Электронная библиотека » Джеффри Уэст » » онлайн чтение - страница 8


  • Текст добавлен: 11 апреля 2018, 15:00


Автор книги: Джеффри Уэст


Жанр: Зарубежная деловая литература, Бизнес-Книги


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 38 страниц) [доступный отрывок для чтения: 11 страниц]

Шрифт:
- 100% +

Одно из забавных и непреднамеренных последствий этого прогресса состоит в том, что, например, почти все современные автомобили стали похожи друг на друга, потому что их производители, оптимизируя сходные рабочие параметры, решают одни и те же уравнения. Лет пятьдесят назад, когда такие большие вычислительные мощности еще не были доступны и, следовательно, точность прогнозирования была ниже, а мы меньше заботились об экономии топлива и уровне выброса отработанных газов, конструкции автомобилей были гораздо более разнообразными – и потому гораздо более интересными. Сравнить хотя бы «студебекер-хоук» 1957 г. или «роллс-ройс» 1927 г. с относительно скучной на вид «хондой-сивик» 2006 г. или «теслой» 2014 г., хотя последние машины и обладают гораздо лучшими рабочими характеристиками.

11. Сходство и подобие: безразмерные и масштабно-инвариантные числа

Развитие методики масштабирования, предложенной Фрудом, превратило ее к настоящему времени в мощный и сложный элемент инструментария науки и техники, в высшей степени эффективно используемый для решения широчайшего спектра задач. В общем виде эта методика была формализована лишь в начале ХХ в., когда выдающийся специалист по математической физике лорд Рэлей опубликовал в журнале Nature важную статью под названием «Принцип подобия» (The Principle of Similitude)[43]43
  Lord Rayleigh. The Principle of Similitude // Nature. 1915. 95. P. 66–68.


[Закрыть]
. Этим термином он обозначал то, что мы называем теорией масштабирования. Главным образом он подчеркивал ту важнейшую роль, которую играют в любой физической системе особые величины, обладающие свойством безразмерности. Речь идет о сочетаниях переменных, подобных числу Фруда, значение которых остается неизменным независимо от используемой системы единиц измерения. Позвольте мне рассказать о них поподробнее.

Большинство величин, которые мы привыкли измерять в повседневной жизни, – например, расстояние, время или давление – зависит от того, в каких единицах их измеряют: например, в метрах, секундах, паскалях и так далее. Однако одну и ту же величину можно измерить в разных единицах: например, расстояние от Нью-Йорка до Лос-Анджелеса равно 3210 милям, но его же можно выразить в виде 5871 км. Эти разные числа выражают одно и то же. Точно так же расстояние от Лондона до Манчестера можно выразить в виде 278 миль или 456 км. Однако отношение расстояний между Нью-Йорком и Лос-Анджелесом и между Лондоном и Манчестером (будь то 3210 миль / 278 миль или 5871 км / 456 км) остается неизменным (и равным 14,89) независимо от того, какие используются единицы измерения.

Это дает нам простейший пример безразмерной величины: это «чистое» число, не изменяющееся, когда для его измерения используется другая система единиц. Такая масштабная инвариантность отражает некое абсолютное качество тех величин, которые представляют такие числа: они не зависят от произвольно выбранных человеком единиц и методов измерения. Конкретные единицы измерения придуманы человеком для удобства выражения мер стандартизованным языком, в особенности когда речь идет о строительстве, торговле и обмене товарами и услугами. Более того, введение стандартизованных мер отмечает важнейший этап развития цивилизации и возникновения городов, так как они были абсолютно необходимы для создания надежной политической системы, подчиняющейся верховенству законов.

Вероятно, самое знаменитое безразмерное число – это число пи (π), отношение длины окружности к ее диаметру. Оно не имеет размерности, потому что это отношение двух длин, и имеет одно и то же значение для всех окружностей, где бы и когда бы они ни существовали, какими бы большими или малыми они ни были. Поэтому в нем воплощается универсальное качество «круглости».

Именно в связи с концепцией «универсальности» в определение числа Фруда было включено гравитационное ускорение, хотя оно и не играет явной роли в масштабировании модели корабля до его реальных размеров. Оказывается, что отношение квадрата скорости к длине не безразмерно и, следовательно, зависит от используемых единиц измерения. Разделив его на ускорение свободного падения, его можно сделать безразмерным и, таким образом, масштабно-инвариантным.

Но почему было выбрано именно гравитационное, а не какое-нибудь другое ускорение? Потому что гравитация влияет на любое движение повсюду на Земле. Это явно чувствуется, когда мы идем или бежим и вынуждены постоянно бороться с гравитацией, поднимая ногу при каждом следующем шаге, – особенно если дорога идет в гору. Ее влияние на движение кораблей не столь очевидно, поскольку силу тяжести уравновешивает выталкивающая сила воды (вспомним закон Архимеда). Однако, когда судно движется в воде, оно постоянно создает кильватерный след и поверхностные волны, поведение которых определяется воздействием гравитации. Собственно говоря, техническое название знакомых нам волн на поверхности морей и озер – гравитационные волны. Поэтому гравитация играет, хоть и не напрямую, важную роль в движении кораблей. Таким образом, число Фруда олицетворяет «универсальное» качество, присущее любому движению на Земле, независимо от конкретных особенностей объекта, совершающего это движение. Поэтому его значение определяет характеристики движения не только кораблей, но и автомобилей, самолетов и нас самих. Более того, по нему можно определить, как именно движение на других планетах, на которых действует отличная от земной сила тяжести, отличается от аналогичного движения на Земле.

Поскольку сущность любой измеримой величины не может зависеть от произвольного выбора единиц измерения, сделанного человеком, не могут от него зависеть и законы физики. Следовательно, все они – и вообще все научные законы – должны быть выражаемы в виде соотношений между масштабно-инвариантными безразмерными величинами, даже если обычно мы записываем их в другой форме для собственного удобства. В этом состоял основной посыл эпохальной статьи Рэлея.

В его работе приводятся изящные иллюстрации применения этой методики на многочисленных, тщательно подобранных примерах, в том числе и научное объяснение одной из величайших загадок жизни, о которой в тот или иной момент задумывался каждый из нас: почему небо синее? Используя изящное рассуждение, основывающееся исключительно на безразмерных величинах, Рэлей показывает, что интенсивность рассеяния световых волн на мелких частицах должна спадать пропорционально четвертой степени длины волны. Поэтому, когда солнечный свет, представляющий собой сочетание всех цветов радуги, рассеивается на микроскопических частицах, взвешенных в атмосфере, наиболее интенсивным оказывается свет с самой короткой длиной волны, то есть синий.

Собственно говоря, Рэлей вывел этот потрясающий результат гораздо раньше, в блестящей работе, основанной на мастерском математическом анализе этой задачи, давшем подробное механистическое объяснение происхождения сдвига к синему краю спектра. Он привел простой вывод этого решения в статье, посвященной подобию, чтобы продемонстрировать, что тот же самый результат можно было получить, по его словам, «всего за несколько минут размышлений» и без применения подробных и замысловатых математических построений, если использовать логику масштабирования, которую он называет «великим принципом подобия». Его рассуждение о масштабировании показывает, что сдвиг в сторону коротких волн является неизбежным результатом любого анализа, проведенного с правильным выбором существенных переменных. Чего в этом выводе недостает, так это более глубокого понимания того механизма, который обеспечивает получение результата. Это характерно для многих рассуждений, касающихся масштабирования: в них можно получить общие результаты, но подробности причин их возникновения иногда остаются неясными.

Проведенный Рэлеем математический анализ рассеяния волн заложил основы так называемой теории рассеяния. Ее приложения ко многим задачам, от волн в воде до волн электромагнитных, в особенности радиолокационных, а в более недавнее время – в области компьютерной связи, имели чрезвычайно большое значение, но не менее важной была и роль, которую она сыграла в развитии квантовой механики. Именно на основе этой теории был построен аппарат, позволяющий извлекать информацию из «экспериментов по рассеянию», которые проводятся на крупных ускорителях элементарных частиц, например в Европейском центре ядерных исследований (CERN) в Женеве, в котором недавно был открыт знаменитый бозон Хиггса.

Если посмотреть на исходную статью, которую он опубликовал в 1870 г., в возрасте всего двадцати восьми лет, можно увидеть, что имя ее автора – вовсе не лорд Рэлей. Тогда он носил гораздо более прозаическое имя Джона Стретта, больше подходящее персонажу из романа Томаса Харди, чем заслуженному профессору физики из Кембриджа. Так звали Рэлея до того, как в 1873 г. он унаследовал свой титул от отца; после этого он и стал называться лорд Рэлей. Фамилия Стретт более всего известна общественности по его младшему брату Эдварду, основавшему знаменитую фирму по торговле недвижимостью под названием Strutt & Parker: сейчас эта компания является одним из крупнейших коллективных собственников недвижимости в Великобритании. В следующий раз, когда будете в Лондоне, обратите внимание на ее фирменные знаки на дорогих зданиях в центре города.

Рэлей был замечательным ученым-универсалом. В число множества его великих достижений входят разработка теории звука и открытие аргона, за которое он получил в 1904 г. одну из первых в истории Нобелевских премий (точнее говоря, четвертую).

Глава 3. Простота, единство и сложность жизни

Как подчеркивалось в первой главе, все живые системы, от мельчайших бактерий до крупнейших городов и экосистем, являются, по сути, адаптивными сложными системами, действующими в широчайшем диапазоне множественных пространственных, временных, энергетических и массовых масштабов. Лишь в том, что касается массы, общий масштаб форм жизни охватывает более тридцати порядков величины (1030), считая от молекул, обеспечивающих работу обмена веществ и генетического кода, до целых экосистем и городов. Этот диапазон значительно превышает соотношение массы Земли и массы всей нашей галактики, Млечного Пути, составляющее «всего» восемнадцать порядков, и сравним с соотношением массы электрона с массой мыши.

Во всем этом огромном спектре жизнь создает поразительное разнообразие форм, функций и видов динамического поведения, используя, по сути дела, одни и те же основные элементы. Это дает убедительное доказательство силы естественного отбора и эволюционной динамики. Все формы жизни существуют за счет преобразования энергии, получаемой из физических или химических источников, в органические молекулы, метаболизируемые для строительства, содержания и воспроизводства сложных, высокоорганизованных систем. Этот процесс реализуется благодаря работе двух раздельных, но тесно взаимодействующих систем: генетического кода, хранящего и обрабатывающего информацию и «инструкции» по сборке и содержанию организма, и системы обмена веществ, которая принимает, преобразует и распределяет энергию и материалы для его содержания, роста и воспроизводства. В понимании обеих этих систем на разных уровнях, от молекул до целых организмов, были достигнуты большие успехи, и ниже мы поговорим о том, как эти результаты можно распространить на случаи городов и компаний. Однако понимание того, как обработка информации («геномика») объединяется для поддержания жизни с переработкой энергии и ресурсов («метаболикой»), остается весьма затруднительным. Выявление универсальных принципов, лежащих в основе структуры, динамики и интеграции этих систем, является ключом к пониманию жизни и управлению биологическими и социально-экономическими системами в столь разных сферах, как медицина, сельское хозяйство и экология.


Невероятный диапазон жизни, от сложных молекул и микробов до китов и секвой, в сравнении с галактическим и субатомным масштабами


Мы разработали единую систему понимания генетики, которая может объяснить самые разные явления, от репликации, транскрипции и трансляции генов до эволюционного происхождения видов. Однако сравнимая единая теория метаболизма, которая связала бы процессы, благодаря которым преобразования энергии и материалов, вызываемые биохимическими реакциями внутри клетки, масштабируются для поддержания жизни, обеспечения работы биологических механизмов и определения временных масштабов жизненных процессов на всех уровнях, от организмов до экосистем, формируется медленнее.

Поиск фундаментальных принципов, управляющих возникновением сложности жизни из лежащих в ее основе простых элементов, является одной из главных задач науки XXI в. Хотя эта задача относится и будет относиться главным образом к сфере деятельности биологов и химиков, другие дисциплины, в частности физика и информатика, играют в ней все более важную роль. В самом общем смысле, понимание механизмов образования сложности из простоты, важного элемента адаптивных развивающихся систем, – это один из краеугольных камней новой науки, называемой теорией сложности.

Физика занимается фундаментальными принципами и концепциями на всех уровнях организации, количественно измеримыми и «математизируемыми» (то есть поддающимися вычислению), которые поэтому позволяют получать точные предсказания, проверяемые опытами и наблюдениями. С этой точки зрения естественно спросить, существуют ли математизируемые «универсальные законы жизни», которые позволили бы сформулировать положения биологии в виде предсказательной, количественно измеримой науки наподобие физики. Можно ли представить себе, что существуют еще ждущие своего открытия «биологические законы Ньютона», дающие хотя бы принципиальную возможность точного расчета любых биологических процессов – так, чтобы, например, можно было точно предсказать, сколько нам с вами осталось жить?

Это кажется крайне маловероятным. В конце концов, жизнь – это поистине сложная система, проявляющая на самых разных уровнях множество эмерджентных явлений, вызываемых многочисленными случайными последовательностями событий. Тем не менее вполне разумным могло бы быть предположение о том, что общие, грубые черты поведения живых систем могут подчиняться неким универсальным законам, отражающим их основные черты и поддающимся выражению в численном виде. Такая, более умеренная, точка зрения предполагает, что на каждом уровне может быть построена усредненная, идеализированная биологическая система, общие свойства которой можно вычислить. Тогда мы должны быть в состоянии рассчитать среднюю и максимальную продолжительность человеческой жизни, даже если вычислить длительность своей собственной жизни нам никогда не удастся. Это дает нам отправную точку, основу для численного понимания реальных биологических систем, которые можно считать вариациями или возмущениями относительно идеализированных норм, вызванными местными различиями в состоянии окружающей среды или расхождениями в истории эволюционного развития. Ниже я буду гораздо более подробно говорить об этой перспективе, так как она образует идеологическую основу стратегии подхода к разрешению большинства из вопросов, заданных в первой главе.

1. От кварков и струн до клеток и китов

Прежде чем мы займемся некоторыми из упомянутых великих вопросов, я хочу сделать небольшое отступление и описать ту последовательность счастливых случайностей, которая привела меня от исследования фундаментальных проблем физики к фундаментальным проблемам биологии, а затем и к фундаментальным проблемам социально-экономических наук, касающимся основополагающих вопросов глобальной жизнеспособности.

В октябре 1993 г. конгресс США с согласия президента Билла Клинтона официально закрыл крупнейший из когда-либо задуманных научный проект, на реализацию которого уже было потрачено почти три миллиарда долларов. Этот необычайный проект предполагал создание гигантского Сверхпроводящего суперколлайдера (Superconducting Super Collider, SSC). Некоторые считали этот ускоритель в совокупности с детекторами, которые планировалось установить на нем, величайшей инженерной задачей в истории. SSC должен был быть гигантским микроскопом, предназначенным для исследования расстояний до сотен триллионных микрона с целью выявления структуры и динамики фундаментальных составляющих элементов материи. Он мог дать жизненно важные свидетельства для проверки предсказаний, полученных из нашей теории элементарных частиц, возможно, привести к открытию новых явлений и заложить основы так называемой теории Великого объединения всех фундаментальных сил природы. Этот грандиозный проект мог не только дать нам более глубокое понимание того, из чего состоит весь окружающий нас мир, но и открыть важные аспекты эволюции Вселенной с момента Большого взрыва. Во многих отношениях этот проект олицетворял высочайшие идеалы человечества как единого существа, обладающего достаточно высоким уровнем сознания и разумности для проявления интереса к бесконечной задаче раскрытия некоторых из глубочайших тайн Вселенной – а может быть, даже и для определения самого смысла нашего существования, роли человека как проводника самопознания Вселенной.

Масштаб SSC был огромен: он должен был иметь более 80 км в длину и разгонять протоны до энергии 20 триллионов электрон-вольт; стоимость проекта превышала 10 миллиардов долларов. Чтобы получить представление об этом масштабе, нужно вспомнить, что характерная энергия химических реакций, на которых основана жизнь, составляет порядка одного электрон-вольта. Энергия протонов в SSC должна была быть в восемь раз больше, чем в Большом адронном коллайдере, работающем сейчас в Женеве и оказавшемся недавно в центре внимания общественности в связи с открытием бозона Хиггса.

Кончина SSC была связана с несколькими разными, почти предсказуемыми причинами, в том числе с неизбежными финансовыми проблемами, состоянием экономики, негативным политическим образом Техаса, в котором строился ускоритель, недостаточным вдохновением руководства и так далее. Но одной из главных причин краха этого проекта был рост негативных взглядов на традиционную «большую науку» вообще и физику в частности[44]44
  John Horgan. The End of Science: Facing the Limits of Science in the Twilight of the Scientific Age. N. Y.: Broadway Books, 1996.


[Закрыть]
. Они принимали множество разных форм, но особенно часто многим из нас приходилось сталкиваться с одним высказыванием, которое я уже цитировал выше: «Если XIX и XX века были веками физики, то XXI век будет веком биологии».

Даже самому высокомерному и фанатичному физику трудно спорить с мыслью о том, что в XXI в. биология, по всей вероятности, должна затмить физику в качестве «главной науки». Но особенно раздражал многих из нас делавшийся из этого вывод (который часто высказывался прямым текстом) о том, что дальнейшие фундаментальные исследования в физике такого рода больше не нужны, так как мы уже знаем все, что нужно знать. К сожалению, жертвой именно такого ошибочного провинциального мышления и пал проект SSC.

В то время я руководил в Лос-Аламосской национальной лаборатории программой физики высоких энергий, в рамках которой мы принимали значительное участие в создании одного из двух крупных детекторов для SSC. Поясню для тех, кто не знаком с этой терминологией, что «физикой высоких энергий» называют раздел физики, занимающийся решением фундаментальных вопросов об элементарных частицах, взаимодействии между ними и их влиянии на космологические процессы. Я был (и остаюсь до сих пор) физиком-теоретиком, и мои основные исследовательские интересы были в то время сосредоточены именно в этой области. Моя рефлекторная реакция на такие провокационные заявления относительно расхождения путей физики и биологии сводилась к тому, что биология почти наверняка будет главенствующей наукой XXI в., но, чтобы достичь настоящего успеха, она должна будет усвоить некоторые из элементов численной, аналитической, предсказательной культуры, которые уже принесли такой успех физике. Биология должна будет интегрировать в свой традиционный подход, опирающийся на статистические, феноменологические и качественные аргументы, более теоретическую систему, основанную на фундаментальных математических или вычислительных принципах. К стыду своему, должен признать, что в то время я знал о биологии очень мало, и эти выступления проистекали в основном из высокомерия и невежества.

Тем не менее я решил подкрепить слово делом и начал думать о том, как парадигма и культура физики могла помочь в решении интересных задач биологии. Разумеется, уже существовали физики, совершавшие чрезвычайно успешные экскурсы в область биологии, и самым замечательным из них был, пожалуй, Фрэнсис Крик, определивший вместе с Джеймсом Уотсоном структуру ДНК, что произвело настоящую революцию в нашем понимании генома. Другим был великий физик Эрвин Шредингер, один из основателей квантовой механики, прекрасная книжка которого, вышедшая в 1944 г. под названием «Что такое жизнь?», оказала на биологию большое влияние[45]45
  Erwin Schrödinger. What Is Life? Cambridge, UK: Cambridge University Press, 1944. (Впервые на русском языке книга вышла в переводе А. А. Малиновского в 1947 г.; сейчас доступны и позднейшие переиздания. – Прим. перев. и ред.)


[Закрыть]
. Эти примеры доказывали самым вдохновляющим образом, что в физике может найтись нечто интересное для биологии, и стимулировали слабый, но постоянно набирающий силу поток физиков, переходящих границу между этими двумя науками, который привел к зарождению новой дисциплины – биофизики.

К моменту кончины SSC мне было слегка за пятьдесят и, как я уже говорил в начале этой книги, я все более остро осознавал неизбежное разрушительное воздействие старения и ограниченность жизни. С учетом неблестящих результатов, показанных мужчинами прошлых поколений моей семьи в области долголетия, мне казалось естественным начать свои размышления о биологии с изучения старения и смертности. Поскольку эти свойства относятся к наиболее универсальным и фундаментальным характеристикам всего живого, я наивно полагал, что о них должно быть известно почти все. Однако, к большому своему удивлению, я не только узнал, что не существует общепринятой теории старения и смертности, но и сама область исследования этих вопросов оказалась маленькой и довольно застойной. Более того, выяснилось, что изучались лишь немногие из тех вопросов, постановка которых казалась бы физикам совершенно естественной, – например, тех, которые я задавал в первой главе. В частности, я имею в виду вопросы о том, откуда берется характерный масштаб продолжительности человеческой жизни в сто лет и какой могла бы быть численная, обладающая предсказательной силой теория старения.

Смертность – важное свойство жизни. Собственно говоря, она неявным образом является значимым элементом теории эволюции. Один из необходимых компонентов процесса эволюции состоит в том, что особи рано или поздно умирают, что позволяет их потомству распространять новые комбинации генов и в конце концов приводит к адаптации новых черт и вариантов в процессе естественного отбора и к росту многообразия видов. Все мы должны умереть, чтобы нечто новое могло расцветать, исследовать, приспосабливаться и развиваться на нашем месте. Эту идею красноречиво выразил Стив Джобс[46]46
  Вступительное слово Стива Джобса на церемонии вручения дипломов Стэнфордского университета 12 июня 2005 г.


[Закрыть]
:

Никто не хочет умирать. Даже те, кто мечтает попасть на небо, не готовы ради этого умереть. И тем не менее всем нам суждена смерть. Ее не избежал никто, и так оно и должно быть, потому что смерть – это, по всей вероятности, самое лучшее из всех изобретений жизни. Это проводник изменений жизни. Она убирает старое, чтобы расчистить дорогу новому.

Учитывая огромное значение смерти и ее предшественника, процесса старения, я рассчитывал, что, взяв какой-нибудь учебник вводного курса биологии, я найду в нем целую главу, посвященную смерти в рамках обсуждения основных черт жизни, подобного обсуждениям рождения, роста, воспроизводства, обмена веществ и так далее. Я ожидал встретить дидактическое изложение механистической теории старения, которое содержало бы простой расчет, показывающий, почему мы живем именно около ста лет, и отвечающий на все заданные выше вопросы. Не тут-то было. Я вообще не нашел ни каких-либо упоминаний о такой теории, ни какого-либо намека на то, что эти вопросы кого-либо интересуют. Это было весьма удивительно, особенно с учетом того, что, если не считать рождения, смерть является наиболее выдающимся событием биологической жизни человека. Будучи физиком, я засомневался, до какой степени биологию можно считать «настоящей» наукой (имея в виду, конечно же, ее сходство с физикой!) и как она собирается стать главной наукой XXI в., если не занимается такого рода фундаментальными вопросами.

Кажущееся общее отсутствие интереса к проблеме старения и смертности в биологическом сообществе, не считая сравнительно небольшого числа исследователей, посвятивших свою работу именно им, побудило меня задуматься над этими вопросами. Поскольку казалось, что практически никто не применял к ним численного или аналитического подхода, применение в этой области физических методов, наверное, могло привести к небольшому прогрессу. Поэтому в свободное от возни с кварками, глюонами, темной материей и струнами время я начал думать о смерти.

В самом начале своих исследований в этом новом направлении я получил неожиданную поддержку своим раздумьям о биологии как точной науке и ее отношениях с математикой из довольно неожиданного источника. Я узнал, что идеи, казавшиеся мне бунтовщическими, уже высказывал, к тому же более глубоко и красноречиво, почти за сто лет до того один выдающийся и несколько эксцентричный биолог, сэр Дарси Уэнтворт Томпсон, в своей книге «О росте и форме», опубликованной в 1917 г.[47]47
  Чаще всего цитируется по сокращенному изданию: D’A. W. Thompson. On Growth and Form. Cambridge, UK: Cambridge University Press, 1961.


[Закрыть]
. Эта замечательная книга оставалась с тех пор предметом негромкого поклонения не только в биологии, но и в математике, искусстве и архитектуре. Она оказала влияние на многих мыслителей и художников, от Алана Тьюринга и Джулиана Хаксли до Джексона Поллока. О ее неизменной популярности свидетельствует тот факт, что она все еще переиздается. Выдающийся биолог сэр Питер Медавар, пионер пересадки органов, получивший Нобелевскую премию за свою работу по реакциям на пересадку тканей и приобретенной иммунотолерантности, считал, что «О росте и форме» – это «величайшее литературное произведение в анналах науки, записанных на английском языке».

Томпсон был одним из последних «людей Возрождения», представителем той породы много– и междисциплинарных ученых, которая сейчас практически исчезла. Хотя свой основной вклад он внес в биологию, он также был весьма крупным специалистом по классическим языкам и математике. Он был избран президентом Британской ассоциации антиковедов и президентом Королевского географического общества, а его математические таланты позволили ему стать почетным членом Эдинбургского математического общества. Он происходил из шотландского рода с богатыми интеллектуальными традициями и, подобно Изамбарду Кингдому Брюнелю, носил имя, которое отлично подошло бы второстепенному персонажу викторианского романа.

Томпсон начинает свою книгу с цитаты из знаменитого немецкого философа Иммануила Канта, сказавшего, что современная ему химия была «eine Wissenschaft, aber nicht Wissenschaft». В переводе Томпсона это означает, что химия – это «некая наука, но не Наука», причем он уточняет, что «критерием подлинной науки является ее отношение к математике». Далее Томпсон говорит о том, что в его время существует обладающая предсказательной силой и основанная на фундаментальных принципах «математическая химия», что возвышает химию из положения «некой науки» до «Науки» с большой буквы. В то же время биология остается дисциплиной качественной, не имеющей математических основ или принципов, и потому по-прежнему является лишь «наукой» с маленькой буквы. Она сможет стать «Наукой» лишь тогда, когда включит в себя выражаемые математически физические принципы. Я начал понимать, что, несмотря на необычайные успехи, достигнутые за прошедшее с тех пор столетие, суть той провокационной характеристики, которую Томпсон дал биологии, до некоторой степени остается верной и сейчас.

Хотя в 1946 г. Королевское общество наградило Томпсона престижной медалью Дарвина, он критически относился к общепринятой дарвиновской теории эволюции, так как считал, что биологи преувеличивают роль естественного отбора и «выживания наиболее приспособленных» в качестве фундаментальных факторов, определяющих формы и строение живых организмов, недооценивая ту важную роль, которую играют в процессе эволюции физические законы и их математическое выражение. По-прежнему остается без ответа основополагающий вопрос, заложенный в это утверждение: существуют ли «универсальные законы жизни», которые можно было бы выразить математически, чтобы сформулировать биологию в виде численной, предсказательной Науки? Вот как формулировал эту идею сам Томпсон:

Нам надлежит всегда помнить, что для открытия простых вещей в физике потребовались великие мужи. ‹…› Никто не может предвидеть, до какой степени математика сможет описать, а физика – объяснить строение тела. Может оказаться так, что все законы энергии, все свойства материи и вся химия всех коллоидов столь же бессильны объяснить тело, сколь они не в состоянии понять душу. Но лично я так не думаю. Физическая наука не рассказывает мне, как именно душа воплощается в теле; то, как живая материя влияет на разум и испытывает его влияние, остается неразрешимой тайной. Все нервные каналы и нейроны физиологии не позволяют мне понять сознания; и я не ищу в физике объяснений того, почему лицо одного человека светится добром, а в лице другого проступает зло. Но в том, что касается строения и роста и работы тела, как и всего другого, сущего на Земле, единственным нашим учителем и руководителем, по моему скромному мнению, может быть лишь физическая наука.

Это довольно точно выражает кредо современной «науки о сложности», включая даже тот вывод, что сознание есть эмерджентное системное явление, а не результат простого сложения всех «нервных каналов и нейронов» мозга. Книга эта написана в ученом, но чрезвычайно легком для чтения стиле и содержит на удивление мало математики. В ней нет провозглашения грандиозных принципов, за исключением убеждения в том, что физические законы природы, записанные на языке математики, являются одним из главных определяющих факторов биологического роста, формы и развития.

Хотя книга Томпсона не касалась ни старения, ни смерти и не была особенно полезной или сложной с технической точки зрения, ее философия обеспечила поддержку и вдохновение для рассмотрения и приложения взятых из физики идей и методик к самым разнообразным проблемам биологии. Что касается моих собственных размышлений, она побудила меня рассматривать наше тело в виде метафорической машины, которую необходимо подпитывать, обслуживать и ремонтировать, но которая постепенно изнашивается и «умирает» – в точности как наши автомобили и стиральные машины. Однако, чтобы понять, как нечто стареет и умирает, будь то животное, автомобиль, компания или цивилизация, сначала нужно понять, какие процессы и механизмы поддерживают в нем жизнь, а затем выяснить, как они деградируют с течением времени. Это соображение естественным образом приводит нас к рассмотрению энергии и ресурсов, необходимых для поддержки и возможного роста, и их расходования на содержание и восстановление для борьбы с производством энтропии, вызванным разрушительными силами, которые связаны с повреждениями, распадом, износом и так далее. Это направление мысли заставило меня прежде всего сосредоточиться на центральной роли метаболизма в поддержании нашей жизни. Только рассмотрев эту роль, можно задаться вопросом о том, почему метаболизм не может поддерживать ее вечно.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации