Электронная библиотека » Мэри Бейли » » онлайн чтение - страница 19


  • Текст добавлен: 3 октября 2013, 17:50


Автор книги: Мэри Бейли


Жанр: Зарубежная прикладная и научно-популярная литература, Зарубежная литература


сообщить о неприемлемом содержимом

Текущая страница: 19 (всего у книги 39 страниц)

Шрифт:
- 100% +

Не у всех рыб есть действующий плавательный пузырь. У некоторых групп рыб, представители которых большую часть времени проводят на грунте (например, у бычков), нет необходимости поддерживать нейтральную плавучесть, так что плавательный пузырь стал у них лишним. Он либо атрофирован, либо вообще отсутствует.

Некоторые рыбы способны воспринимать или издавать звуки с помощью плавательного пузыря, который в этом случае действует как резонатор или вибратор.


Поддержание солевого баланса система осмотической регуляции

Жидкости, присутствующие в теле рыбы, содержат различные соли. Чтобы у рыбы эффективно происходил обмен веществ, концентрация этих солей должна оставаться в узком диапазоне. У пресноводных рыб в мышечной жидкости содержится большее количество солей, чем в окружающей воде. Для морских рыб наоборот – внутри у них меньше соли, чем в морской воде. Если бы рыбы были полностью водонепроницаемыми, они могли бы поддерживать свой внутренний водно-солевой баланс без затрат энергии. Однако на самом деле рыбы «протекают» – в том смысле, что вода и соли могут проникать через тонкие эпителиальные поверхности, особенно через жабры. Вода проникает через жабры пресноводных рыб в процессе осмоса, а соли выходят через жабры путём естественной диффузии. Поэтому рыбы должны затрачивать энергию, чтобы противостоять этим силам. Именно это они и делают в процессе, который получил название осмотической регуляции.

Осмотическая регуляция у пресноводных рыб осуществляется путём сочетания физиологических процессов, которые происходят главным образом в почках и жабрах. Функция почек состоит в том, чтобы выводить из тела избыток воды. Это достигается благодаря специальным трубчатым структурам внутри ткани почек, которые отфильтровывают воду из крови и выводят её в мочевой пузырь, откуда она испускается в виде мочи. Мочевой пузырь имеется не у всех групп рыб и его не следует путать с плавательным пузырём. При одинаковом весе тела пресноводные рыбы производят примерно в 10 раз больше мочи, чем морские (и, соответственно, примерно в 10– 20 раз больше, чем наземные животные).

Помимо того, что рыбы вынуждены справляться с избыточным притоком воды в организм, они ещё должны сохранять соли, присутствующие в их теле. Необходимое пропорциональное количество солей в моче поглощается почками ещё до испускания мочи. Кроме того, есть ещё специальные клетки в жабрах – хлоридовые клетки, которые также помогают поддерживать солевое соотношение путём активного поглощения солей (в виде ионов) непосредственно из воды. Эта система поглощения солей, требующая затрат энергии, называется «ионным насосом». Этот процесс работает в обоих направлениях, и нежелательные ионы (такие, как ионы аммиака NH4+) обмениваются на полезные ионы (например, ионы натрия Na+. По этой причине рыб не следует держать в полностью деминерализованной воде (например, в дистиллированной воде или в воде, полученной в результате обратного осмоса) – ведь в такой среде отсутствуют жизненно важные ионы.


Обработка пищи: пищеварительная система

Пищеварительная система рыб состоит из пищеварительного тракта (рот, желудок, кишечник) и связанных с ним органов – поджелудочной железы, печени и желчного пузыря. В ней происходит целый ряд физических, химических и ферментативных процессов, благодаря которым пища расщепляется на протеины, углеводы и жиры, а в конечном итоге – на их молекулярные составные части, а именно аминокислоты, сахара и жирные кислоты. Эти молекулы пищи уже достаточно малы, поэтому возможно их всасывание (или активное поглощение) сквозь стенку кишечника. Оттуда они поступают в кровь, циркулируют в ней и попадают в различные ткани и накопительные органы, будучи уже готовыми к использованию в процессе роста и обмена веществ.


Рот, губы и зубы

Рот, губы и зубы рыбы используют для того, чтобы сосать, ощупывать, пробовать, разрывать на части или кусать пищу. Способы, которые применяют рыбы во время питания, меняются в зависимости от вида. Например, у некоторых рыб семейства цихловых развились весьма специфические приёмы и связанный с ними аппарат, позволяющие им эксплуатировать подчас весьма необычные источники пищи. Однако многие (но не все) рыбы, специализирующиеся на определённых видах пищи, могут изменить стиль питания с целью эксплуатации более распространённых и обычных источников. В то же время те рыбы, которые прежде не отличались специализированным питанием, нередко переключают свои повседневные привычки на новые виды пищи в зависимости от того, какая из них доступна в данный момент. Например, можно наблюдать, как рыбы одного и того же вида подбирают беспозвоночных животных с грунта и хватают зоопланктон в толще воды.

Когда к рыбе в рот попадают съедобные предметы, она обычно проглатывает их целиком. Правда, некоторые рыбы имеют возможность с помощью зубов тереть, дробить или перемалывать пищу на более мелкие кусочки, чтобы их легче было проглотить. Иногда для захвата и обработки пищи применяются разные наборы зубов. Например, цихлиды своими верхнечелюстными зубами захватывают или откусывают куски пищи, а затем дополнительно обрабатывают их зубами, расположенными на нижней глоточной кости (глоточными зубами). В противоположность млекопитающим лишь немногие рыбы способны жевать пищу боковыми зубами. У рыб нет слюнных желез, и в ротовой слизи у них отсутствуют пищеварительные ферменты.

Форма и ориентация рта обычно отражает поведение рыбы при кормлении. Многие рыбы, обитающие на дне, – такие как вьюны, некоторые сомы (например, коридорасы Corydoras) и пресноводные хвостоколы – имеют рот, направленный вниз (нижний рот). Такой рот приспособлен для того, чтобы захватывать корм с грунта (например, червей и личинок водных насекомых). В противоположность этому у рыб, обитающих у поверхности воды (например, некоторых карпозубых и живородящих пецилиевых), рот ориентирован вверх (верхний рот). Такой рот позволяет хватать личинок комаров и земных насекомых, упавших на поверхность воды. Между этими двумя группами находятся те виды рыб, которые обитают примерно в середине толщи воды – у них рот нацелен вперёд (конечный рот). Разумеется, есть множество исключений.

Губы у рыб могут быть специально приспособлены для захвата той или иной пищи. Например, у некоторых донных рыб, таких как сомы-плекостомусы (семейство лорикариевых), губы очень широкие. Они служат одновременно для прикрепления, позволяя рыбе удерживаться на месте в быстро текущей воде или на вертикальной поверхности, и для того, чтобы питаться водорослями и другими мелкими живыми организмами, покрывающими грунт и другие подводные предметы.

Помимо той важной роли, которую рот играет в процессе питания, рыба может пользоваться им и для других целей – например, для сражений с другими рыбами (примером могут служить представители семейств ползуновых и цихловых, которые дерутся, сцепляясь челюстями), для нападения и защиты, для инкубирования икры и мальков (у разных групп рыб) и для копания фунта (особенно у цихловых и бычков).


Зубы

У большинства костистых рыб есть зубы, хотя их положение во рту может быть разным в зависимости от таксономической группы, к которой относится рыба. Например, у харациновидных рыб (тетр и родственных им видов) зубы расположены на челюстях. Пиранья, крупный представитель харациновидных, получила известность благодаря своим острым, как бритва, зубам, которые всегда видны, даже когда рот закрыт, так как они выступают над губами. С другой стороны, у представителей семейства карповых есть зубы, находящиеся в глотке. Они называются глоточными зубами. У цихлид есть как верхнечелюстные, так и глоточные зубы. У многих сомов зубы находятся на нёбе и называются «сошниковыми» или «нёбными» зубами в зависимости от их точного расположения (на сошнике или на небе).

У рыб некоторых видов зубы могут быть даже на языке, как у представителей семейства аравановых Osteoglossidae. Это очень древняя группа, в которую входят аравановые и родственные им рыбы. Из-за такого необычного анатомического свойства этих рыб обычно называют «костноязыкими» (именно таково значение слова Osteoglossidae). Ещё одна необычная форма расположения зубов встречается у представителей семейства иглобрюхих, или скало-зубовых Tetraodontidae, у которых зубы сливаются друг с другом, образуя пару клювообразных пластин. С помощью этих зубов рыбы дробят добычу, находящуюся в твёрдых раковинах, например, водных улиток. У таких рыб зубы продолжают расти в течение всей жизни, но их рост сдерживается из-за постоянного износа. Однако у большинства рыб зубы периодически обновляются.

Даже внутри одной таксономической группы могут встречаться значительные различия в форме, количестве, размерах и расположении зубов – это отражает различное поведение рыб во время еды и предпочтительные виды пищи. Такое разнообразие в расположении зубов зафиксировано у цихлид, населяющих большие озера Восточной Африки. Многие систематики считают его важной характерной чертой, позволяющей отличать представителей этого и других таксонов друг от друга.


Кишечный тракт

Пища, попадающая в рот рыбы, проходит затем в полость глотки (в которой, как уже упоминалось, у некоторых видов рыб располагаются зубы). Затем она идёт по короткому пищеводу, после чего поступает в желудок или кишечник.

Наличие или отсутствие желудка обычно зависит от характера питания рыб данного вида. Некоторые травоядные рыбы, например карповые, вообще не имеют настоящего желудка и их называют «агастрическими». У некоторых рыб желудок может иметь совсем простую форму, но у крупных хищников он напоминает мешок и достаточно растяжим, чтобы вмещать и переваривать крупную добычу – например, целую рыбу. Перевариванию пищи в желудке способствуют ферменты – такие как пепсин или трипсин, а также гидрохлорная кислота (желудочный сок у рыб может быть очень кислым, и в некоторых случаях рН опускается ниже 2).

Из желудка (если он имеется) пища поступает в кишечник, где происходит её дальнейшее переваривание. В маленьком органе, который называется желчным пузырём, хранится жёлто-зелёная желчь, вырабатываемая печенью. Желчный пузырь периодически опустошается, и желчь попадает в кишечник, где она способствует перевариванию жиров, превращая их в эмульсию. Ферменты из поджелудочной железы тоже попадают в кишечник и помогают переваривать углеводы. Кишечник – это основное место переваривания пищи. Питательные вещества проникают сквозь его оболочку и попадают в кровяной поток.

Общая длина кишечного тракта зависит от пищевой ориентации рыбы. Обычно у всеядных и травоядных рыб кишечник длинный, а у плотоядных – сравнительно короткий. Время, необходимое для того, чтобы пища прошла через пищеварительную систему, может быть разным в зависимости от вида рыбы и других факторов (например, от размеров проглоченной пищи и температуры воды). Оно может колебаться от нескольких часов до недели (а иногда и больше) у некоторых плотоядных рыб.

Вся непереваренная пища выходит через анальное отверстие в виде экскрементов вместе со значительным количеством мочи. Экскременты, которые могут иметь разные цвет и консистенцию в зависимости от последней съеденной пищи, содержат непереваренные протеины, углеводы и жиры вместе с клеточным веществом самой рыбы.


Дыхание в воде: дыхательная система

Чтобы жить, рыбы, как и другие животные, должны получать кислород из окружающей среды. Потребление кислорода и отдача углекислого газа как побочного продукта называется процессом дыхания. Такой газовый обмен происходит как у рыб, так и у наземных позвоночных животных. Однако дыхательные органы у представителей этих двух групп животных отличаются. У наземных животных – таких, как млекопитающие и птицы – газовый обмен происходит в лёгких, в то время как у большинства видов рыб аналогичными органами являются жабры. Жабры должны действовать гораздо эффективнее, чем лёгкие у наземных животных, поскольку в воде содержится только 2-3% от количества свободного кислорода, присутствующего в воздухе.

Рыбы имеют два набора жабр – по одному с каждой стороны тела позади головы. Эти нежные органы защищены твёрдыми пластинами, которые называются жаберными крышками. Каждый набор жабр представляет собой сложную структуру, включающую четыре костные дуги. Каждая из этих дуг поддерживает два ряда жаберных волокон в форме перьев, которые называются первичными ламеллами (лепестками). Каждая первичная пластинка, в свою очередь, покрыта крошечными пластинками (вторичными лепестками), через которые проходят узкие кровяные капилляры. Именно через тонкую оболочку вторичных лепестков происходит газообмен между кровью и внешней средой. Кровь во вторичных лепестках течёт в направлении, противоположном направлению движения воды, проходящей по поверхностям ламелл. В результате между этими двумя жидкостями возникает большой диффузионный градиент кислорода и углекислого газа. Такая система «противотока» чрезвычайно увеличивает эффективность газообмена.

Рыбы в большинстве своём вынуждены активно прокачивать воду через жабры, чтобы добиться достаточно интенсивного газообмена. Приняв во внимание, что вода приблизительно в 800 раз плотнее воздуха, становится ясно, что рыба в процессе дыхания должна тратить больше энергии, чем наземное животное. Процесс прокачки воды включает определённую последовательность действий. Сначала рыба открывает рот, чтобы вода втягивалась в ротовую полость. Затем рот закрывается, и сокращение мышц заставляет воду проходить через жабры, а потом наружу через жаберные крышки. В результате вода постоянно протекает через жабры.

Уровень дыхательной активности рыб можно приблизительно определить через скорость колебания жабр (иначе говоря, скорость колебания жаберных крышек или просто «скорость дыхания»). Скорость дыхания увеличивается при повышении активности, испуге и при определённом состоянии воды. Особенно это заметно при повышении температуры, которое приводит к повышению скорости дыхания рыбы и вызывает двойной эффект: с повышением температуры, во-первых, уменьшается концентрация растворённого кислорода, а во-вторых, возрастает скорость метаболических процессов у рыбы, а следовательно, и потребность в кислороде. Повреждения жабр, вызванные окружающей средой или болезнетворными микроорганизмами, приводят к усилению дыхательной деятельности – рыба старается получить достаточное количество кислорода через повреждённую поверхность жабр.

Принимая во внимание, что содержание кислорода в воздухе более чем в 30 раз больше, чем в воде, может показаться удивительным, что рыбы могут умереть от кислородного голодания, когда их вытаскивают из воды. Причина этой видимой аномалии заключается в том, что, если рыба находится вне воды, ламеллы жабр разрушаются, так что площадь поверхности, доступная для газообмена, сильно сокращается. Если жабры высыхают в результате продолжительного нахождения в воздухе, газообмен прекращается полностью и рыба погибает. Длительность выживания в воздухе значительно меняется в зависимости от вида, но есть общее правило: рыб нельзя держать вне воды более одной-двух минут.


Дополнительное дыхание

Некоторые рыбы способны в течение длительного времени оставаться вне воды без ущерба для здоровья или выживать в воде, бедной кислородом. У этих рыб есть особые дополнительные дыхательные органы, которые позволяют им извлекать из атмосферы кислород путём заглатывания воздуха. Хорошо известные примеры среди аквариумных рыб – это гурами (разные роды) и бойцовые рыбы (петушки Betta spp.) из семейства белонтиевых, многие из которых в природных условиях водятся в прудах, бедных кислородом. Этих рыб, а также представителей многих родственных видов иногда называют лабиринтовыми рыбами, потому что они имеют дополнительный дыхательный аппарат – лабиринт. Эта структура, содержащая множество складок с обильным кровоснабжением, связана с наполненной воздухом глоточной камерой. Органы с похожими функциями есть также у некоторых сомов, которые способны выживать в условиях низкого содержания кислорода, характерных для пересыхающих прудов, и у рыб, способных мигрировать по суше, – хорошо известным примером может служить сом клариас Clarias.

Некоторые другие сомы (например, коридорас Corydoras spp.) и вьюны (семейство вьюновые Cobitidae) способны поглощать атмосферный кислород непосредственно через стенки своего кишечника, пронизанные кровеносными сосудами. Часто можно наблюдать, как эти рыбы, которые в аквариуме обычно находятся на дне, периодически направляются к поверхности воды, чтобы сделать большой глоток воздуха. Это совершенно нормальное поведение, и оно не обязательно свидетельствует о том, что вода в аквариуме бедна кислородом.


Перекачивание крови: кровеносная система

Основная функция кровеносной системы – снабжение разных органов и тканей кислородом и питательными веществами, а также удаление побочных продуктов обмена веществ. Кровеносная система в основном состоит из сердца, а также сети артерий, вен и тонких капилляров. Сердце работает как насос. Оно находится рядом с жабрами и состоит из четырех камер: венозного синуса, предсердия, желудочка и артериального конуса (луковицы). Из них самые крупные – это предсердие и желудочек. Они настолько крупнее остальных, что иногда можно встретить утверждение, что этот орган состоит только из двух камер.

Общий вес крови рыбы составляет приблизительно 5% от веса тела. Сама кровь состоит из жидкости, которая называется плазмой. Она переносит растворимые вещества – в частности, питательные вещества, а также специальные красные и белые кровяные клетки. Назначение красных кровяных клеток (эритроцитов) состоит в том, чтобы переносить кислород от жабр к тканям тела. Каждая молекула кислорода связана с гемоглобином – пигментом, который присутствует в эритроцитах и придаёт им красную окраску. По своим функциям эритроциты рыб сходны с эритроцитами млекопитающих, но отличаются от них тем, что имеют ядро. Белые кровяные клетки, среди которых есть лимфоциты и другие типы клеток, играют значительную роль в иммунитете (это обсуждается ниже). Помимо переноса кислорода и питательных веществ, а также иммунной функции, кровь ещё является тем путём, по которому гормоны попадают в нужные органы.

Кроме того, рыбы имеют лимфатическую систему. Лимфа циркулирует вокруг так называемой белой мышцы, используемой при кратких вспышках активности. Лимфа, объём которой примерно в четыре раза превышает объём крови, по составу подобна плазме крови, но не содержит красных кровяных клеток.


У рыб есть мозг: нервная система

Нервная система состоит из головного мозга, связанного с ним спинного мозга и сети нервов. Основная функция мозга заключается в том, чтобы получать и интерпретировать электрические сигналы от различных органов чувств – например, глаз, вкусовых почек, слуховых и осязательных органов, а также отвечать на них. Сам мозг состоит из трех сегментов: переднего мозга, среднего мозга и заднего мозга. Каждый сегмент связан с конкретными сенсорными входами. Например, задний мозг связан со вкусовыми рецепторами.


Контакт с окружающей средой: система органов чувств

Хотя система органов чувств тесно связана с мозгом и нервной системой, её нередко, как и в данном случае, рассматривают отдельно. Частично это объясняется сложностью и разнообразием органов чувств у рыб, некоторые из которых не имеют аналогов у наземных позвоночных. Система органов чувств снабжает мозг данными о внешних раздражителях, давая возможность рыбе воспринимать и понимать то, что её окружает, и адекватно реагировать.


Глаза

Глаза рыб по своему строению схожи с глазами млекопитающих. Костистые рыбы в большинстве своём способны воспринимать мир в цвете. Однако в отличие от млекопитающих они не могут изгибать шею, чтобы смотреть из стороны в сторону. Поэтому их глаза специально приспособлены к тому, чтобы охватывать возможно более широкое пространство. Многие хищные рыбы – например, щука Esox spp. – полагаются на своё острое бинокулярное зрение, чтобы подкрадываться к добыче и хватать её. Однако для многих рыб зрение не так важно, как для высших позвоночных животных, потому что они способны пользоваться другими органами чувств, которые помогают им питаться и плавать в воде. Поэтому потеря одного или даже обоих глаз обычно не является достаточной причиной для умерщвления рыбы. Это особенно справедливо для ночных видов рыб – например, для многих сомов, которые полагаются прежде всего на специальные органы вкуса, с помощью которых они обнаруживают съедобные предметы во время ночных набегов.

Рыбы некоторых видов частично или постоянно живут в пещерах, и зрение им вообще не нужно. Поэтому глаза у них либо отсутствуют, либо в значительной степени атрофированы. Хорошо известным примером среди аквариумных рыб является слепая пещерная тетра, которая так и называется – рыба слепая Astyanax fasciatus mexicanus. У неё нет глаз, а кроме того, она утратила необходимость пигментации. Есть также слепая пещерная рыба – подвид моллиенезии сфенопс Poecilia sphenops, обитающая на юге Мексики. Некоторые другие группы рыб тоже представлены слепыми рыбами, обитающими в пещерах, – в том числе карповые, сомы, бычки и угри.


Акустико-латеральная система

Рыбы способны воспринимать вибрацию, передающуюся по воде, хотя кажется, что у них нет ушей. На самом деле уши у рыб есть, но они полностью внутренние и не имеют внешней ушной раковины, как у млекопитающих. У рыб уши снабжены чувствительными клетками (волосковыми клетками), которые действуют как детекторы вибрации, а также полукруглыми каналами, дающими ощущение силы тяжести и равновесия, как у высших позвоночных.

Ещё один компонент акустико-латеральной системы – это система боковой линии. Она состоит из ряда каналов, которые проходят непосредственно под кожей рыбы и связаны с внешней средой посредством множества крошечных пор. Эта система не имеет аналогов у наземных позвоночных. Множество крошечных каналов сконцентрировано в области головы, а главный канал тянется с обеих сторон тела от головы к хвосту и достигает хвостового стебля. Путь этого вытянутого канала виден на поверхности тела рыбы в виде желобка, получившего название боковой линии. У некоторых групп рыб – таких, как цихловые и ползуновые – боковая линия разделена на два или три отрезка. По аналогии с ушами эти каналы содержат чувствительные волосковые клетки, позволяющие уловить вибрацию в воде. Таким образом, акустико-латеральная система позволяет рыбам воспринимать даже незначительную вибрацию, вызываемую находящимися поблизости движущимися объектами – например, другими рыбами. Некоторые рыбы используют эту способность, чтобы засекать добычу – мелких беспозвоночных животных, прячущихся в грунте.


Дистанционный вкус и обоняние

У рыб, как и у других позвоночных животных, есть такие чувства, как вкус и обоняние.

У наземных позвоночных расположение вкусовых почек ограничивается языком. У рыб же они могут находиться на любой части тела. В результате изучения североамериканского сомика-кошки Ictalurus nebulosus обнаружена высокая концентрация вкусовых почек на усиках, что указывает на важную сенсорную функцию этих придатков (см. ниже). Многие рыбы способны «пробовать» воду и чувствовать концентрацию и тип молекул пищи в окружающей воде. Это даёт им возможность выследить и поймать белковую пищу, так как они плывут в воде вдоль градиента концентрации молекул пищи, исходящих из источника. Было доказано, что сомик-кошка способен обнаруживать пищу на расстоянии в пять метров даже в полной темноте.

Кроме того, с помощью обоняния рыбы способны определять местонахождение пищи на расстоянии. Обонятельные камеры связаны с ноздрями. Когда рыба плывёт, вода проходит через ноздри над обонятельными детекторами. Некоторые рыбы активно прокачивают воду через детекторы. С помощью обоняния рыбы обнаруживают не только пищу, но и молекулы, испускаемые другими рыбами. Эти молекулярные «намёки» иногда служат для репродуктивных целей или предостерегают рыб о том, что поблизости находятся хищники.


Усики

Эти органы обычно имеются у ночных рыб или у рыб, обитающих в тёмных водоёмах. Как уже упоминалось, эти усики обильно снабжены вкусовыми почками. Кроме того, они выполняют осязательную функцию. Таким образом рыбы находят пищу с помощью вкуса и осязания, и им не приходится полагаться на зрение. Среди аквариумных рыб усики имеются у вьюнов, сомов и некоторых представителей семейства карповых. У некоторых сомов и карповых (например, эзомусов или летучих барбусов Esomus spp.) усики очень длинные.


Электрические органы

Слонорылые рыбы (семейство клюворылые Mormyridae), южноамериканские и африканские рыбы-ножи (разные семейства), а также некоторые пресноводные угри и сомы имеют электрические органы, способные вырабатывать низко– или высокочастотные импульсы, используемые в качестве средства общения или для обнаружения пищи. Это замечательное приспособление позволяет таким рыбам обитать в илистых водоёмах, где от одного зрения было бы мало толку. Популярным примером среди аквариумных рыб является рыба-слон Gnathonemus petersi – африканский представитель семейства клюворылых. Рыбы некоторых видов обладают мощными электрическими органами, способными вырабатывать высоковольтный разряд, который используется для защиты и оглушения добычи. В пример можно привести африканского электрического угря Electrophorus electricus, который способен вырабатывать невероятно сильный разряд напряжением 500 вольт.


Приобретённый иммунитет

Это более специализированная форма защиты, которая имеет два основных характерных свойства:

1) способность отличать друг от друга разные патогенные организмы;

2) способность к «запоминанию».

Воздействие определённых патогенных организмов стимулирует различные иммунные клетки и приводит их в действие с целью уничтожить врага. Если когда-нибудь впоследствии патогенные организмы того же типа снова атакуют рыбу, тогда приобретённая иммунная система заранее будет готова к бою и расправится с противником эффективнее и быстрее, чем в первый раз. Способность к «запоминанию» связана с особой группой белых кровяных клеток, которые называются лимфоцитами. Когда в результате контакта с возбудителями заболеваний лимфоциты активизируются, они взаимодействуют с другими иммунными клетками и запускают в действие дополнительные системы защиты. Существует определённая группа лимфоцитов, которая способна синтезировать специальные молекулы протеина, которые называются антителами. Они лишают вирусы активности, а кроме того, помогают уничтожать более крупные патогенные организмы и паразитов. Эти антитела присутствуют не только в плазме крови, но могут также находиться в кожной слизи и в других секретах тела.

Из способности рыб развивать приобретённый иммунитет следует, что можно производить вакцины, направленные против различных болезней рыб, точно так, как мы делаем это для людей.


Врождённый иммунитет

Врождённый иммунитет – более примитивная из этих двух систем. Тем не менее именно он чаще всего формирует передовую линию защиты против патогенных организмов. Он может иметь форму обыкновенного физического барьера для нашествия патогенных организмов. Именно такой барьер представляют собой кожа и кожная слизь, причём последняя способна захватывать бактерии и лишать их подвижности. Помимо этого существуют химические барьеры, защищающие организм рыбы от проникновения инфекции – например, кислота, вырабатываемая желудком, и специализированные протеины, обладающие антимикробной активностью. Примером может служить С-реактивный протеин, обладающий антибактериальными и антигрибковыми свойствами, и интерферон, обладающий антивирусными свойствами. Клеточная защита имеет форму примитивных белых кровяных клеток, которые называются фагоцитами. Они «патрулируют» кровь и ткани в поисках патогенных организмов. Обнаружив, они атакуют и поглощают их.


Лимфоидная функция

Рыбы обладают несколькими лимфоидными органами и тканями, которые участвуют в выработке и хранении белых кровяных клеток. Лимфоидная функция связана с тимусом, селезёнкой, почками и печенью. Есть основания, позволяющие предположить, что кишечник рыб также имеет участки лимфоидной ткани.


Борьба с болезнями: иммунная система

Рыбы подвержены множеству инфекционных болезней, вызываемых вирусами, бактериями, грибками, простейшими, а также паразитическими червями и ракообразными (см. главу 21). Водная среда особенно благоприятна для выживания многих мельчайших патогенных организмов – особенно бактерий и простейших, которые в противном случае, т. е. в воздухе, высохли и погибли бы. Для отражения болезней рыбы обладают целой батареей защитных механизмов, среди которых – специализированные защитные клетки, антитела и антимикробные вещества. Иммунную систему рыб (как и высших позвоночных) можно условно разделить на врождённый (неспецифический) и приобретённый (специфический) иммунитет.


Эндокринная система

Эндокринная система вырабатывает особые молекулы протеина, которые называются гормонами. Они регулируют и синхронизируют основные физиологические процессы – такие как размножение и осмотическая регуляция. Гормоны действуют как химические «посыльные», которые путешествуют вместе с кровью, пока не достигнут соответствующих органов – мест назначения. Некоторые органы и железы рыб выполняют эндокринную функцию – в том числе тимус, шишковидная железа и межпочечная железа. Эндокринная функция в значительной степени находится под контролем гипофиза, который связан с передним отделом головного мозга. Нервно-гормональная сеть позволяет рыбе физиологически реагировать на сигналы органов чувств, которые воспринимают раздражители, поступающие из окружающей среды. Например, когда рыба замечает хищника, её глаза превращают визуальный образ в электрические сигналы, которые идут по оптическим нервам к мозгу, где происходит их обработка. Отсюда выходят электрические сигналы, которые запускают выработку гормонов стресса – таких, как адреналин. Эти гормоны путешествуют к различным пунктам назначения – органам и системам. В целом воздействие гормонов стресса заключается в том, что они переводят значительное количество энергии в двигательную активность, позволяющую рыбе быстро скрыться от угрозы.


Стратегия размножения

Большинство видов костистых рыб относятся к икромечущим, причём оплодотворение у них внешнее, т. е. оно происходит после того, как самка выбросит икру. Правда, у рыб некоторых видов, у которых самка инкубирует икру во рту, оплодотворение происходит, как только самка соберёт всю икру у себя во рту. Таким образом, его можно классифицировать как внутреннее оплодотворение.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации