Автор книги: Джей Берресон
Жанр: Зарубежная образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 25 страниц)
Глава 5
Нитроорганические соединения
Фрау Шенбейн, утратившая фартук в результате новаторских опытов мужа, – не первая в истории жертва взрыва созданных человеком взрывчатых веществ и, конечно, не последняя. Если химическая реакция протекает очень-очень быстро, она может обладать поистине страшной разрушительной силой. Целлюлоза – лишь одна из многих молекул, измененных человеком для получения взрывчатки. Некоторые из полученных химических соединений принесли человечеству огромную пользу, другие, напротив, причинили ему тяжкий урон. Но, как бы то ни было, эти соединения оказали на наш мир существенное влияние и изменили его лицо.
Структура взрывчатых веществ весьма разнообразна, однако в большинстве случаев молекулы этих веществ содержат нитрогруппы. Эта маленькая группа атомов, состоящая из одного атома азота и двух атомов кислорода (NO2), присоединенная в правильной позиции, изменила характер современной войны, определила судьбу целых народов, в буквальном смысле позволила человеку двигать горы.
Порох
Порох (черный порох) – первая взрывоопасная смесь, придуманная человеком, – уже в древности использовался в Китае, Индии и в Аравии. В древних китайских текстах упоминается “огненное зелье”. Состав пороха был впервые описан только в начале 1000-х годов, но и тогда точная пропорция нитратной соли, серы и углерода не была известна. Нитратная соль (селитра, “китайский снег”, “китайская соль”) представляет собой нитрат калия, химическая формула которого такова: KNO3. Углерод для пороха брали в виде древесного угля, что и объясняло черный цвет порошка.
Сначала порох использовали для салютов и фейерверков, однако к середине XI века военные научились пускать огненные стрелы. В 1067 году производство серы и селитры было взято китайским правительством под контроль.
Мы точно не знаем, когда порох прибыл в Европу. Францисканский монах Роджер Бэкон, родившийся в Англии и обучавшийся в университетах Оксфорда и Парижа, упомянул о порохе около 1260 года, за несколько лет до того, как Марко Поло вернулся в Венецию с рассказами о китайском “огненном зелье”. Бэкон был ученым и экспериментатором. Он занимался вопросами, которые сейчас мы отнесли бы к области астрономии, химии и физики. Он знал арабский язык, так что, возможно, читал и о порохе. Бэкон мог знать о разрушительной силе пороха, поскольку дал его описание в виде анаграммы, которую следовало расшифровать: семь частей селитры, пять – древесного угля, пять частей серы. Загадка оставалась нераскрытой на протяжении 650 лет, пока ее не разгадал один английский полковник[8]8
Речь идет о полковнике артиллерии Генри Уильяме Гайме. Написанная им книга о происхождении огнестрельного оружия вышла в свет в 1915 году. Однако далеко не все историки согласны с тем, что фрагмент текста Бэкона, который он расшифровал, описывал формулу пороха.
[Закрыть].
Современные типы пороха несколько различаются по составу, однако все содержат значительно больше селитры, чем указал Бэкон. Химическую реакцию взрыва пороха можно записать следующим образом:
Из этой химической реакции можно узнать соотношение реагирующих веществ и образующихся продуктов. Буквы “тв” в скобках говорят о том, что данное вещество твердое, а буква “г” указывает на то, что это – газ. Из уравнения видно, что все реагирующие вещества твердые, но в результате реакции образуется восемь газообразных молекул: три молекулы двуокиси углерода, три – окиси углерода и две – азота. Именно горячие расширяющиеся газы, образующиеся при быстром горении пороха, толкают пушечное ядро или пулю. Образующиеся твердые карбонат и сульфид калия распыляются в виде мельчайших частичек и являются причиной появления плотного дыма, сопровождающего взрыв пороха.
Первое огнестрельное оружие, появившееся между 1300 и 1325 годом, представляло собой железную трубку, заваренную с одного конца. Ее наполняли порохом, который поджигали раскаленной проволокой. По мере развития оружия – фитильный, колесцовый, кремневый замки – возникала потребность в порохе с разной скоростью возгорания. Порох для пистолетов должен был гореть быстро, ружейный – медленнее, для пушек и ракет – еще медленнее. Смесь воды и спирта использовали для получения прессованного пороха, который можно было измельчить и разделить на тонкую, среднюю и грубую фракцию. Чем мельче порошок, тем быстрее горение. Так стало возможным получать порох для различных нужд. Вместо воды для изготовления пороха часто брали мочу рабочих пороховых заводов, поскольку считалось, что моча людей, пьющих много вина, способствует получению наиболее мощного пороха. Для получения пороха высшего качества также подходила моча священника, а лучше епископа.
Химия взрыва
Движущей силой взрыва является образование газов и их быстрое расширение под действием реакционного тепла. Газы занимают гораздо больший объем, чем аналогичное количество твердого вещества или жидкости. Разрушительное действие взрыва связано с ударной волной, вызванной очень быстрым изменением объема вещества при образовании газов. Ударная волна, образующаяся при взрыве пороха, распространяется со скоростью несколько сотен метров в секунду, однако в случае более мощной взрывчатки (такой как тринитротолуол или нитроглицерин) скорость ударной волны может достигать шести тысяч метров в секунду.
При любом взрыве выделяется большое количество тепла. Реакции, сопровождающиеся выделением тепла, называют экзотермическими. Большое количество тепла способствует активному расширению газов: чем выше температура, тем больше объем газовой смеси. Выделение тепла связано с различием между молекулами, расположенными в двух частях уравнения реакции. Образующиеся молекулы (находящиеся в правой части уравнения) обладают меньшей энергией, запасенной в их химических связях, чем исходные молекулы (находящиеся слева). Образующиеся вещества более устойчивы. В частности, в реакциях взрыва нитросоединений образуется чрезвычайно устойчивая молекула азота N2. Стабильность этой молекулы связана с прочностью тройной связи, соединяющей два атома азота.
Структура молекулы азота
Прочность тройной связи означает, что для ее разрыва требуется много энергии. Напротив, при образовании тройной связи высвобождается большое количество энергии, что и происходит при взрыве.
Кроме образования газов и выделения тепла, третьим важным свойством реакций взрыва является их высокая скорость. Если бы реакция протекала медленно, выделяющееся тепло успевало бы рассеяться, а газ диффундировал в окружающую среду, не оказывая значительного давления и не вызывая разрушительной ударной волны. Требующийся для реакции кислород должен содержаться в самой взрывчатке. Атмосферный кислород нельзя использовать по той причине, что он не может поступать в реакцию достаточно быстро. Именно по этой причине нитросоединения, в которых азот и кислород соединены между собой, часто бывают взрывоопасными, а другие соединения, содержащие не связанные между собой азот и кислород, таковыми не являются.
Сказанное можно проиллюстрировать на примере изомеров. Как мы уже знаем, изомеры – это вещества с одинаковой химической формулой, но разной структурой. Лоро-нитротолуол и пара-аминобензойная кислота с одинаковой химической формулой C7H7NO2 имеют по семь атомов углерода, семь атомов водорода, одному атому азота и два атома кислорода, но атомы в этих двух молекулах расположены в разной последовательности.
n-нитротолуол
n-аминобензойная кислота
Пора- или n-нитротолуол (приставка пора означает, что группы CH3 и NO3 располагаются в противоположных позициях в кольце) может взрываться, тогда как n-аминобензойная кислота ничуть не взрывоопасна. Возможно, вы даже втирали это вещество себе в кожу летом: n-аминобензойная кислота, или ПАБА, является активным ингредиентом многих солнцезащитных кремов. Такие вещества, как ПАБА, поглощают ультрафиолетовый свет как раз с такой длиной волны, которая является наиболее опасной для клеток кожи. Поглощение света с определенной длиной волны связано с присутствием в молекуле чередующихся одинарных и двойных связей, а также атомов кислорода и азота. Изменение числа связей или атомов в таких структурах изменяет длину волны поглощаемого света. Существуют и другие вещества, поглощающие свет со специфической длиной волны, которые можно использовать в составе кремов от солнца, – при условии, что они не очень быстро смываются водой, нетоксичны, не вызывают аллергии, не имеют неприятного вкуса или запаха и не разлагаются на солнце.
Взрывоопасность соединений, содержащих нитрогруппы, зависит от количества этих групп. Нитротолуол имеет только одну нитрогруппу. Дальнейшее нитрование может привести к добавлению еще одной или двух нитрогрупп с образованием соответственно ди– или тринитротолуола. Хотя нитротолуол и динитротолуол могут взрываться, они не вызывают взрыва такой силы, как тринитротолуол (ТНТ, тротил).
Нитрогруппы показаны стрелками
Новые взрывчатые вещества начали появляться в XIX веке, когда химики занялись изучением взаимодействия азотной кислоты с органическими соединениями. Спустя несколько лет после того, как Фридрих Шенбейн испортил фартук своей жены, итальянский химик Асканьо Собреро, работавший в Турине, синтезировал новое взрывчатое нитросоединение. Собреро изучал влияние азотной кислоты на некоторые органические вещества. Он поместил глицерин, который легко выделить из животного жира, в охлажденную смесь серной и азотной кислот, а затем вылил полученную смесь в воду. Образовался слой масляной жидкости, которую теперь называют нитроглицерином. Далее он выполнил традиционную в те времена и немыслимую сегодня манипуляцию: попробовал новое вещество на вкус и записал, что “следовое количество вещества, помещенное на язык, но не проглоченное, вызывает множественные пульсации, сильную головную боль и слабость в конечностях”.
Позднее изучение причин сильной головной боли у рабочих, занятых в производстве взрывчатых веществ, показало, что головная боль связана с расширением кровеносных сосудов под действием нитроглицерина. В результате нитроглицерин стали применять как лекарство от стенокардии.
Глицерин
Нитроглицерин
Расширение суженных сосудов, снабжающих кровью сердечную мышцу, обеспечивает нормальную подачу крови и снимает боль. Теперь известно, что в организме от нитроглицерина отщепляется молекула окиси азота NO, которая и вызывает расширение сосудов. Исследования действия окиси азота привели к созданию лекарства от импотенции, виагры, действие которого также основано на сосудорасширяющих свойствах NO.
Кроме того, в организме окись азота участвует в поддержании кровяного давления, передаче межклеточных сигналов, формировании долгосрочной памяти, а также в пищеварении. На основании этих исследований были созданы лекарства для нормализации кровяного давления у новорожденных и для лечения больных после перенесенного инсульта. В 1998 году Нобелевскую премию в области медицины получили Роберт Ферчготт, Луис Игнарро и Ферид Мурад за открытие роли окиси азота в организме. По иронии судьбы, сам Альфред Нобель, сделавший состояние на производстве динамита из нитроглицерина, что позволило ему учредить Нобелевскую премию, отказался лечиться нитроглицерином. Он умер от стенокардии, так и не поверив, что нитроглицерин способен врачевать. Он считал, что это вещество способно лишь вызвать головную боль.
Нитроглицерин – очень неустойчивая молекула. Он взрывается при нагревании или сильном ударе.
В результате взрыва образуются облака быстро расширяющихся газов и большое количество тепла. В отличие от пороха, при взрыве которого давление в шесть тысяч атмосфер возникает за тысячную долю секунды, при взрыве эквивалентного количества нитроглицерина за миллионную долю секунды создается давление в двести семьдесят тысяч атмосфер. Порох сравнительно безопасен в обращении, а вот нитроглицерин ведет себя чрезвычайно непредсказуемо. Он способен взрываться спонтанно при встряхивании или нагревании. Вот почему людям пришлось найти надежный и безопасный способ обращения с этим строптивым веществом, а также способ его детонации.
Динамит Нобеля
Альфреду Бернхарду Нобелю, родившемуся в 1833 году в Стокгольме, пришла идея использовать для взрыва нитроглицерина вместо фитиля (от которого нитроглицерин просто медленно горит) небольшое количество пороха, взрыв которого вызывает более сильный взрыв нитроглицерина. Это была великолепная идея. Она сработала, и данный принцип до сих пор используется во многих взрывных устройствах, применяемых в горном деле и строительстве. Нобель решил проблему осуществления взрыва, но ему оставалось еще решить проблему предотвращения нежелательного взрыва.
Семья Нобелей владела заводом по производству взрывчатки, на котором в 1864 году началось производство нитроглицерина для коммерческих нужд, в частности, для прокладки шахт и туннелей. В сентябре того же года в одной из заводских лабораторий произошел взрыв. Погибли пять человек, в том числе Эмиль Нобель, младший брат Альфреда. Причины случившегося так и не были установлены, но городские власти возложили вину на нитроглицерин. Однако Нобель не испугался и построил новую лабораторию на понтоне, пришвартовав ее на озере Меларен за городской чертой Стокгольма. Потребность в нитроглицерине росла по мере того, как стали понятны его преимущества перед менее мощным порохом. К 1868 году Нобель основал заводы в одиннадцати странах Европы и даже открыл дело в Сан-Франциско.
Нитроглицерин часто был загрязнен кислотой, использовавшейся в производстве и медленно разлагавшейся. Образующиеся при этом газы иногда выбивали пробки, закрывавшие цинковые емкости, в которых нитроглицерин перевозили по морю. Кроме того, кислота разъедала баки и нитроглицерин начинал вытекать. Для изоляции баков и впитывания вытекающей жидкости использовали древесные опилки, однако этих мер было явно недостаточно. Невежество приводило к чудовищным катастрофам. Однажды нитроглицерин по ошибке использовали для смазки колес экипажа, перевозившего взрывчатку. Естественно, это привело к ужасным последствиям. В 1866 году на складе “Уэллс фарго” в Сан-Франциско взорвалась партия нитроглицерина, в результате чего погибли четырнадцать человек. В том же году пароход “Юропиан” водоизмещением семнадцать тысяч тонн взорвался у атлантического берега Панамы при выгрузке нитроглицерина. Погибли 47 человек, убытки составили более миллиона долларов. В том же 1866 году взрывами были уничтожены нитроглицериновые заводы в Германии и Норвегии. Это вызвало обеспокоенность правительств многих стран. Во Франции и Бельгии оборот нитроглицерина был запрещен. Такой же запрет предполагалось ввести и в других странах, несмотря на растущую потребность в этой невероятно мощной взрывчатке.
Нобель начал искать пути стабилизации нитроглицерина без потери мощности. Очевидным путем казалось переведение нитроглицерина в твердую форму, поэтому Нобель начал проводить эксперименты по смешиванию маслянистого нитроглицерина с такими нейтральными твердыми веществами, как древесные опилки, цемент и порошок древесного угля. До сих пор ведутся споры, было ли изобретение динамита результатом систематических поисков или счастливой случайностью. Даже если это открытие произошло случайно, Нобель оказался достаточно прозорлив, чтобы понять: кизельгур – рыхлый кремнийсодержащий природный материал, который иногда использовали в качестве упаковочного материала вместо древесной стружки, может впитывать вытекающий жидкий нитроглицерин, при этом оставаясь пористым. Кизельгур, иначе называемый диатомитом или горной мукой, представляет собой окаменевшие останки мелких морских животных или водорослей и используется в качестве фильтра при производстве рафинированного сахара, в качестве изолятора, а также для полировки металлических изделий. Дальнейшие испытания показали, что при смешивании жидкого нитроглицерина с кизельгуром (3:1) происходит образование густой пасты с плотностью шпаклевки. Кизельгур стал наполнителем для нитроглицерина, и это снизило скорость распада нитроглицерина. Теперь взрыв можно было контролировать.
Нобель назвал смесь нитроглицерина с кизельгуром динамитом (от греч. dynamis – сила). Ему можно придать любую форму, он не подвержен разложению и не взрывается самопроизвольно. К 1867 году фирма “Альфред Нобель и компания” начала производить динамит, запатентованный как “безопасный взрывчатый порошок Нобеля”. Вскоре во всем мире появились заводы по производству динамита, и состояние Нобеля начало приумножаться. Может показаться странным, что Нобель, создатель оружия, был пацифистом, однако вся жизнь этого человека полна противоречий. В детстве он был болезненным ребенком, никто не ожидал, что он доживет до зрелости, однако он пережил своих родителей и братьев. Его одновременно называли застенчивым и чрезвычайно деликатным, одержимым и крайне недоверчивым, нелюдимым и очень щедрым. Нобель был твердо уверен в том, что создание страшного оружия сможет удержать людей от войны, однако прошло более столетия, появилось новое ужасное оружие, а надежда Нобеля не оправдалась. Он умер в 1896 году, работая в одиночестве за своим столом в Сан-Ремо, в Италии. Свое гигантское состояние он завещал использовать как фонд для ежегодного вручения премий за научные достижения в области химии, физики, медицины, литературы и борьбы за мир. В 1968 году Банк Швеции в память об Альфреде Нобеле учредил премию в области экономики. Теперь эта премия тоже носит название Нобелевской, хотя сам Нобель об этом не распоряжался.
Взрывчатые вещества на войне
Изобретенный Нобелем динамит нельзя было использовать в качестве источника энергии для стрельбы из пушек, поскольку они не выдерживали его мощности. Военные хотели найти другую мощную взрывчатку, которая была бы сильнее пороха, не давала облаков черного дыма, была безопасна в обращении и позволяла быстро заряжать орудия. С начала 80-х годов XIX века в качестве “бездымного пороха” стали применять разные варианты нитроцеллюлозы или смеси нитроцеллюлозы с нитроглицерином (они и сейчас используются в патронах к стрелковому оружию). Артиллерия не предъявляла столь жестких требований к взрывчатке. Во время Первой мировой войны снаряды начиняли в основном пикриновой кислотой и тринитротолуолом. Пикриновая кислота – твердое вещество ярко-желтого цвета – впервые была синтезирована в 1771 году и сначала использовалась в качестве искусственного красителя для шелка и шерсти. Эту молекулу, представляющую собой тринитрофенол, довольно легко получить.
Фенол
Тринитрофенол, или пикриновая кислота
В 1871 году оказалось, что пикриновая кислота взрывается при наличии достаточно мощного детонатора. В снарядах ее первыми начали использовать французы (1885), а потом британцы во время Англо-бурской войны 1899–1902 годов. Однако влажная пикриновая кислота плохо детонирует, поэтому в сырую погоду орудия бездействовали. Кроме того, пикриновая кислота обладает свойствами кислоты и взаимодействует с металлами, образуя чувствительные к ударам пикраты. По этой причине снаряды взрывались при ударе и не пробивали толстые броневые плиты.
Тринитротолуол (ТНТ), похожий по химической структуре на пикриновую кислоту, лучше подходил для изготовления боеприпасов.
Толуол
Тринитротолуол (ТНТ)
Пикриновая кислота
Он не обладает кислотными свойствами, не боится влаги и имеет достаточно низкую температуру плавления, так что его легко расплавить и залить в бомбы и снаряды. Он хуже детонирует, чем пикриновая кислота, поэтому для его воспламенения требуется более сильный удар и, следовательно, он лучше пробивает броню. В молекуле ТНТ соотношение кислорода и углерода ниже, чем в нитроглицерине, поэтому при взрыве углерод не превращается полностью в углекислый газ, а водород полностью не переходит в воду. Уравнение взрыва ТНТ выглядит так:
Выделяющийся в результате реакции углерод образует дым, отличающий взрывы ТНТ от взрывов нитроглицерина и нитроцеллюлозы.
В начале Первой мировой войны Германия, обладавшая вооружением на основе ТНТ, имела очевидное преимущество перед французами и англичанами, которые все еще использовали пикриновую кислоту. Англия предприняла срочные меры для начала производства ТНТ, кроме того, большое количество взрывчатки поступало из Соединенных Штатов, благодаря чему Англия быстро смогла начать выпуск снарядов и бомб такого же качества, как Германия.
Следующее вещество, аммиак (NH3), сыграло еще более важную роль во время Первой мировой войны. Аммиак не относится к нитросоединениям, однако является исходным материалом для синтеза азотной кислоты (HNO3), необходимой для производства взрывчатки. Азотная кислота была давно известна ученым. По-видимому, знаменитый арабский алхимик Джабир ибн Хайян (латинизированное имя – Гебер), живший в VIII веке, знал об этом веществе и пытался синтезировать его путем нагревания селитры (нитрата калия) и сульфата железа (II) (тогда это вещество называли зеленым витриолом из-за цвета его кристаллов). В результате этой реакции выделялся газообразный диоксид азота (NO2), при пропускании которого через воду получался разбавленный раствор азотной кислоты.
Нитраты редко встречаются в природе, поскольку очень легко растворяются в воде и вымываются из всех пород, однако в чрезвычайно засушливых районах на севере Чили были обнаружены большие запасы нитрата натрия (так называемая чилийская селитра). На протяжении двухсот последних лет эта селитра служила источником нитрата для производства азотной кислоты. Нитрат натрия нагревают с серной кислотой. Затем образующуюся азотную кислоту отгоняют, поскольку она имеет более низкую точку кипения, чем серная кислота, конденсируют и собирают в охлажденные емкости.
Во время Первой мировой войны британский ВМФ перекрыл Германии доступ к чилийской селитре. Однако нитраты были стратегическим сырьем, необходимым для производства взрывчатых веществ, и Германия должна была найти выход из положения.
Нитратов в природе немного, хотя составляющие их элементы кислород и азот встречаются в изобилии. Наша атмосфера примерно на 20 % состоит из кислорода и на 80 % – из азота. Кислород (O2) является химически активным веществом, легко вступающим в реакции со многими другими веществами, а вот азот (N2) довольно инертен. В начале XX века методы “фиксации” азота (то есть его удаления из воздуха путем химического взаимодействия с другими веществами) стали уже известны, но не были реализованы в промышленном масштабе.
Немецкий химик Фриц Габер изучал реакцию взаимодействия азота из воздуха с газообразным водородом, приводящую к получению аммиака.
Габер смог решить проблему связывания инертного азота из атмосферы. Он подобрал условия реакции, при которых максимальный выход аммиака достигался с минимальными затратами: высокое давление, температура 400–500 °C и выведение образующегося аммиака из реакционной смеси. Большим успехом Габера был выбор катализатора, позволившего повысить скорость этой достаточно медленной реакции. Габер хотел найти способ получения аммиака для производства удобрений. В то время две трети всего мирового объема удобрений производили из чилийской селитры. В связи с исчерпанием этого источника понадобилось найти способ синтетического получения аммиака. В 1913 году в Германии был построен первый в мире завод по производству синтетического аммиака, и когда позднее англичане перекрыли Германии доступ к чилийской селитре, процесс Габера стал применяться на других заводах для получения не только удобрений, но также боеприпасов и взрывчатки. Полученный синтетическим путем аммиак вступает в реакцию с кислородом с образованием диоксида азота – предшественника азотной кислоты. Для Германии, умевшей производить аммиак для удобрений и боеприпасов, английская блокада не имела значения. Фиксация азота сыграла важнейшую роль в ходе войны.
В 1918 году Фрицу Габеру была присуждена Нобелевская премия по химии за синтез аммиака, позволивший увеличить во всем мире производство удобрений и объем сельскохозяйственной продукции. Объявление о присуждении премии вызвало бурю протеста в связи с той ролью, которую Габер сыграл в создании отравляющих газов во время Первой мировой войны. В апреле 1915 года на линии фронта у Ипра в Бельгии были открыты баллоны с хлором, что привело к гибели пяти тысяч человек. Еще десять тысяч были искалечены из-за поражения легких хлором. В тот период, когда Габер руководил программой разработки химического оружия, были протестированы и использованы и другие вещества, такие как иприт и фосген. Химическое оружие не оказало решающего влияния на ход войны, но в глазах многих ученых первое великое открытие Габера, столь важное для сельского хозяйства, не могло компенсировать гибели тысяч людей от отравления газами. Поэтому многие возражали против присуждения Габеру Нобелевской премии.
Сам Габер не видел принципиального различия между обычным и химическим оружием и был удручен подобными разговорами. В 1933 году, будучи директором престижного Института физической химии и электрохимии, Габер получил от нацистского правительства предписание уволить всех сотрудников-евреев. С необычайной смелостью Габер отказался это сделать, сообщив в ответ, что “подбирал сотрудников на протяжении сорока с лишним лет на основании их деловых качеств и характера, а не на основании происхождения их бабушки, и… не намерен менять свой подход, который считает правильным”.
На сегодняшний день ежегодное мировое производство аммиака, по-прежнему использующее процесс Габера, составляет около 140 млн. тонн, и значительная доля этого аммиака расходуется на производство самого распространенного удобрения – нитрата аммония (NH4NO3). Нитрат аммония также применяют в качестве взрывчатки в горном деле в виде смеси, состоящей из 95 % нитрата аммония и 5 % мазута. При взрыве образуются кислород, азот и водяной пар. Газообразный кислород окисляет присутствующее в смеси топливо, что повышает энергию взрыва.
Нитрат аммония при правильном обращении безопасен. Тем не менее он стал причиной нескольких катастроф, связанных с нарушением техники безопасности либо с деятельностью террористов. В 1947 году в трюме корабля, находившегося в порту Техас-Сити, штат Техас, разгорелся пожар. В это время на корабль загружали бумажные мешки с аммонийным удобрением. Пытаясь остановить пожар, команда закрыла люки, что привело к повышению давления и температуры, вызвавшему детонацию нитрата аммония. Погибли по меньшей мере пятьсот человек. Среди недавних событий можно назвать террористические акты с взрывом бомб на основе нитрата аммония во Всемирном торговом центре в Нью-Йорке в 1993 году и в федеральном здании им. Альфреда Марра в Оклахома-Сити в 1995 году.
Одно из недавно созданных взрывчатых веществ, тетранитропентаэритрит (ТЭН), к сожалению, также полюбилось террористам – из-за тех же свойств, которые делают это вещество удобным для применения в законных целях. ТЭН можно смешивать с резиной и делать так называемые пластиковые бомбы, которым легко придать любую форму. Химическое название этого вещества может показаться сложным, но его структура достаточно проста. Оно напоминает нитроглицерин, только содержит пять атомов углерода вместо трех и четыре нитрогруппы вместо трех.
Нитрогруппы выделены жирным шрифтом
Легко детонирующее, чувствительное к удару, очень мощное и практически не имеющее запаха (так что даже специально обученные собаки находят его с трудом), это взрывчатое вещество привлекало террористов. ТЭН получил известность после взрыва бомбы на борту рейса № 103 компании “Пан-Американ” над шотландским городом Локерби в 1988 году. В 2001 году пассажир самолета, направлявшегося из Парижа в Майами, пытался поджечь ТЭН, спрятанный в подошвах своей обуви. Катастрофу удалось предотвратить лишь благодаря быстрой реакции экипажа и пассажиров.
Роль взрывчатых нитросоединений не сводится только к применению на войне и в террористических актах. Смесью селитры, серы и древесного угля пользовались в горном деле уже в начале XVII века. Мальпасский туннель на юге Франции, сооруженный в 1679 году в ходе прокладки канала, соединяющего Атлантический океан и Средиземное море, был одним из многих туннелей, проложенных с помощью пороха. Для строительства железнодорожного туннеля в районе Монсени во Французских Альпах в 1857–1871 годах было использовано максимальное по тем временам количество взрывчатки, и это позволило проложить короткий путь из Италии во Францию. Новое взрывчатое вещество нитроглицерин впервые использовали для строительства железнодорожного туннеля Хусак в Норт-Адамсе, штат Массачусетс (1855–1866). Динамит помог людям решить важнейшие задачи: проложить путь через Канадские Скалистые горы и завершить строительство Канадской Тихоокеанской железной дороги (1885), построить Панамский канал длиной восемьдесят километров (открыт в 1914 году), уничтожить подводную скалу Риппл-Рок у западного побережья Северной Америки, мешавшую мореплаванию (1958; этот взрыв до сих пор остается самым мощным неядерным взрывом, осуществленным человеком).
В 218 году до н. э. карфагенский полководец Ганнибал перешел со своей армией и четырьмя десятками слонов через Альпы, чтобы ударить по Риму. Он использовал стандартный, но очень медленный способ расчистки дорог: под преграждавшими дорогу скалами разжигали костры, а затем заливали камни холодной водой, чтобы они треснули. Если бы у Ганнибала была взрывчатка, он значительно быстрее перебрался бы через Альпы и вполне мог одержать победу над Римом, так что вся история западной части Средиземноморья могла бы сложиться по-другому.
Со времен победы Васко да Гамы в Каликуте и завоевания империи ацтеков Эрнаном Кортесом с горсткой испанских конкистадоров и вплоть до самоубийственной атаки английской легкой кавалерии[9]9
Знаменитый эпизод Крымской войны (1853–1856). Во время Балаклавского сражения 25 октября 1854 года элитарное подразделение английской армии, следуя ошибочному приказу, предприняло лобовую атаку русских укреплений и понесло большие потери.
[Закрыть] на русские батареи у Балаклавы в 1854 году огнестрельное оружие давало преимущество над стрелами, пиками и саблями. Империализм и колониализм, сформировавшие современный мир, зависели от мощи оружия. В войне и в мире, при строительстве и при разрушении взрывчатые вещества изменяли ход нашей истории.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.