Текст книги "Распространненость жизни и уникальность разума?"
Автор книги: Марк Мосевицкий
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 21 страниц)
В последние годы появились основания к пересмотру некоторых элементов эволюционной истории эукариот. Главным образом, изменения касаются самого происхождения эукариотической клетки и ранних этапов ее эволюции.
Преобладающим стало мнение, что клеточной линии, отделившейся от прокариот и самостоятельно трансформировавшейся в ранних эукариот, вообще не существовало. Анализ расшифрованных геномов эукариот и прокариотических организмов, как архе, так и бактерий, показал, что первичные эукариоты возникли не в результате обусловленного мутациями вертикального процесса, а как следствие горизонтального процесса – симбиоза бактерии и архе (Gupta, 1998; Martin and Muller, 1998; Ribeiro and Golding, 1998; Vellai and Vida, 1999; Margulis et al., 2000; Horiike et al., 2002, 2004; Aguilar et al., 2004; Rivera and Lake, 2004; Simonson et al., 2005; Zhaxybayeva et al., 2006). Рассматриваются существенно различные схемы такого симбиоза.
Согласно предложенной рядом авторов гипотезе (Gupta, 1998; Moreira and Lopez-Garcia, 1998; Horiike et al., 2002, 2004), эукариотическая клетка образовалась единственный раз за всю историю Земли при событии симбиоза прокариотической клетки, принадлежащей ветви архе (эоцит) и грамотрицательной бактерии (протеобактерия) (Рис. 5Б). Эти авторы полагают, что клетка архе была поглощена бактерией, образовав ядро композита, а сама бактерия сформировала окружение ядра (цитоплазму). Не исключено, что в симбиоз вступили протопласты или сферопласты, т. е. клеточные формы, лишенные оболочки (Sinkovics J.G., 2001; Wachtershauser G., 2003). Позднее хромосома бактерии переместилась в ядро, сформировав там вместе с хромосомой архе комплексный (химерный) геном эукариотической клетки. В этом геноме “информационные” гены, контролирующие репликацию, транскрипцию и трансляцию унаследованы от архе, а значительная часть “операционных” генов, кодирующих биосинтетические процессы и метаболизм эукариотической клетки, привнесены в химерный геном бактерией (Gupta, 1998; Simonson et al., 2005). В соответствии с этой моделью плазматическая мембрана (наружная оболочка) эукариотической клетки формируется из липидов, синтез которых контролируют гены бактериального происхождения.
Рис. 5. Формирование современных эукариотических клеток.
А. На базе возникших эволюционным путем ранних эукариотов. Б. На базе эукариота, возникшего благодаря акту симбиоза протеобактерии и клетки архе (подробности в тексте). Рисунок создан при участии О. М. Горбенко.
Однако авторы, поддерживающие эту концепцию, расходятся в предположении о принадлежности бактерии, участвовавшей в симбиозе с архе, той или иной группе протеобактерий. Это свидетельствует о необходимости более детальных исследований. Тот факт, что какие-то гены эукариот происходят от архе, а другие – от бактерий, позволяет объяснить, почему авторы, использовавшие ранее филогенетический (мутационный) подход, вели происхождение эукариот как от архе (Woese et al., 1990; Doolittle, 1999), так и от бактерий (Hashimoto et al., 1998): все дело в том, ген какого происхождения (архе или бактериального) был выбран для исследования. Cформировавшиеся указанным образом эукариоты позже приобрели митохондрии и хлоропласты благодаря последовательным актам симбиоза с α-протеобактерией и с фотосинтезирующими грамотрицательными бактериями, о чем уже упоминалось выше.
В рамках описанной гипотезы уместно поставить вопрос, почему слияние двух генетически различных прокариотических клеток стало стимулом для формирования клеточного ядра, т. е. образования эукариота. Интересную гипотезу предлагают Мартин и Кунин (Martin and Koonin, 2006). Эти авторы обращают внимание на то обстоятельство, что при формировании в симбионте объединенных геномов происходила фрагментация некоторых генов вследствие образования чужеродных вставок. Однако трансляция непосредственного транскрипта разобщенного гена давала “неправильный” продукт. Для получения прежнего белка следовало освободить мРНК от вставок (интронов). Необходимый для этого процесс вырезания интронов и сшивки фрагментов мРНК (экзонов), именуемый сплайсингом, должен предшествовать трансляции (образованию белков на рибосомах). Предотвратить трансляцию первичных транскриптов можно было, пространственно разделив оба процесса. Именно эту цель преследовало формирование внутренней (ядерной) оболочки. Она изолировала хромосомы от остального объема клетки (цитоплазмы), куда переместились рибосомы, происходившие от клетки архе, занимавшей центральную область симбионта. Образованные в ядре транскрипты после достаточно изощренной и, кстати, небыстрой процедуры сплайсинга уже в форме кодирующих нормальный продукт мРНК транспортируются через ядерные поры в цитоплазму, где подвергаются трансляции на располагающихся там рибосомах. На некоторые данные, вызывающие сомнения в правомерности этой гипотезы, указывают сами авторы, отмечая периодически появляющиеся публикации об осуществлении трансляции в самом ядре на присутствующих там “ядерных” рибосомах (Iborra et al., 2001). Однако утверждение о присутствии рибосом в ядре нельзя считать доказанным (см. Dahlberg and Lund, 2004). Можно высказать и другое соображение. Процессы эволюционного создания инструментов сплайсинга, формирования изолированного от цитоплазмы ядра и отделения рибосом от первичных транскриптов могли занять сотни и сотни поколений. Вместе с тем, клетки для поддержания жизнеспособности должны постоянно синтезировать белки, обладающие необходимой активностью. Это вряд ли выполнимо в случае трансляции первичных транскриптов, содержащих интроны, что неизбежно приводило бы к образованию белков с измененной структурой и нарушенными свойствами. Эту проблему, которая кажется трудноразрешимой, авторы не обсуждают. Авторы рассмотренных выше гипотез формирования эукариотической клетки из композитной клетки, образованной слиянием архе и бактерии, оставляют без ответа и ряд других вопросов. Именно это послужило причиной появления новых идей.
Значительное количество эукариотических генов не имеет аналогов ни у бактерий, ни у архе. Хартман и Федоров (Hartman and Fedorov, 2002) выявили в эукариотических организмах (дрожжах, дрозофиле и др.) более 300 белков, не имеющих “родственников” у известных прокариот. Основываясь на этом факте, авторы предположили участие в формировании эукариотической клетки еще и третьего участника, также прокариота, принадлежавшего линии, названной ими хроноцитами. Эта линия сама не сохранилась и оставила след только в сформированных с ее участием эукариотах. Имея в виду функции белков, отсутствовавших у бактерий и у архе, Хартман и Федоров предполагают, что главной особенностью хроноцитов было присутствие цитоскелета и других структурных элементов цитоплазмы (шероховатый ретикулум, тельца Гольджи), которые отличают цитоплазму всех эукариот от почти неструктурированной цитоплазмы известных прокариот. Как полагают эти авторы, ядра сформировались в результате эндосимбиотического взаимодействия бактерии и архе в хроноците. Последний, уже обладавший актиновым и тубулиновым цитоскелетом, предоставил генетическую информацию, составившую базу для формирования сложно организованной цитоплазмы эукариотической клетки.
Однако было ли действительно необходимым привнесение в композит гипотетическим хроноцитом определенных признаков, которые отсутствовали у двух очевидных симбионтов – бактерий и архе? В принципе, такой необходимости не было, так как значительное количество новых признаков (генов) сформировалось в процессе эволюционного развития эукариота, т. е. уже после образования композита. В первую очередь это относится к самому ядру. О необходимости формирования у эукариот новых механизмов (а следовательно, и генов) в связи с организацией сплайсинга говорилось выше. Вообще, клеточное ядро – весьма сложное образование. Помимо двуслойной ядерной оболочки, пронизанной регулярно распределенными белковыми структурами, образующими ядерные поры, клеточное ядро имеет сложное внутреннее строение. Его фибриллярный скелет (ядерный матрикс) образован, главным образом, ядерными белками ламинами. Детали структуры ядерного матрикса на протяжении многих лет являются предметом обсуждения (см. Георгиев и Ченцов, 1960; Berezney and Coffey, 1977; Gerace and Blobel, 1982; Мосевицкий и Новицкая, 1982; Мосевицкий, 1985; van Eekelen et al., 2002). Ядерный матрикс участвует в организации и функционировании заключенных в ядре хромосом. На нем базируются ферментные комплексы, осуществляющие пооперонную репликацию ДНК (Tubo and Berezney 1987), транскрипцию (Razin et al., 1985; Jackson, 2005), сплайсинг (Ciejek et al., 1982; Mariman et al., 1982) и другие функции (Pienta and Coffey, 1984). Следует добавить также специфические для эукариот белки, обеспечивающие компактную форму хроматина (гистоны), системы, контролирующие регулярность деления эукариотической клетки (митоз) и др. Мы видим, что объем генетической информации, которую необходимо было освоить формировавшемуся эукариоту (в форме новых генов), был очень велик. Создание цитоскелета стало также необходимым условием образования современной эукариотической клетки, так как позволяло увеличить клеточный объем, фиксировать положение ядра, перейти к активному транспорту и др. Но и эта задача могла решаться уже после акта симбиоза, инициировавшего весь процесс формирования эукариотической клетки. Следует также иметь в виду, что такой акт мог бы состояться 3 и даже 3.5 млрд лет тому назад, когда потенциальные симбионты (архе и соответствующие формы бактерий) уже существовали на Земле. С другой стороны, отпечатки клеток с ядром и другими признаками, характерными для эукариотов, обнаружены в отложениях, возраст которых не более 1.7 млрд лет. Это означает, что на эволюцию от момента симбиотического образования химерной клетки до появления эукариотической клетки было отпущено свыше одного миллиарда лет – даже больше, чем на всю предшествовавшую эволюцию на Земле. Сколько на самом деле продолжался этот процесс – неизвестно, т. к. неясно и вряд ли может быть установлено, когда состоялся инициировавший его акт симбиоза.
Идея вторичности эукариотов, т. е. образования их тем или иным путем из прокариотических клеток, является доминирующей, но не единственной. Некоторые авторы отмечают, что прокариоты более совершенны, т. к. устроены рациональнее, чем эукариоты. Согласно этой линии рассуждений, передача функции хранителя наследственного материала от РНК к ДНК сопровождалась объединением небольших хромосом в крупные. При этом оказывалось неизбежным появление в генах вставок (интронов), искажающих генетическую информацию. Соответственно, сплайсинг и формирование ядра, разделяющего процессы транскрипции и трансляции, оказались вынужденными следствиями переходного периода. Согласно этой схеме, последний общий предшественник был эукариотом, а прокариоты архе и бактерии являются сестринскими линиями, происшедшими от ранних эукариот, эволюционировавших в направлении упрощения метаболизма и структуры клетки (Brinkmann and Philippe, 1999; Poole et al., 1999). Появились ветви клеток, в которых гены были освобождены от интронов, благодаря чему отпала нужда и в сплайсинге, и в самих ядрах. Сложно организованный цитоскелет также перестал быть необходимым и сошел на нет. Осваивая новые ниши, прокариоты приобрели способность к фотосинтезу и окислительному фосфорилированию. Наконец, симбиоз обладавших усовершенствованной энергетикой прокариот с породившими их когда-то эукариотами позволил последним значительно расширить ареал существования, а главное, привел к появлению животных и растений. Однако эта не лишенная изящества схема не подтверждена полученными к настоящему времени палеонтологическими данными, которые указывают на присутствие прокариот в значительно более ранних отложениях, причем разрыв составляет не менее 1.5 млрд лет. Вместе с тем, следует отметить, что находки, сделанные в ранних отложениях, пока весьма ограничены. Обнаружение в них именно прокариот может быть объяснено их более широким, по сравнению с первичными эукариотами, распространением. Обнаружение в ранних осадочных породах отпечатков клеток, содержавших ядра, позволит обсуждать описанную гипотезу всерьез. На первичность эукариот могли также указать данные мутационного анализа генов, которые показали бы, что именно гены, контролирующие сплайсинг, формирование элементов ядерного матрикса и других чисто ядерных структур, наиболее древние. Однако, насколько известно автору, таких данных нет. Мы будем придерживаться более обоснованной сегодня, хотя и остающейся весьма схематичной, концепции, утверждающей, что первичны прокариоты, а формирование эукариот было инициировано симбиозом архе и бактерии.
Главным аргументом в пользу разделенного во времени появления ранних эукариот, а лишь затем приобретения ими митохондрий, было отсутствие митохондрий у протист, рассматриваемых как примитивные эукариоты. Однако генетический анализ выявил у протист гены бактериального происхождения, которые могли принадлежать ранее присутствовавшим митохондриям (Hasegawa and Hashimoto, 1999). К аналогичному выводу привело исследование эукариотических клеток, у которых нет аппарата Гольджи, шероховатого эндо-плазматического ретикулума и некоторых других характерных для эукариот признаков. Их отсутствие достаточно убедительно может быть объяснено не исходной примитивностью этих эукариотических клеток, а утерей определенных признаков в ходе позднейшей эволюции (Clark, 1999).
Выше, при описании акта симбиоза бактерии и архе, положившего начало формированию эукариотической клетки, была использована модель проникновения архе в бактерию, т. е. бактерия, образовав цитоплазму химерной клетки, потеряла способность к автономному размножению. Потребовался дополнительный акт симбиоза – внедрение протеобактерии в формирующийся или уже сформированный эукариот, чтобы могли образоваться митохондрии.
Мартин и Кунин (Martin and Koonin, 2006) предложили в определенном смысле зеркальную схему, согласно которой при инициировавшем формирование эукариот акте симбиоза бактерия внедрилась в архе и приспособилась к автономному существованию (см. также Vellai and Vida, 1999; Martin, 2005). Так образовались митохондрии. В процессе их формирования многие бактериальные гены объединились с хромосомой архе, приняв участие в формировании ядерного генома. Согласно этой модели, формирование митохондрий и ядерных структур происходило параллельно, и отдельный акт симбиоза для появления митохондрий не потребовался.
5.4. Существовал ли последний общий предшественник, то есть был ли единый ствол у дерева жизни?
Прежде чем вернуться к дереву жизни, следует упомянуть высказывания, ставящие под сомнение само понятие “последний общий предшественник”. Группа авторов полагает, что разделение ветвей дерева жизни произошло прежде, чем образовались клеточные мембраны, т. е. еще на доклеточном уровне. Это позволяет объяснить существенные различия в структуре клеточных оболочек архе и бактерий (Koga et al., 1998; Martin and Russell, 2003). С близкими по смыслу идеями недавно выступили некоторые известные эволюционисты (Doolittle, 1999; Woese, 2000). Они полагают, что корневая система (множество параллельно существовавших доклеточных и раннеклеточных структур) не трансформировалась в единый ствол дерева жизни, представленный последним общим предшественником, а сформировала ряд побегов, которые обменивались информацией путем горизонтальных переносов. Эти переплетенные побеги дали начало дереву жизни (Рис. 4В). Такая трактовка раннего периода жизни на Земле правомерна, если принять, что побеги, происходившие от разных предклеточных структур и сохранявшие значительную самостоятельность при эволюции, тем не менее, вышли на общие качества: близкую структурную организацию, схожий метаболизм (синтез белка на рибосомах и др.) и практически одинаковый генетический аппарат, включая генетический код. Только в этом случае последующие горизонтальные переносы были бы эффективными. Однако столь полный параллелизм при независимом эволюционном развитии побегов представляется практически невероятным. Предположение же, что функциональная и генетическая близость многих побегов была обусловлена постоянными обменами генетической информацией, происходившими еще на предклеточной и раннеклеточной стадиях, приводит к представлению о коллективном развитии побегов (Woese, 2002), что, по сути дела, мало отличается от традиционного представления о единой стволовой линии.
Результаты анализа генов также не соответствуют формированию дерева жизни из многих первоначальных побегов: в архе истоки всех “не собственных” генов обнаруживаются у бактерий и наоборот. Другой вопрос, что представляла собою стволовая линия (последний общий предшественник). Выше приводилась точка зрения, что это были протеобактерии. Однако многие авторы склоняются к мысли, что последний общий предшественник принадлежал зрелому миру РНК (Forterre, 2005). К моменту первого разветвления стволовая линия обладала трехбуквенным генетическим кодом, который был перенят обеими ветвями и сохранен как универсальный в современном живом мире. Функционировал также механизм синтеза белков на рибосомах, который, однако, еще не был отработан окончательно. Его доводка осуществлялась уже в отдельных ветвях при их эволюции(см. Раздел 5.2). Отсюда различия рибосомных белков, рибосомных РНК, структуры некоторых транспортных РНК в этих ветвях и их производных. Что касается ДНК, то последний общий предшественник уже был способен трансформировать рибозу в дезоксирибозу и, возможно, синтезировать ДНК по РНК-матрице, т. е. осуществлять процесс обратной транскрипции, сохранившийся только у некоторых вирусов. Первоначально в ДНК, как и в РНК, присутствовал урацил (поныне “урацильную” ДНК содержат некоторые бактериальные вирусы). Представляется, что именно на этом этапе эволюции стволовая линия разделилась на ветви, которые привели к архе и бактериям. Ферменты, осуществляющие метилирование остатка урацила в составе дезоксирибонуклеотида с образованием на его месте остатка тимина, негомологичны (неродственны) у архе и бактерий, т. е. переход к тимин-со-держащей ДНК происходил уже после разделения этих ветвей. Ферменты, контролирующие полуконсервативную репликацию ДНК (ДНК репликазы, топоизомеразы, геликазы и др.), подобно тимиди-латсинтетазам негомологичны у архе и бактерий, т. е. инструменты полуконсервативной репликации ДНК также создавались уже после разделения стволовой линии на ветви (Leipe et al., 2000).
На Рис. 4Г приведен вариант дерева жизни, который, по мнению автора, в наибольшей степени отражает современное состояние проблемы. В нем принято, что только одна из многих ранних клеточных линий дала начало всему живому миру, существующему на Земле. По своей структуре дерево жизни соответствует реальному растению. Многочисленные корешки (доклеточные структуры) сливаются, образуя все более крупные корни (сложные предклеточные структуры и ранние клетки), которые выводят на поверхность единственную стволовую линию – последнего общего предшественника. Эта линия обладала многими, но еще не всеми качествами современных клеток и была наиболее близка современным грамположительным бактериям (протеобактериям). “Стволовая” линия, находясь на стадии перехода от позднего РНК-мира к раннему РНК-ДНК-миру (синтез белка осуществлялся на рибосомах с использованием современного трехбуквенного генетического кода, и ДНК уже присутствовала в клетках), дала отросток, возможно, один из многих, но в отличие от остальных развившийся в мощную ветвь архе. Стволовая линия представила вторую ветвь, развившуюся в царство бактерий.
Процесс ветвления (видообразования) как бы противоположен синтетическому процессу в корневой системе. Однако объединительные горизонтальные обмены и настоящие слияния в форме симбиоза клеток отразились на ходе эволюции, а в формировании эукариотической клетки сыграли главную роль (см. параграф 5.3.2).
Датировка самых ранних клеточных отпечатков (см. Раздел 4.1) позволяет утверждать, что первые ветви на стволе дерева жизни образовались ранее 3.5 млрд лет. Новые данные, в первую очередь палеонтологические находки, относящиеся к самому раннему периоду (3.5 млрд лет и ранее), а также продолжающиеся филогенетические исследования могут повлиять на существующие ныне представления о путях и сроках формирования современных форм жизни и привести к появлению новых версий дерева жизни. Однако вряд ли эти версии будут кардинально отличаться от уже обсуждавшихся. Полученные палеонтологами данные о живых организмах, существовавших на Земле 3–3.5 млрд лет вполне надежны. Практически неоспоримы выводы о присутствии на Земле в течение 2.5 млрд лет исключительно одноклеточных организмов. Отпечатки первых многоклеточных относятся к периоду около 1 млрд лет тому назад. Мир животных, существовавший сотни миллионов лет тому назад, изучен, возможно, даже более детально, чем современный животный мир. Напомним только один эпизод. Палеонтологи по окаменелостям, возраст которых около 400 млн лет, описали двоякодышащую кистеперую рыбу целокант. Эта рыба была признана ближайшим предком всех земноводных, а следовательно, и наземных животных, включая человека. В течение многих лет считалось, что целокант давно вымер.
Поэтому мировой сенсацией стало сообщение о благополучном существовании целоканта в тропических водах, где он изредка попадает в рыбацкие сети. Сопоставление древних отпечатков с выловленными экземплярами показало, что за 400 млн лет почти никаких изменений в анатомии целоканта не произошло. Данные палеонтологии позволяют с высокой точностью датировать появление и исчезновение видов. Именно благодаря труду палеонтологов представляется очевидным, что человека еще не было во времена динозавров, десятки видов которых описаны со всеми анатомическими подробностями, как описаны и существовавшие тогда млекопитающие. Палеонтологические данные столь же уверенно обозначают главные направления в эволюции гоминин – прямоходящей ветви, отделившейся 7 млн лет тому назад от высших обезьян, и “пришедшей” 200 тыс. лет тому назад к современному человеку (параграф 7.1.1). Эти замечания кажутся необходимыми, т. к. в публичных дискуссиях противников и сторонников эволюционного развития жизни последние не всегда прибегают к наиболее наглядным аргументам, предоставленным им палеонтологами.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.