная (45 и более 400 кДа соответственно). Более крупный фермент может быть олигомером мелкого, но также может быть и самостоятельным соединением. Наибольшая активность – при pН 7,5. Апираза вызывает гидролиз аденозиновых нуклеотидов (АТФ и АДФ), причем с примерно равной начальной скоростью.

3. Антагонист PAF (фактора активации тромбоцитов) – препятствует адгезии и активации тромбоцитов, миграции тромбоцитов и нейтрофилов в очаг поражения, а также сокращению гладкомышечных клеток. PAF представляет собой фосфоглицерид, выделяемый в процессе иммунологических реакций нейтрофилами, базофилами и макрофагами, а также в процессе специфической активации тромбоцитов. PAF является мощным медиатором воспаления и, выделяясь в области нанесения ран, инициирует гемостаз и воспалительную реакцию. Антагонист PAF впервые описали M. Оrevu и соавторы (1992).

4. Ингибитор Ха фактора (FХaI – Factor Xa Inhibitor) – в каскаде белков плазменного гемостаза фактор Xа является ферментом, катализирующим превращение протромбина в тромбин в присутствии ионов Cа2+, фактора свертывания крови V на поверхности мембран активированных тромбоцитов или фрагментов разрушенных эндотелиальных и/или гладкомышечных клеток (иногда фактор Xа называют протромбиназой). FXaI впервые выделили из разбавленной слюны медицинской пиявки в 1988 году M. Rigbi и соавторы. Получен и рекомбинантный (искусственный) FXaI, который, как показали опыты на экспериментальных животных, оказывает защитное действие против венозного тромбообразования.

5. Гирудин – уникальный высокоспецифичный ингибитор фермента тромбина, с которым он образует прочный комплекс, тем самым блокирует все известные реакции, активатором в которых выступает тромбин:

● активацию фибриногена и превращение его в нерастворимый фибриновый сгусток;

● регуляцию V, VIII, XIII факторов свертывания;

● регуляцию компонентов системы комплемента;

● изменение функционального состояния клеток крови (моноцитов, нейтрофилов), в том числе и агрегацию тромбоцитов;

● изменение состояния эндотелиальных и гладкомышечных клеток кровеносных сосудов.

В настоящее время строение и механизм действия гирудина изучены достаточно подробно. Гирудин состоит из 65 или 66 аминокислотных остатков и имеет у пиявки более чем 20 изоформ, различающихся длиной полипептидной цепи и наличием или отсутствием некоторых аминокислотных остатков. Третичная структура ингибитора представлена тремя образованиями: компактным доменом (6–39 аминокислотных остатков) вблизи N-конца, образующим так называемое «ядро»; подвижными относительно ядра коротким пептидом (1–5 аминокислотных остатков) и длинным С-концевым хвостовым доменом (40–65 аминокислотных остатков). Методами генной инженерии получен рекомбинантный гирудин и фармацевтический препарат на его основе.

Гирудин взаимодействует с тромбином, блокирует два участка его активного центра. Тем самым блокируется доступ субстратов и, в частности фибриногена, к ферменту. За счет большого количества контактов между тромбином и гирудином образующийся комплекс исключительно прочен (Kd 10–14 M). Сродство этих веществ столь высоко, что гирудин ингибирует не только свободный тромбин, но и фермент, связанный с фибриновым сгустком.

2.5.3. Блокаторы защитных реакций организма

В эту группу нами отнесен ряд веществ полипептидной природы, которые служат ингибиторами ферментов, выделяемых различными клетками организма в ходе ответной реакции на повреждение кожи. В литературе роль этих веществ связывается с ингибированием процессов переваривания белков в кишечнике медицинской пиявки. Высказывается также предположение, что вещества этой группы выполняют защитную функцию, препятствуя повреждению внутренних структур пиявки ферментами, выделяемыми в очаге повреждения и попадающими в кишечник с поглощаемой кровью. Мы же считаем, что в процессе кровоизвлечения они блокируют проявления защитной воспалительной реакции организма (развитие спазма, отека, боли и др.) с целью обеспечения питания животного. Вещества этой группы обнаружены нами в средних и особенно последних фракциях слюны, где они присутствуют в максимальных концентрациях. Некоторые из них (например, гирустазин) имеют значение и для блокирования системы гемостаза.

1. Бделлины – группа полипептидов с небольшой молекулярной массой, среди которых выделяют бделлины А с молекулярной массой в 7 кДа (в этой группе наиболее изучен бделластазин с молекулярной массой 6,3 кДа) и бделлины В с молекулярной массой в 5 кДа. Методом равновесной хроматографии выделены многочисленные формы бделлинов А и В; они обозначены от А1 до А6 и от В1 до В6. И те, и другие являются сильными ингибиторами трипсина, плазмина и акрозина спермы. Они не блокируют активность химотрипсина, тканевого и плазменного калликреинов, субтилизина. Впервые их обнаружили H. Fritz и соавторы в 1969 году. Получена рекомбинантная форма бделластазина.

2. Гирустазин – относится к тому же семейству антистазиновых ингибиторов сериновых протеаз. Выделен в 1994 году из экстрактов медицинской пиявки. Молекулярная масса гирустазина – 5,9 кДа. Он ингибирует тканевой калликреин (но не плазменный), трипсин, химотрипсин и катепсин G нейтрофилов. Способность гирустазина блокировать тканевой калликреин – очень важное свойство, так как последний катализирует высвобождение высокоактивных кининов. Кинины через специфические рецепторы на клетках-мишенях модулируют широкий спектр биологических активностей, в том числе участвуют в поддержании нормального кровяного давления. Гирустазин также получен в рекомбинантной форме.

3. LDTI (Leech Derived Tryptase Ingibitor) – ингибитор триптазы, полученный из экстракта медицинских пиявок. Триптаза является основным компонентом секреторных цитоплазматических гранул тучных клеток и приводит к разрушению белков экстраклеточного матрикса. Известна важная роль триптазы при аллергических и воспалительных реакциях. Как и для многих уже описанных соединений, создан рекомбинантный LDTI.

4. LCI (Leech Carboxypeptidase Ingibitor) – ингибитор карбоксипептидазы А. Выделен в 1998 году и имеет две изоформы с молекулярными массами 7,3 и 7,2 кДа. Устойчив в широком диапазоне pH и температур. Так как этот ингибитор находится в составе секрета слюнных желез медицинской пиявки, можно предположить, что он может блокировать гидролиз кининов металлопротеиназами в месте прокусывания пиявкой кожи, тем самым усиливая индуцированное кининами увеличение кровотока. Создан рекомбинантный LCI.

5. Эглины – низкомолекулярные белки из экстрак-тов медицинской пиявки с молекулярными массами 8,073 и 8,099 кДа («b» и «с» формы соответственно). Впервые их описали в 1977 году U. Seemuller и соавторы. Игибируют активность α-химотрипсина, химазы тучных клеток, субтилизина и протеиназ нейтрофилов, эластазы и катепсина G. Имеют высокую устойчивость к денатурации и прогреванию. Ингибиторный спектр эглина «с» позволяет считать его одним из важнейших противовоспалительных агентов. Однако есть весьма серьезные основания полагать, что эглины, которые выделены из экстрактов медицинской пиявки, не присутствуют в секрете ее слюнных желез, а выделяются желудковой железой.

2.5.4. Вспомогательные вещества

Они способствуют стабилизации, защите, транспортировке, усилению действия других компонентов слюны. В настоящее время роль этих веществ изучена чрезвычайно мало.

Наличие в слюне большого количества липидов, как уже указывалось, позволило нам предположить возможность формирования липидно-ферментных комплексов, в которых молекулы белка или их активные участки могут «экранироваться» липидами. В результате клетки-макрофаги организма «не видят» чужих белков и не реагируют на них. Введенные вещества длительно остаются в тканях и, несмотря на чрезвычайно малое количество, оказывают значительный и длительный биологический эффект. Возможно, именно с этим связано длительное (до 24 часов) продолжение кровотечения уже после того, как пиявка отваливается и перестает вводить слюну (действие «пиявочных соединений» прекращается лишь тогда, когда введенные вещества «вымоются» из ранки истекающей кровью). Вероятно также, что с маскировкой чужеродных белков липидами связано почти полное отсутствие аллергических реакций на секрет слюны (несмотря на высокое содержание в ней чужеродных белков).

О возможности образования сложных комплексов в слюне пиявки впервые заговорил Г. И. Никонов: он предположил наличие в секрете слюны липосом. Эта проблема, безусловно, чрезвычайно сложна и требует дальнейших исследований, однако нам в нативной слюне не удалось обнаружить липосомы. Вместе с тем липиды слюны имеют большую молекулярную массу и, как показывают исследования методом ядерно-магнитного резонанса, представляют собой необычно длинные для липидов цепочки, образующие спираль с активными группами на концах, что подтверждает возможность формирования сложных пространственных образований.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации