Электронная библиотека » Эрик Дрекслер » » онлайн чтение - страница 13

Текст книги "Машины создания"


  • Текст добавлен: 12 ноября 2013, 17:55


Автор книги: Эрик Дрекслер


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 13 (всего у книги 21 страниц)

Шрифт:
- 100% +

СКУЧНЫЙ ФАКТ: плесень и бактерии конкурируют за пищу, поэтому некоторые плесени научились выделять яды, которые убивают бактерии.

ГРАНДИОЗНОЕ СЛЕДСТВИЕ: пенициллин, победа над многими бактериальными заболеваниями, и спасение миллионов жизней.

СКУЧНЫЙ ФАКТ: молекулярные машины могут использоваться, чтобы манипулировать молекулами и строить механические переключатели молекулярного размера.

ГРАНДИОЗНОЕ СЛЕДСТВИЕ: управляемые компьютером машины ремонта клеток, приносящие излечение практически от всех болезней.

СКУЧНЫЙ ФАКТ: память и личность заключены в сохраняемых мозговых структурах.

ГРАНДИОЗНОЕ СЛЕДСТВИЕ: сегодняшними методами можно предотвратить разложение, позволяя существующему поколению воспользоваться преимуществами завтрашних машин ремонта клеток.

В действительности молекулярные машины даже не столь скучны. Поскольку ткань состоит из атомов, следует ожидать технологию, способную манипулировать и переупорядочивать атомы, из чего выйдут впечатляющие медицинские последствия.

Потому что это выглядит слишком невероятным.

Мы живём в век невероятного.

В статье, которая называется "Идея прогресса" по астронавтике и аэронавтике, аэрокосмический инженер Роберт Т. Джоунс писал: "В 1910 году, в год, когда я родился, мой отец был обвинителем в суде. Он путешествовал по всем грязным дорогам округа Макон в повозке, которую тянула одна лошадь. В прошлом году я совершил беспосадочный перелёт из Лондона в Сан-Франциско через регион полюса, толкаемый вперёд двигателями мощностью в 50 000 лошадиных сил." Во времена его отца, такой самолёт граничил с научной фантастикой, слишком невероятной, чтобы её принимать во внимание.

В статье, озаглавленной "Основы медицинских исследований: долгосрочные инвестиции" в технологическом обозрении MIT доктор Льюис Томас писал: "Сорок лет назад, как раз перед тем, как медицинская профессия подверглась трансформации из искусства в науку и технологию, принималось как само собой разумеющееся, что медицина, которой нас учили, была в точности та же медицина, которая будет с нами большую часть нашей жизни. Если кто-то пытался нам сказать, что способность контролировать бактериальную инфекцию буквально за углом, что хирургия на открытом сердце и трансплантация почек могли бы быть возможны в пределах пары десятков лет, что некоторые виды рака будут излечиваться химиотерапией, и что мы вскоре окажемся близи всеобъемлющего биохимического объяснения генетики и генетически предопределяемых заболеваний, мы бы ни капли в это не поверили. У нас не было причин верить, что медицина когда-нибудь изменится… О чём говорит это воспоминание – что нам следует держать наш разум широко открытым в будущее."

Потому что это звучит слишком хорошо, чтобы быть правдой.

Новости о том, что есть способ избежать фатальности большинства смертельных болезней может действительно звучать слишком хорошо, чтобы быть правдой, однако это только малая часть более сбалансированной истории. В действительности опасность молекулярной технологии примерно уравновешивает её положительный потенциал. В части 3 я очерчу причины считать нанотехнологию более опасной, чем ядерное оружие.

Хотя по сути, природа нисколько не заботится о том, что мы считаем хорошим или плохим и о нашем чувстве баланса. В частности природа не ненавидит род людской в достаточной степени, чтобы встать против нас на баррикады. Древние страхи уже исчезли.

Много лет назад хирурги пытались быстро ампутировать ноги. Роберт Лстон из Эдинбурга, Шотландия, однажды отпилил бедро пациента за рекордное время – тридцать три секунды, по пути отхватив три пальца своего ассистента. Хирурги работали быстро, чтобы сократить агонию своих пациентов, потому что их пациенты оставались в сознании.

Если смертельно опасное заболевание без биостаза – это сегодня ночной кошмар, подумайте о хирургии без анестезии в дни наших предков: нож, врезающихся в плоть, потоки крови, пила, скрежещущая о кость пациента в сознании… Однако в октябре 1846-го года В.Т.Г. Мортон и Дж. Ц. Варрен удалили опухоль пациента под анестезией; Артур Слатер утверждает, что их успех "был просто осыпан приветствиями, как величайшее открытие века." С помощью простых методов, основанных на известном химическом веществе, ходячий ночной кошмар ножа и пилы наконец закончился.

Когда покончили с агонией, хирургия стала применяться шире, вместе с хирургическим заражением и ужасом ставших обычным делом смертей от гниющей плоти в теле. Однако в 1867 году Джозеф Листер опубликовал результаты своих экспериментов с фенолом, закладывая принципы антисептической хирургии. С помощью простых приёмов, основанных на известном химическом веществе, ужас гниения заживо резко сократился.

Потом последовали сульфопрепараты и пенициллин, которые одним ударом положили конец многим смертельно опасным болезням… список продолжается.

Впечатляющие прорывы в медицине прежде происходили, иногда благодаря новому использованию известных химических веществ, как в случае анестезии и антисептической хирургии. Хотя эти успехи могут казаться слишком хороши, чтобы быть правдой, они тем не менее оказались правдой. Спасение жизней использованием химических веществ и процедур, приводящих в биостаз, аналогичным образом могут быть правдой.

Потому что врачи сегодня биостаз не используют.

Роберт Эттинджер предложил метод биостаза в 1962 году. Он утверждал, что профессор Джин Ростанд предлагал тот же самый подход годами раньше, и предсказывал его возможное использование в медицине. Почему биостаз при помощи замораживания не стал популярным? Отчасти из-за его начальной дороговизны, отчасти из-за человеческой инертности, а отчасти из-за того, что средства ремонта клеток оставались неясными. Однако консерватизм, присущий медицинской профессии также сыграл роль. Обратимся снова к истории анестезии.

В 1846 году Мортон и Варрен поразили мир "открытием века", анестезией с помощью эфира. Однако на два года раньше, Хорас Веллз использовал анестезию азотистым оксидом, а ещё два года до того Скрауфорд В. Лонг выполнил операцию, используя эфир. В 1824 году Генри Хикман успешно подвергал анестезии животных с помощью обычного углекислого газа; позже он потратил годы, убеждая хирургов в Англии и Франции протестировать азотистый оксид в качестве анестетика. В 1799 году, целых сорок семь лет до великого «открытия» и много лет до того, как ассистент Листона потерял свои пальцы, сэр Хьюмфри Дейви писал: "Поскольку азотистый оксид в своём широком действии способен уничтожать физическую боль, возможно, он может использоваться во время хирургических операций."

Однако в 1839 году победа над болью для многих врачей всё ещё казалось недостижимой мечтой. Доктор Альфред Вельпо утверждал: "Устранение боли в хирургии – химера. Сегодня абсурдно продолжать пытаться его достичь. «Нож» и «боль» – два слова в хирургии, которые должны навсегда ассоциироваться друг с другом в сознании пациента. Мы будем должны привыкнуть к этой вынужденному сочетанию."

Многие боялись боли хирургии больше, чем самой смерти. Возможно, пришло время пробудиться от последнего ночного кошмара медицины.

Потому что не доказано, что это работает.

Это правда, что ни один эксперимент сейчас не может продемонстрировать реанимацию пациента из биостаза. Но требовать такой демонстрации значило бы иметь скрытое предположение, что современная медицина уже приблизилась к последним пределам возможного, что её никогда не обойдут достижения будущего. Такое требование звучало бы как осторожное и разумное, но в действительности оно попахивает огромным невежеством.

К сожалению демонстрация – это как раз то, что врачей учили требовать, и на то были хорошие причины: они желают избежать бесполезных процедур, которые могут нанести вред. Возможно, этого будет достаточно, что пренебрежение биостазом ведёт к очевидному и необратимому вреду.

Время, издержки и действия людей

Решат ли люди использовать биостаз, будет зависеть от того, считают ли они его шансы на успех стоящими. Эта игра включает ценность жизни (что является личным делом), стоимостью биостаза (которая кажется разумной по меркам современной медицины), шансами, что технология будет работать (они представляются отличными), и шансами, что человечество выживет, разовьёт технологию и оживит людей. Этот последний момент заключает в себе самую большую часть неопределённости.

Предположим, что люди и свободные общества действительно выживут. (Никто не может высчитать шансы этого, но предположим, что неудача отбила бы само желание прикладывать усилия, чтобы способствовать успеху.) Если так, то технология будет продолжать продвигаться вперёд. Разработка ассемблеров займёт годы. Изучить клетки и научиться восстанавливать ткани пациентов из биостаза займёт ещё больше времени. На вскидку, разработка систем ремонта и приспособление их к реанимации займёт от тридцати до сорока лет, хотя успехи в автоматическом инжиниринге могут ускорить процесс.

Однако, по-видимому, требуемое время не имеет значения. Многие оживляемые пациенты будут больше заботиться об условиях жизни, включая, будут ли вокруг них их друзья и семьи – тогда для них будет иметь значение дата на календаре. С изобильными ресурсами, физические условия жизни могли бы быть на самом деле очень хорошими. Присутствие друзей и родных – другой вопрос.

В недавно опубликованном обзоре, половина опрашиваемых сказала, что они бы хотели быть как минимум пятьсот лет, если бы у них был выбор. Неформальные опросы показывают, что большинство людей предпочло бы биостаз разложению, если бы они могли вернуть хорошее здоровье и войти в новое будущее со своими старыми друзьями и родными. Не многие люди сказали, что они "хотят пережит своё время", но они в целом согласились, что пока они могут ещё пожить, их время не пришло. По-видимому, многие люди сегодня разделяют желание Бенжамина Франклина, но в веке, когда их желание может быт удовлетворено. Если биостаз войдёт в широкое употребление достаточно быстро (или если другие технологии продления жизни будут совершенствоваться достаточно быстро), то оживляемые пациенты будут просыпаться не в незнакомом мире, а окружённые улыбками знакомых лиц.

Но будут ли оживлены люди в биостазе? Методы помещения пациентов в биостаз уже известны, и стоимость могла бы стать низкой, по крайней мере по сравнению со стоимостью серьёзной хирургии или длительного ухода в госпитале. Однако разработать технологию оживления будет сложно и дорого. Будут ли люди себя утруждать в будущем?

Похоже на то, что они будут. Они могут не разрабатывать нанотехнологию, имея в виду медицину, но даже если нет, они обязательно её разработают, чтобы строить лучшие компьютеры. Они могут не разработать машины ремонта клеток, имея в виду оживление, но они обязательно её буду разрабатывать, чтобы лечить себя. Они могут не программировать машины ремонта на оживление как акт бескорыстного альтруизма, но у них будет достаточно времени, богатства и некоторые из них будут, кто любил тех, кто ждёт в биостазе. Представляется, что методы оживления будут обязательно разработаны.

С репликаторами и ресурсами космоса, придёт время, когда люди будут иметь богатство и жизненное производство в тысячу раз больше, чем мы имеем сегодня. Само оживление будет требовать мало энергии и материалов даже по сегодняшним стандартам. Поэтому люди, раздумывающие над оживлением, обнаружат мало противоречия между их собственными интересами и их общечеловеческим участием. Общих человеческих мотивов кажется достаточно, чтобы гарантировать, что активное население будущего разбудит тех, кто в биостазе.

Первое поколение, которое вернёт молодость, не прибегая к биостазу, сегодня вполне может быть с нами. Перспектива биостаза просто даёт большему числу людей больше оснований ожидать долгой жизни – она предлагаем возможность для старых и форму гарантии для молодых. По мере того, как продвижения в биотехнологии ведут к конструированию белка, ассемблеров и клеточного ремонта, и по мере того, как затруднения будут разрешаться, ожидание долгой жизни будет распространяться. Расширяя путь к долгой жизни, возможность выбрать биостаз будет побуждать более живую заинтересованность в будущем. А это подтолкнёт усилия, чтобы подготовиться к опасностям, которые ждут впереди.

Глава 10. ПРЕДЕЛЫ РОСТА

Шахматная доска – мир, фигуры – явления вселенной, правила игры – то, что мы называем законами природы.

Т.Х. Хаксли.

Структура вакуума

Будет ли физика снова дополнена?

Пределы аппаратных средств

Энтропия: предел использованию энергии

Пределы ресурсам

Мальтус

Остановит ли нас кто-нибудь?

Рост в пределах границ

Взгляд на пределы

За последний век мы разработали самолёты, космические корабли, ядерный источник энергии и компьютеры. В следующем веке мы разработаем ассемблеры, репликаторы, автоматический инжиниринг, дешёвые космические корабли, машины ремонта клеток и многое другое. Эти серии прорывов могут наводить на мысль, что технологическая гонка будет двигаться вперёд без границ. С этой точки зрения мы будем прорываться сквозь все постижимые препятствия, вылетая в бесконечное неизвестное – но этот взгляд кажется ошибочным.

Законы природы и условия этого мира ограничат то, что мы можем делать. Без границ, будущее было бы целиком неизвестной, бесформенной вещью, делая посмешище из наших усилий думать и планировать. С ограничениями будущее всё ещё бешенная неопределённость, но она должна вписаться в определённые границы.

Из естественных ограничений мы узнаём что-то о проблемах и открывающихся возможностях, с которыми мы столкнёмся. Пределы определяют границы возможного, сообщая нам, какие ресурсы мы можем использовать, как быстро наши космические корабли могут летать и что наши наномашины будут, а что не будут способны делать.

Обсуждение пределов рискованно: мы можем быть более уверены, что что-то возможно, чем что оно невозможно. Инженеры могут достигать успеха с помощью приближений и особых случаев. А при наличии инструментов, материалов и времени, они могут продемонстрировать возможности непосредственно. Даже делая конструкцию для исследования, они могут оставаться вполне в рамках возможного и быть достаточно далеко от его границ. Учёные, наоборот, не могут доказать общую теорию, и каждое общее заявление о невозможности – само есть род общей теории. Никакой конкретный эксперимент (где-то, когда-то) не может доказать, что что-то невозможно (везде и навсегда). Также это не может сделать любое количество конкретных экспериментов.

Все же, общие законы науки описывают границы возможного. Хотя учёные не могут доказать общий закон, они разработали наилучшую возможную для нас картину того, как вселенная работает. И даже если экзотические эксперименты и элегантные математические пассажи снова изменят нашу концепцию физических законов, немногие пределы для конструкторов шелохнутся. Относительность не влияла на конструкцию автомобилей.

Простое существование конечных пределов не значит, что они уже вот-вот начнут нас душить, однако многие люди пришли к мысли, что пределы скоро положат конец росту. Это соображение упрощает их картину будущего, откидывая странные новые разработки, которые принесёт прогресс. Другие люди хорошо относятся к более расплывчатой идее безграничного роста – идее, которая затуманивает их картину будущего, говоря, что оно будет совершенно непостижимым.

Люди, которые путают науку с технологией, имеют склонность путаться и насчёт пределов. Как отмечает инженер по программному обеспечению Марк С. Миллер, им кажется, что новое знание всегда означает новое ноу-хау; некоторые даже воображают, что знать всё позволит нам делать всё, что мы захотим. Прогресс в технологии действительно приносит новые ноу-хау, открывая новые возможности. Но продвижения в фундаментальной науке просто перерисовывает нашу карту окончательных пределов; это часто показывает что-то новое, что невозможно. Например, открытия Эйнштейна показали, что ничто не может догнать летящий луч света.

Структура вакуума

Действительно ли скорость света – реальный предел? Люди когда-то говорили о «звуковом барьере», и некоторые верили, что он не даст самолёту перейти скорость звука. Затем на базе Эдвард Эа Форс в 1947 году, Чак Ииджер рассёк октябрьское небо звуком перехода звукового барьера. Сегодня некоторые люди говорят о «световом барьере», и спрашивают, может ли он также отступить.

К сожалению для писателей научной фантастики эта параллель поверхностна. Никто никогда не мог утверждать, что скорость звука – это реальный физический барьер. Метеоры и пули превышали его каждый день и даже щёлкающий хлыст переходил "звуковой барьер". Но никто не видел ничего, что бы двигалось быстрее света. Удалённые места, видимые с помощью радиотелескопов, иногда кажутся движущимися быстрее, но простые трюки перспективы легко объясняются, как это может быть. Гипотетические частицы, называемые «тахионами» двигались бы быстрее света, если бы он существовали, но их пока не нашли, а сегодняшняя теория их не предсказывает. Экспериментаторы толкали протоны со скоростью более 99,9995 процентов скорости света и получили результаты, которые идеально соответствовали предсказаниям Эйнштейна. Когда их толкают всё быстрее, скорость частицы очень медленно приближается к скорости света, в то время как её энергия (масса) растёт безгранично.

На Земле, человек может идти пешком или плыть только на определённые расстояния, но никакой таинственный край или барьер вдруг не остановит его путешествия. Просто Земля круглая. Ограничение скорости в пространстве предполагает не больше "светового барьера", чем предел расстояния на Земле предполагает стену. Само пространство – вакуум, который содержит энергию и материю, имеет свойства. Одно из них – это его геометрия, которая может быть описана, если рассматривать время как особое измерение. Эта геометрия заставляет скорость света отступать перед ускоряющимся космическим кораблём во многом подобно тому как горизонт отступает перед движущимся по морю кораблём: скорость света, подобно горизонту всегда равноудалена во всех направлениях. Но аналогия здесь заканчивается – это подобие никак не поясняет кривизну пространства. Достаточно запомнить, что предельная скорость – это не что-то такое грубое и что можно преодолеть, как "световой барьер". Объекты всегда могут двигаться быстрее, но не быстрее света.

Люди давно мечтали о контроле над гравитацией. В издании 1962 года книги "Очертания будущего" Артур Ц. Кларк писал, что "Из всех сил гравитация – самая загадочная и самая неумолимая", и дальше продолжал, предлагая мысль, что мы однажды разработаем подходящие устройства для управления гравитацией. Однако действительно ли гравитация такая таинственная? В общей теории относительности Эйнштейн описывал гравитацию как кривизну в пространственно-временной структуре вакуума. Математическое описание этого элегантно и точно, и делает предсказания, которые прошли через все испытания, с тех пор предпринимаемые.

Гравитация не более и не менее неумолима, чем остальные силы. Никто не может заставить валун потерять свою гравитацию, но также никто не может заставить электрон потерять свой электрический заряд или электрический ток – своё магнитное поле. Мы управляем электрическими и магнитными полями, передвигая частицы, которые их создают; мы можем управлять гравитационными полями аналогичным образом, передвигая обычные массы. Представляется, что мы не можем изучить секрет управления за гравитацией, потому что мы уже это сделали.

Ребёнок с маленьким магнитиком может поднять гвоздь, используя магнитное поле, чтобы преодолеть гравитационное притяжение Земли. Но к сожалению для страстного желания инженеров, работающих с гравитацией, использование гравитации, чтобы поднять гвоздь, требует огромной массы. Если прямо у вас над головой будет находиться Венера – это почти сделает то, что нужно, пока она не упадёт на вас.

Инженеры возбуждают электромагнитные волны, передвигая электрические заряды туда-сюда в антенне; можно возбудить гравитационные волны, перемещая камень в воздухе. Но опять же, гравитационный эффект слабый. Хотя в радиостанции мощностью в один киловатт нет ничего необычного, перемещение и закручивание всей массы солнечной системы вместе взятой не может выделить так много, как один киловатт гравитационных волн.

Мы понимаем гравитацию достаточно хорошо; в этом просто нет большой пользы для построения машин намного легче чем Луна. Но устройства с использованием большой массы, будут работать. Гидроэлектростанция – часть гравитационной машины (другая часть – Земля), которая извлекает энергию из падающей массы. Машины, используя чёрные дыры, будут способны извлекать энергию из падающей массы более чем с 50-процентной эффективностью, основываясь на формуле Е=mc 2

Вылить одно ведро воды в чёрную дыру выделило бы столько же энергии, сколько переливание нескольких триллионов вёдер воды через генератор дамбы гидроэлектростанции в километр высотой.

Поскольку законы гравитации описывают, как искривляется вакуум, они также применимы к научно-фантастическим "искривлениям пространства". По-видимому, туннели из одной точки пространства в другую были бы нестабильны, даже если они могли бы быть прежде созданы. Это не позволяет будущим космическим кораблям достигать отдалённых точек быстрее, чем свет, используя короткий путь вокруг лежащего посреди пространства, и это ограничение в перемещении в свою очередь устанавливает предел росту.

По-видимому, закон Эйнштейна даёт аккуратное описание общей геометрии вакуума. Если так, то пределы, которые получаются в результате, неизбежны: вы можете избавиться почти от всего, но не от самого вакуума.

Другие законы и пределы выглядят неизбежными по аналогичным причинам. В действительности физики всё больше приходят тому, чтобы описывать все физические законы в терминах структуры вакуума. Гравитационные волны – определённый тип колебаний вакуума; чёрные дыры – определённый тип завихрения. Аналогично, радиоволны – другой вид колебаний вакуума, а элементарные частицы – ещё один, очень отличающийся вид завихрения (которые в некоторых теориях напоминает крошечные вибрирующие струны). С этой точки зрения существует только одно вещество во вселенной – вакуум, но оно принимает множество форм, включая те структуры, которые мы называем "твёрдой материей". Этот взгляд наводит на мысль о неизбежных свойствах естественного закона. Если единое вещество, которое заполняет вселенную – это и есть вселенная, то его свойства ограничивают то, что мы можем делать.

Однако странность современной физики ведёт к тому, что большинство людей ей не верят. Революции, которые произвели квантовая механика и относительность, породили разговоры о "принципе относительности", "волновой природе материи", "материи, которая суть энергия" и "искривлённом пространстве-времени". Атмосфера парадокса окружает эти идеи и таким образом саму физику. Понятно, что новые технологии должны выглядеть для нас странно, но почему древние и неизменные законы природы оказываются загадочными и шокирующими?

Наш мозг и языки развились так, чтобы иметь дело с вещами, намного превосходящими по размерам атомы, движущимися с крошечной долей скорости света. Они сделали в этом достаточно хорошие успехи, хотя чтобы научиться описывать движение падающего камня заняло у людей столетия. Но мы простерли наше знание далеко за пределы древнего мира ощущений. Мы обнаружили вещи (материальные волны, искривлённое пространство), которые кажутся причудливыми, и некоторые просто находятся вне нашей способности их представить. Но «причудливый» не значит таинственный или непредсказуемый. Математика и эксперименты тем не менее работают, позволяя учёным разнообразить и отбирать теории, производя в них эволюцию так, что они подходили даже под странную реальность. Человеческий разум оказался замечательно гибким, но не особо удивительно обнаружить, что мы не можем всегда себе представить невидимое.

Часть причины, что физика кажется такой странной в том, что люди страстно жаждут странностей, и имеют склонность распространять мимы, которые описывают вещи как странные. Некоторые люди поддерживают идеи, которые скрывают мир в слоях и наполняют его таинственностями вида "уровень Б". Естественно, они поддерживают и распространяют мимы, которые заставляют материю выглядеть нематериальной и квантовую механику выглядеть как ветвь психологии.

Относительность, как уже сказано, обнаруживает, что материя (которая – обычная старая материя, которую люди думают, что понимают) – это на самом деле энергия (эта тонкая таинственная субстанция, которая заставляет события происходить). Это даёт почву для широкого тумана на тему тайны вселенной. Могло быть более понятным сказать, что относительность обнаруживает, что энергия – одна из форм материи, во всех её формах, энергия имеет массу. Действительно, световые паруса работают на этом принципе, благодаря удару массы в поверхность. Свет даже идёт упакованным в частицы.

Также рассмотрим принцип неопределённости Эйзенберга, и связанный с ним факт, что "наблюдатель всегда воздействует на наблюдаемое." Принцип неопределённости присущ математике, описывающей обычную материю (давая атомам им присущий размер), но связанный "эффект наблюдателя" представлен в некоторых популярных книгах как магическое влияние сознания на мир. В действительности суть идеи более прозаическая. Представьте себе, что вы смотрите на пылинку в солнечном свете: когда вы наблюдаете отражённый свет, вы обязательно воздействуете на него – ваш глаз его поглощает. Аналогично, свет (со своей массой) воздействует на пятнышко пыли: он отталкивается от пылинки, прикладывая силу. Результат – не воздействие вашего разума на пыль, а воздействие света на пыль. Хотя квантовое измерение имеет особенности намного более тонкие чем эта, ни одна из них не включает разум, выходящий наружу, чтобы изменить реальность.

Наконец рассмотрим "парадокс близнецов". Относительность предсказывает, что если один из пары близнецов летит к другой звезде и возвращается со скоростью, близкой к скорости света, то близнец, который летит, будет младше, чем оставшийся дома брат. Действительно, измерения с точными часами демонстрируют эффект замедления времени при очень быстром движении. Но это – не парадокс, это просто факт природы.

Будет ли физика снова дополнена?

В 1894 году знаменитый физик Альберт А. Мичельсон заявлял: «Наиболее важные фундаментальные законы и факты физической науки открыты, и они сейчас так твёрдо установленные, что возможность их когда-нибудь заменить на что-то новое вследствие новых открытий крайне отдалена… Наши будущие открытия нужно искать в шестом знаке после запятой.»

Но в 1895 году Рентген открыл рентгеновские лучи. В 1896 году, Беккерель открыл радиоактивность. В 1897 – Томсон открыл электрон. В 1905-м – Эйнштейн сформулировал специальную теорию относительности (и таким образом объяснил собственные наблюдения Михельсона в 1887 году относительно скорости света). В 1905-м Эйнштейн также представил фотонную теорию света. В 1911-м Резерфорд открыл ядро атома. В 1915-м Эйнштейн сформулировал общую теорию относительности. В 1924-30, де Брогли, Эйзенберг, Бор, Паули и Дирак разработали основы квантовой механики. В 1929 году Хаббл объявил о доказательстве расширения вселенной. В 1931 Михельсон умер.

Михельсон сделал незабываемую ошибку. Люди всё ещё указывают на его заявление и то, что за ним последовало, чтобы подтвердить точку зрения, что нам не следует (никогда?) провозглашать какое бы то ни было достоверное понимание естественного закона или приделов возможного. В конце концов, если Михельсон было столь уверен и тем не менее оказался так не прав, не должны ли мы опасаться повторить его ошибку? Великая революция в физике привела некоторых людей к заключению, что наука будет продолжать приносить бесконечные важные сюрпризы, даже сюрпризы, важные для инженеров. Но есть ли вероятность нам встретиться с такими серьёзными сдвигами снова?

Возможно нет. Содержание квантовой механики было удивительным, однако до её появления физика была очевидно и серьёзно неполна. До квантовой механики вы могли бы подойти к любому учёному, злобно улыбаясь, стукнуть по столу и спросить: "Что удерживает эти штуки вместе? Почему это – коричневое и твёрдое, в то время как воздух – прозрачный и газообразный?" Ваша жертва могла бы сказать что-то туманное об атомах и их порядке, но когда вы будете настаивать на разъяснении, вы бы в лучшем случае получили в ответ что-то вроде "Кто знает? Физика пока не может объяснить материю!" Ретроспективный взгляд делать легко, однако в мире, сделанном из материи, населённом материальными людьми, использующими материальные инструменты, это невежество о природе материи было брешью в человеческом знании, которое Михельсону бы возможно следовало заметить. Это была брешь не в "шестом знаке после запятой", а в самой целой части числа.

Также стоит посмотреть, до какой степени Михельсон был прав. Законы, о которых он говорил включали законы Ньютона о гравитации и движении, и законы Максвелла об электромагнетизме. И действительно, при обычных условиях в конструировании эти законы были изменены только "в шестом знаке после запятой." Законы Эйнштейна гравитации и движения соответствуют законам Ньютона близко, за исключением предельных условий гравитации и скорости; законы квантовой электродинамики Феймана, Швингера и Томонага близко соответствуют Законам Максвелла кроме как при экстремальных значениях размера и энергии.

Дальнейшие революции, вне сомнения, притаились где-то на крайних значениях этих теорий. Но эти края кажутся далёкими от мира живых существ и машин, которые мы строим. Революции относительности и квантовой механики изменили наше знание о материи и энергии, но сами материя и энергия остались неизменными – они реальны и им нет никакого дела до наших теорий. Физики сейчас используют единый набор законов, чтобы описать, как ядра атомов и электроны взаимодействуют в атомах, молекулах, молекулярных машинах, живых существах, планетах и звёздах. Эти законы пока не окончательно общие; поиск универсальной теории всех физических явлений продолжается. Но как утверждает физик Стефан В. Хокинг, "На настоящий момент мы обладаем набором частных законов, которые управляют поведением вселенной при всех, кроме наиболее экстремальных условий." И по инженерным стандартам, эти условия просто необычайно экстремальны.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации