Электронная библиотека » Яков Перельман » » онлайн чтение - страница 4


  • Текст добавлен: 14 января 2014, 00:22


Автор книги: Яков Перельман


Жанр: Учебная литература, Детские книги


Возрастные ограничения: +6

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 10 страниц)

Шрифт:
- 100% +

Глава V Недесятичные системы счисления

Загадочная автобиография

Эту главу позволю себе начать с задачи, которую я придумал лет пятнадцать тому назад для читателей одного распространенного тогда журнала[17]17
  «Природа и Люди» (потом была перепечатана в сборнике Е.И. Игнатьева «В царстве смекалки»).


[Закрыть]
в качестве «задачи на премию». Вот она:

Загадочная автобиография

В бумагах одного чудака-математика найдена была его автобиография. Она начиналась следующими строками:

«Я окончил курс университета 44-х лет от роду. Спустя год, 100-летним молодым человеком, я женился на 34-летней девушке. Незначительная разница в возрасте – всего 11 лет, – способствовала тому, что мы жили общими интересами и мечтами. Спустя немного лет у меня была уже и маленькая семья из 10 детей. Жалованья я получал в месяц всего 200 рублей, из которых 1/10 приходилось отдавать сестре, так что мы с детьми жили на 130 руб. в месяц» и т. д.


Чем объяснить странные противоречия в числах этого отрывка?


Решение задачи подсказывается названием этой главы: недесятичная система счисления – вот единственная причина кажущейся противоречивости приведенных чисел. Напав на эту мысль, нетрудно догадаться, в какой именно системе счисления изображены числа чудаком-математиком. Секрет выдается фразой: «Спустя год (после 44-летнего возраста), 100-летним молодым человеком…» Если от прибавления одной единицы число 44 преображается в 100, то, значит, цифра 4 – наибольшая в этой системе (как 9 – в десятичной), а следовательно, основанием системы является 5. Чудаку-математику пришла фантазия написать все числа своей биографии по пятиричной системе счисления, т. е. по такой, в которой единица высшего разряда не в 10, а в 5 раз больше единицы низшего; на первом справа месте стоят в ней простые единицы (не свыше четырех), на втором – не десятки, а пятерки; на третьем не сотни, а «двадцати-пятерки», и т. д. Поэтому число, изображенное в тексте записки «44», означает не 4 × 10 + 4, как в десятичной системе, а 4 × 5 + 4, т. е. двадцать четыре. Точно так же число «100» в автобиографии означает одну единицу третьего разряда в пятиричной системе, т. е. 25. Остальные числа записки соответственно означают


Восстановив истинный смысл чисел записки, мы видим, что в ней никаких противоречий нет:


Я окончил курс 24 лет от роду. Спустя год, 25-летним молодым человеком, я женился на 19-летней девушке. Незначительная разница в возрасте – всего 6 лет – способствовала тому, что мы жили общими интересами и мечтами. Спустя немного лет, у меня была уже и маленькая семья из 5 детей. Жалованья я получал 50 рублей, из которых 1/5 приходилось отдавать сестре, так что мы с детьми жили на 40 рублей.


Трудно ли изображать числа в других системах счисления? Ничего не может быть легче. Положим, вы желаете число 119 изобразить в пятиричной системе. Делите 119 на 5, чтобы узнать, сколько в нем единиц первого разряда:


119: 5 = 23, остаток 4.


Значит, число простых единиц будет 4. Далее, 23 пятерки не могут стоять все во втором разряде, так как высшая цифра в пятиричной системе – 4, и больше 4 единиц ни в одном разряде быть не должно. Делим поэтому 23 на 5:


23: 5 = 4, остаток 3.


Это показывает, что во втором разряде («пятерок») будет цифра 3, а в третьем («двадцати-пятерок») – 4.

Итак, 119 = 4 × 25 + 3 × 5 + 4, или в пятиричной системе «434».

Сделанные действия для удобства располагают

так:


Курсивные цифры (при письме можно их подчеркивать) выписывают справа налево и сразу получают искомое изображение числа в иной системе.

Приведем еще примеры.

1) Изобразить 47 в третичной системе:


Ответ: «502». Проверка: 5 × 9 + 0 × 3 + 2 = 47.

2) Число 200 изобразить в семиричной системе:


Ответ: «404». Проверка: 4 × 49+ 0 × 7 + 4 = 200.

3) Число 163 изобразить в 12-ричной системе:


Ответ: «117». Проверка: 1 × 144 + 1 × 12 + 7 = 163.


Думаем, что теперь читатель не затруднится изобразить любое число в какой угодно системе счисления. Единственная помеха может возникнуть лишь вследствие того, что в некоторых случаях не будет доставать изображений для цифр. В самом деле: при изображении числа в системах с основанием более десяти (например, в 12-ричной), может явиться надобность в цифрах, соответствующих числам десять и одиннадцать. Но из этого затруднения нетрудно выйти, избрав для этих новых цифр какие-нибудь условные знаки или буквы, – хотя бы, например, буквы кил, стоящие в русском алфавите на 10-м и 11-м месте. Так, число 1579 в двенадцатиричной системе изобразится следующим образом:


Проверка: 10 × 144 +11 × 12 + 7= 1579.

Простейшая система счисления

Вообще нетрудно сообразить, что в каждой системе высшая цифра, какая может понадобиться, равна основанию этой системы без единицы. Например, в десятичной системе высшая цифра 9, в 6-ричной – 5, в троичной – 2, в 15-ричной – 14, и т. д.

Самая простая система счисления, конечно, та, для которой требуется всего меньше цифр. В десятичной системе нужны 10 цифр (считая и 0), в пятиричной – всего 5 цифр, в троичной – 3 цифры (1, 2 и 0), в двоичной – только 2 цифры (цифры 1 и 0). Существует ли и «единичная» система? Конечно: это система, в которой единицы высшего разряда в один раз больше единицы низшего, т. е. равны ей; другими словами, «единичной» можно назвать такую систему, в которой единицы всех разрядов имеют одинаковое значение. Это самая примитивная «система»; ею пользуется первобытный человек, делая на дереве зарубки по числу сосчитываемых предметов. Но между нею и всеми другими системами счета есть громадная разница: в ней нет главной особенности нашей нумерации – так называемого поместного значения цифр. Действительно: в «единичной» системе знак, стоящий на 3-м или на 5-м месте, имеет то же значение, что и стоящий на первом месте. Между тем даже в двоичной системе единица на 3-м месте (справа) уже в 4 раза больше, чем на первом, а на 5-м – в 16 раз больше. Поэтому система «единичная» дает нам очень мало выгоды, так как для изображения какого-нибудь числа по этой системе нужно ровно столько же знаков, сколько было сосчитано предметов: чтобы записать сто предметов, нужно сто знаков, в двоичной же – только семь («1100100»), а в пятиричной – еще меньше, всего три («400»).

Вот почему «единичную» систему едва ли можно назвать «системой», по крайней мере, ее нельзя поставить рядом с остальными, так как она принципиально от них отличается, не давая никакой экономии в изображении чисел. Если же ее откинуть, то простейшей системой счисления нужно признать систему двоичную, в которой употребляются всего две цифры: 1 и 0. При помощи 1 и 0 можно изобразить все бесконечное множество чисел! На практике эта система мало удобна – получаются слишком длинные числа[18]18
  Зато, как увидим далее, для такой системы до крайности упрощаются таблица сложения и таблица умножения.


[Закрыть]
; но теоретически она имеет все права считаться простейшей. Она обладает некоторыми любопытными особенностями, присущими только ей одной, особенностями этими, между прочим, можно воспользоваться для выполнения целого ряда эффектных математических фокусов, о которых мы скоро побеседуем подробно в главе «Фокусы без обмана».

Необычайная арифметика

Простые арифметические действия, к которым мы привыкли настолько, что выполняем их автоматически, потребуют от нас немалого напряжения, если мы пожелаем применить их к числам, написанным не по десятичной системе. Попробуйте, например, выполнить сложение следующих двух чисел, написанных по пятиричной системе:


Складываем по разрядам, начиная с единиц, т. е. справа: 3 + 2 равно пяти, но мы не можем записать 5, потому что такой цифры в пятиричной системе не существует: пять есть уже единица высшего разряда. Значит, в сумме вовсе нет единиц: пишем 0, а пять, т. е. единицу следующего разряда, удерживаем в уме. Далее, 0 + 3 = 3, да еще единица, удержанная в уме, – всего

4 единицы второго разряда. В третьем разряде получаем 2 + 1 = 3. В четвертом 4 + 2 равно шести, т. е. 5+1; пишем 1, а 5, т. е. единицу высшего разряда, относим далее влево. Искомая сумма = 11340.


Предоставляем читателю проверить это сложение, предварительно переведя изображенные в кавычках числа в десятичную систему и выполнив то же действие.

Точно так же выполняются и другие действия: для упражнения приводим далее ряд примеров, число которых читатель, при желании, может увеличить самостоятельно:


При выполнении этих действий мы сначала мысленно изображаем написанные числа в привычной нам десятичной системе, а получив результат, снова изображаем его в требуемой недесятичной системе. Но можно поступать и иначе: составить «таблицу сложения» и «таблицу умножения» в тех же системах, в которых даны нам числа, и пользоваться ими непосредственно. Например, таблица сложения в пятиричной системе такова:


С помощью этой таблички мы могли бы сложить числа «4203» и «2132», написанные в пятиричной системе, гораздо менее напрягая внимание, чем при способе, примененном раньше.

Упрощается, как легко понять, также выполнение вычитания.

Нетрудно составить и таблицу умножения («Пифагорову») для пятиричной системы:


Имея эту табличку перед глазами, вы опять-таки можете облегчить себе труд умножения (и деления) чисел в пятиричной системе, как легко убедиться, применив ее к приведенным выше примерам. Например, при умножении


рассуждаем так: трижды три «14» (из таблицы); 4 пишем, 1 – в уме. Один на 3 = 3, да еще один, – пишем 4. Дважды три = «11»; 1 – пишем, 1 – переносим влево. Получаем в результате «1144».

Чем меньше основание системы, тем меньше и соответствующие таблицы сложения и умножения. Например, для троичной системы обе таблицы таковы:



Их можно было бы сразу же запомнить и пользоваться ими для выполнения действий. Самые маленькие таблицы сложения и вычитания получаются для двоичной системы:


При помощи таких-то простых «таблиц» можно выполнять в двоичной системе все четыре действия! Умножения в этой системе, в сущности, как бы вовсе нет: ведь умножить на единицу значит оставить число без изменения, а умножение на «10», «100», «1000» и т. п. сводится к простому приписыванию справа соответствующего числа нулей. Что же касается сложения, то для выполнения его нужно помнить только одно – что в двоичной системе 1 + 1 = 10. Не правда ли, мы с полным основанием назвали раньше двоичную систему самой простой из всех возможных? Длина чисел этой своеобразной арифметики искупается простотой выполнения над ними всех арифметических действий. Пусть, например, требуется умножить:


Выполнение действия сводится только к переписыванию данных чисел в надлежащем расположении: это требует несравненно меньше умственных усилий, чем умножение тех же чисел в десятичной системе (605 × 37 = 22385). Если бы у нас была принята двоичная система, изучение письменного счисления требовало бы наименьшего умственного напряжения (зато – больше бумаги и чернил). Но в устном счете двоичная арифметика по удобству выполнения действий значительно уступает нашей десятичной.

Чет или нечет?

Не видя числа, трудно, конечно, угадать, какое оно – четное или нечетное. Но не думайте, что вы всегда сможете сказать это, едва увидите задаваемое число. Скажите, например: четное или нечетное число 16?

Если вам известно, что оно написано по десятичной системе, то, без сомнения, можно утверждать, что это число четное. Но когда оно написано по какой-либо другой системе – то можно ли быть уверенным, что оно изображает непременно четное число?

Оказывается, нет. Если основание, например, семь, то «16» означает 7 + 6=13, число нечетное. То же будет и для всякого нечетного основания (потому что всякое нечетное число + 6 = нечетному числу).

Отсюда вывод, что знакомый нам признак делимости на два (последняя цифра четная) безусловно пригоден только для десятичной системы счисления, для других же – не всегда. А именно: он верен только для систем счисления с четным основанием: 6-ричной, 8-ричной и т. п. Каков же признак делимости на 2 для систем с нечетным основанием? Достаточно краткого размышления, чтобы установить его: сумма цифр должна быть четной. Например, число «136» четное во всякой системе счисления, даже и с нечетным основанием; действительно, в последнем случае имеем: нечетное число[19]19
  Нечетное число, умноженное на себя (т. е. на нечетное), всегда дает нечетное число (напр., 7 × 7 = 49, 11 × 11 = 121 и т. п.).


[Закрыть]
+ нечетное число + четное = четному числу.

С такою же осторожностью надо отнестись к задаче: всегда ли число 25 делится на 5? В 7-ричной или в 8-ричной системе число, так изображенное, на 5 не делится (потому что оно равно девятнадцати или двадцати одному). Точно так же общеизвестный признак делимости на 9 (сумма цифр…) правилен только для десятичной системы. Напротив, в пятиричной системе тот же признак применим для делимости на 4, а, например, в семиричной – на 6. Так, число «323» в пятиричной системе делится на 4, потому что 3 + 2 + 3 = 8, а число «51» в семиричной – на 6 (легко убедиться, переведя числа в десятичную систему: получим соответственно 88 и 36). Почему это так, читатель сам сможет сообразить, если вникнет хорошенько в вывод признака делимости на 9 и приложит те же рассуждения, соответственно измененные, например, к семиричной системе для вывода признака деления на 6.

Труднее доказать чисто арифметическим путем справедливость следующих положений:


Знакомые с начатками алгебры легко найдут основание, объясняющее свойство этих равенств. Остальные читатели могут проверить их рядом проб для разных систем счисления.

Дроби без знаменателя

Мы привыкли к тому, что без знаменателя пишутся только десятичные дроби. Поэтому с первого взгляда кажется, что написать прямо без знаменателя дробь 2/7 или 1/7 нельзя. Дело представится нам, однако, иначе, если вспомним, что дроби без знаменателя возможны и в других системах счисления. Что, например, означает дробь «0,4» в пятиричной системе? Конечно, 4/5. Дробь «1,2» в семиричной системе означает 12/7. А что означает в той же семиричной системе дробь «0,33»? Здесь результат сложнее: 3/7 + 3/49 = 24/49.

Рассмотрим еще несколько примеров недесятичных дробей без знаменателя:


«2,121» в троичной системе 2 + 1/3 + 2/9 + 1/27 = 216/27

«1,011» в двоичной системе 1 + 1/4 + 1/8 = 13/8

«3,431» в пятиричной системе 3 + 4/5 + 3/25 + 1/125 = 3116/125

«2, (5)» в семиричной системе 2 + 5/7 + 4/49 + 5/343 +… = 25/6


В правильности последнего равенства читатель легко может убедиться, если попробует применить к данному случаю, с соответствующим видоизменением, рассуждения, относящиеся к превращению десятичных периодических дробей в простые.

ЗАДАЧА-ШУТКА

Какое число делится на все числа без остатка?

(Ответ – на стр. 102.)

Глава VI галерея числовых диковинок

Арифметическая кунсткамера

В мире чисел, как и в мире живых существ, встречаются подлинные диковинки, редкие феномены, обладающие исключительными свойствами. Из таких необыкновенных чисел можно было бы составить своего рода музей числовых редкостей, настоящую «арифметическую кунсткамеру». В витринах подобного музея нашли бы себе место не только числовые исполины, о которых мы побеседуем еще в особой главе, но и числа сравнительно небольшие, выделяющиеся из ряда других какими-либо необычайными свойствами. Некоторые из них уже по внешности привлекают к себе интерес и внимание; другие открывают свои диковинные особенности лишь при более близком знакомстве. Приглашаю читателя пройтись со мною по галерее таких числовых диковинок и познакомиться с некоторыми из них.

Пройдем, не останавливаясь, мимо первых витрин, заключающих числа, свойства которых нам уже знакомы. Мы знаем уже, почему попало в арифметическую кунсткамеру число 2: не потому, что оно первое четное число, а потому, что оно – основание самой удобной системы счисления. Не удивимся мы, встретив здесь 5 – одно из наших любимейших, после десяти, чисел, играющее важную роль при всяких «округлениях», в том числе и при округлении цен, которое обходится нам так дорого.

Не будет неожиданностью для нас найти здесь и число 9 – конечно, не как символ постоянства[20]20
  Древние (последователи Пифагора) считали 9 символом постоянства, так как все числа, кратные 9, сохраняют одну и ту же сумму цифр – 9.
  Было бы, однако, большим заблуждением думать, что делимость числа может зависеть от того, в какой системе счисления оно изображено. Если орехи, заключающиеся в данном мешке, могут быть разложены в 5 одинаковых кучек, то это свойство их, конечно, не изменится от того, будет ли число орехов в мешке выражено числом в той или иной системе счисления, или отложено на счетах, или написано прописью, или, наконец, изображено каким-либо иным способом. Если число, написанное в 12-ричной системе, делится на 6 или на 72, то, будучи выражено в другой системе счисления, например, в десятичной, оно должно иметь тех же делителей. Разница лишь в том, что в 12-ричной системе делимость на 6 или на 72 легче обнаружить (число оканчивается одним или двумя нулями). Когда говорят о преимуществах 12-ричной системы в смысле делимости на большее число делителей, то имеют в виду, что благодаря склонности нашей «к круглым» числам на практике будут чаще встречаться числа, оканчивающиеся, в 12-ричной системе, нулями.
  Почему 12345 × 9 + 6 дает именно 111111 – было показано при рассмотрении предыдущей числовой пирамиды.


[Закрыть]
, а как число, облегчающее нам проверку арифметических действий. Но вот витрина, за стеклом которой мы видим

число 12

Чем оно замечательно? Конечно, это число месяцев в году и число единиц в дюжине, но что, в сущности, особенного в дюжине? Не многим известно, что 12 – старинный и едва не победивший соперник числа 10 за почетный пост основания системы счисления. Культурнейший народ древнего Востока – вавилоняне и их предшественники, еще более древние первонасельники Двуречья – вели счет в 12-ричной системе счисления. И если бы не пересилившее влияние Индии, подарившей нам десятичную систему, мы, весьма вероятно, унаследовали бы от Вавилона 12-ричную систему. Кое в чем мы и до сих пор платимдань 12-ричной системе, несмотря на победу десятичной. Наше пристрастие к дюжинам и гроссам, наше деление суток на две дюжины часов, деление часа – на 5 дюжин минут, и минуты – на столько же секунд, наше деление круга на 30 дюжин градусов, наконец, деление фута на 12 дюймов и многие другие пережитки глубокой древности – красноречиво свидетельствуют, как велико еще влияние этой древней системы. Надо ли радоваться тому, что в борьбе между дюжиной и десяткой победила последняя? Конечно, сильными союзницами десятки были и остаются наши собственные руки с десятью пальцами – живые счетные машины. Если бы не это, то следовало бы, безусловно, отдать предпочтение 12 перед 10. Гораздо удобнее производить расчеты по 12-ричной системе, нежели по десятичной. Причина та, что число 10 делится без остатка только на 2 и на 5, между тем как 12 делится и на 2, и на 3, и на 4, и на 6. У 10 всего два делителя, у 12 – четыре. Преимущества 12-ричной системы станут вам яснее, если вы примете в соображение, что в 12-ричной системе число, оканчивающееся нулем, кратно и 2, и 3, и 4, и 6: подумайте, как удобно дробить число, когда и 1/2, и 1/3, и 1/4 и 1/6 его должны быть целыми числами. А если выраженное в 12-ричной системе число оканчивается двумя нулями, то оно должно делиться без остатка на 144, а следовательно, и на все множители 144, т. е. на следующий длинный ряд чисел:


2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144.


Четырнадцать делителей – вместо тех восьми, которые имеют числа, написанные в десятичной системе, если оканчиваются двумя нулями (2, 4, 5, 10, 20, 25, 50 и 100). В нашей системе только дроби вида 1/2, 1/4, 1/5, 1/20 и т. д. превращаются в конечные десятичные; в 12-ричной же системе можно написать без знаменателя гораздо более разнообразные дроби, и прежде всего дроби:

1/2, 1/3, 1/4, 1/6, 1/8, 1/9, 1/12, 1/16, 1/18, 1/24, 1/36, 1/48, 1/72, 1/144,


которые соответственно изобразятся так:


0,6; 0,4; 0,3; 0,2; 0,16; 0,14; 0,1: 0,09; 0,08; 0,06; 0,04; 0,03; 0,02; 0,01.


При таких очевидных преимуществах 12-ричной системы неудивительно, что среди математиков раздавались голоса за полный переход на 12-ричную систему[21]21
  Было бы, однако, большим заблуждением думать, что делимость числа может зависеть от того, в какой системе счисления оно изображено. Если орехи, заключающиеся в данном мешке, могут быть разложены в 5 одинаковых кучек, то это свойство их, конечно, не изменится от того, будет ли число орехов в мешке выражено числом в той или иной системе счисления, или отложено на счетах, или написано прописью, или, наконец, изображено каким-либо иным способом. Если число, написанное в 12-ричной системе, делится на 6 или на 72, то, будучи выражено в другой системе счисления, например, в десятичной, оно должно иметь тех же делителей. Разница лишь в том, что в 12-ричной системе делимость на 6 или на 72 легче обнаружить (число оканчивается одним или двумя нулями). Когда говорят о преимуществах 12-ричной системы в смысле делимости на большее число делителей, то имеют в виду, что благодаря склонности нашей «к круглым» числам на практике будут чаще встречаться числа, оканчивающиеся, в 12-ричной системе, нулями.


[Закрыть]
. Однако мы уже чересчур тесно сжились с десятичной системой, чтобы решаться на такую реформу.

Вы видите, следовательно, что дюжина имеет за собою длинную историю и что число 12 не без основания очутилось в галерее числовых феноменов. Зато его соседка – «чертова дюжина», 13, фигурирует здесь не потому, что она чем-либо замечательна, а потому, что ничем не замечательна, хотя и пользуется такой мрачной славой: разве не удивительно, что ровно ничем не выделяющееся число могло стать столь «страшным» для суеверных людей?

В следующей витрине арифметической кунсткамеры перед нами

число 365

Оно замечательно не только тем, что определяет число дней в году. Прежде всего, оно при делении на 7 дает в остатке 1. Эта, казалось бы, несущественная особенность числа 365 имеет большое значение при календарных расчетах: от нее зависит то, что каждый простой (не високосный) год кончается тем днем недели, каким он начался; если, например, день нового года был понедельник, то и последний день года будет понедельник, а следующий год начнется со вторника. По той же причине – благодаря остатку 1 от деления 365 на 7 – было бы нетрудно так реформировать наш календарь, чтобы определенная календарная дата всегда приходилась на один и тот же день недели – например, чтобы 1-го мая каждый год было воскресенье. Для этого достаточно было бы лишь первый день года не вводить в счет числа дней, называть его не «1 января», а просто «новый год»; 1-е января будет уже следующий день. Тогда остальное число дней года, 364, будет заключать целое число недель; следовательно, весь ряд дальнейших лет будет начинаться тем же днем недели, и все даты из года в год будут повторяться в одни и те же дни. В годы високосные, заключающие 366 дней, надо будет первые два дня года поставить вне счета, как праздничные.

Другая особенность числа 365, уже не связанная с календарем, тоже весьма любопытна:


365= 10 × 10+ 11 × 11 + 12 × 12.


То есть, оно равно сумме квадратов трех последовательных чисел, начиная с десяти:


102 + 112 + 122 = 100 + 121 + 144 = 365.


Но и это еще не все: оно же равно сумме квадратов двух следующих чисел – 13 и 14:


132 + 142= 169 + 196 = 365.


Таких чисел не много наберется в нашей арифметической кунсткамере.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации