Текст книги "Кентерберийские головоломки"
Автор книги: Генри Дьюдени
Жанр: Математика, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 16 страниц)
Задачи на шахматной доске
От сильного порыва ветра каминная труба сорвалась с крыши и рухнула прямо под ноги случайному прохожему. Он сказал спокойно:
– Мне это ни к чему: я не курю.
Некоторые читатели, увидев головоломку на шахматной доске, склонны сделать столь же невинное замечание:
– Мне это ни к чему: я не играю в шахматы.
Такое отношение в значительной мере результат общераспространенного, но ошибочного убеждения, что обычная шахматная головоломка из тех, которые мы привыкли встречать в периодике (и которые по каким-то соображениям называют задачами), связана с самой игрой в шахматы. Однако в шахматной игре отсутствуют правила, которые обязывали бы нас делать мат в два, три или четыре хода, тогда как большинство позиций в этих головоломках таково, что у одного из игроков (если бы это происходило в реальной шахматной партии) преимущество оказалось бы настолько большим, что другой игрок просто признал бы свое поражение, не доиграв партию до конца. Решение этих головоломок вряд ли поможет вам (да и то косвенным образом) при игре в шахматы; известно, что мастера шахматных головоломок – весьма посредственные игроки, и vice versa.[21]21
Наоборот (лат.).
[Закрыть] Если случайно кто-то оказывается силен и в той и в другой области, то это лишь исключение из правила.
И все же разделенная на клетки доска и ходы шахматных фигур сами по себе весьма примечательным образом приводят к изобретению наиболее занимательных головоломок. Здесь имеется такой простор для всевозможных вариаций, что истинный любитель головоломок не сможет пройти мимо. Именно охраняя интересы тех читателей, которые пугаются одного вида шахматной доски, я публиковал первоначально головоломки этого типа под различными причудливыми одеждами. Одни из этих задач я все еще оставляю в завуалированном виде, другие же я перевел на язык шахматной доски. В большинстве случаев читателю не потребуются вообще никакие познания в области шахмат, но все же для тех, кто не знаком с терминологией, ходами и обозначениями шахматной игры, я ниже дам краткие пояснения.
Сначала мы будем иметь дело с некоторыми вопросами, относящимися к самой шахматной доске, затем – с некоторыми статическими задачами, связанными поочередно с ладьей, слоном, ферзем и конем, затем – с динамическими головоломками, связанными с теми же шахматными фигурами, и, наконец, речь пойдет о смешанных головоломках на шахматной доске. Я надеюсь, что формулы и таблицы, приведенные после статических головоломок, окажутся интересными сами по себе, поскольку публикуются впервые.
Шахматная доска
Шахматная доска представляет собой квадратную плоскую поверхность, разделенную прямыми линиями, пересекающимися под прямым углом, на 64 квадрата. Первоначально они не были раскрашены поочередно в черный и белый (или какие-либо два других) цвета, и это усовершенствование было введено, просто чтобы помочь глазу при игре. Польза такой раскраски несомненна. Например, она облегчает манипуляции со слонами, позволяя с одного взгляда оценить, что наш король или пешки на черных клетках не находятся под угрозой вражеского слона, передвигающегося по белым клеткам. И все же раскраска шахматной доски не существенна для самой игры как таковой. Точно так же, когда мы формулируем головоломки на шахматной доске, часто неплохо помнить, что дополнительный интерес может представлять «обобщение» на случай доски с любым числом клеток или ограничение задачи некой конфигурацией клеток, не обязательно квадратной. Мы приведем несколько головоломок такого типа.
115. Разбиения шахматной доски. Как-то я задался вопросом: сколькими различными способами можно разбить шахматную доску на две части одинаковой формы и размера, если разрезы проводить по границам клеток? Выяснилось, что эта задача одновременно и занимательна и трудна. Я представляю ее в упрощенном виде, взяв доску меньших размеров.
Очевидно, что доску, состоящую из 4 клеток (2×2), можно разделить лишь одним способом (прямой, проходящей через центр), ибо повороты и отражения мы не будем рассматривать как новые решения. В случае доски из 16 клеток (4×4) существует ровно 6 различных способов. Они все приведены здесь, на рисунке, и читателю не удастся найти еще какое-нибудь решение. Теперь возьмите большую доску, 6×6, и попытайтесь определить число способов в этом случае.
116. Львы и короны. Юная леди, которую вы видите на рисунке, при раскройке столкнулась с небольшой трудностью, помочь преодолеть которую предлагается читателю. По неким причинам, о которых она умалчивает, ей нужно разрезать этот квадратный кусок дорогой ткани на 4 части одинаковых размеров и формы, но важно, чтобы в каждой из частей оказалось по льву и по короне.
Поскольку леди настаивает на том, чтобы разрезы пришлись только на границы квадратов, она весьма озадачена. Можете ли вы показать ей нужный способ? Существует только один возможный способ раскройки ткани.
117. Доски с нечетным числом клеток. Рассмотрим доски, которые содержат нечетное число клеток. Начнем с доски 3X3. Ее можно разрезать на равные части, лишь удалив центральную клетку. Вполне очевидно, что это можно сделать только одним способом, как показано в случае а. Части А и В имеют одинаковые размеры и форму, и при любом другом способе разрезания получатся такие же части, а, как мы знаем, в подобном случае способы не считаются различными.
Я предлагаю читателю разрезать на две части одинакового размера и формы максимальным числом различных способов доску 5×5 (случай 6). На рисунке приведен один из таких способов. Сколько всего существует различных способов? Часть, которая при перевертывании другой стороной кверху принимает ту же форму, что и другая часть, не считается обладающей отличной от нее формой.
118. Задача Великого ламы. Жил некогда Великий лама, у которого была шахматная доска из чистого золота, прекрасно выполненная и, разумеется, огромной ценности. Каждый год в Лхасе среди лам проводился турнир, и тому из них, кому удавалось выиграть у Великого ламы, воздавались большие почести, его имя гравировалось на оборотной стороне доски, а в клетку, где был поставлен мат, вправляли драгоценный камень. После четырех поражений Великий лама умер (возможно, от огорчения).
Новый Великий лама был неважным игроком и предпочитал другие виды невинных развлечений: он больше любил рубить людям головы. Шахматы он считал загнивающей игрой, которая не способствует совершенствованию разума или морали, и полностью отменил турниры. Затем он послал за четырьмя ламами, имевшими дерзость играть лучше Великого ламы, и сказал им:
– Ничтожные варвары, именующие себя ламами! Знаете ли вы меру своей дерзости? Вы осмелились претендовать на то, что в чем-то превосходите моего предшественника?! Возьмите эту доску и прежде, чем рассвет займется над камерой пыток, разрежьте ее на 4 равные части одинаковой формы, чтобы каждая содержала по шестнадцать целых клеток и по одному драгоценному камню! Если вы в сем деле не преуспеете, то, к вашей же печали, мы придумаем другое испытание. Идите!
Четверо лам преуспели в этом на первый взгляд безнадежном деле. Можете ли вы показать, как следует разрезать доску на 4 равные части одинаковой формы, содержащие по драгоценному камню, если разрезы проводить исключительно по границам клеток?
119. Окно аббата. Однажды аббат монастыря святого Эдмондсбери от излишней для его головы «набожности» так занемог, что не в силах был подняться с постели. Он лежал без сна, и голова его беспокойно металась по подушке, отчего внимательные монахи заключили, что их настоятеля беспокоит какая-то навязчивая мысль. Однако никто не решился спросить его, в чем дело, ибо аббат отличался суровым характером и не потерпел бы никаких расспросов. Внезапно он позвал отца Джона, и вскоре этот почтенный монах предстал перед ложем.
– Отец Джон, – сказал аббат, – знаешь ли ты, что я пришел в этот грешный мир в сочельник?
Монах кивнул утвердительно.
– А не говорил ли я тебе, что, родившись в сочельник, я не люблю ничего нечетного?[22]22
Игра слов: по-английски сочельник – Christmass Even, но even означает также «четный». – Прим. перев.
[Закрыть] Смотри! – Аббат указал на большое окно трапезной, которое вы видите на рисунке. Монах взглянул на него и задумался.
– Заметил ли ты, что шестьдесят четыре просвета расположены так, что их число вдоль вертикалей и горизонталей четно; но вдоль всех диагоналей, за исключением четырнадцати, их число нечетно? Почему так происходит?
– По правде говоря, отец мой, это лежит в самой природе вещей и не может быть изменено.
– Нет, это следует изменить. Я повелеваю тебе сегодня же закрыть некоторые из просветов так, чтобы число просветов вдоль каждой прямой оказалось четным. Смотри, чтобы это было сделано без промедления, иначе погреба будут заперты на целый месяц и другие не менее тяжкие кары падут на твою голову.
Отец Джон, ломая голову, едва не лишился разума, но, посоветовавшись наконец с одним монахом, искушенным в тайных науках, сумел все же удовлетворить прихоть аббата. Какие просветы были заделаны, чтобы число оставшихся просветов вдоль каждой вертикали, горизонтали и диагонали оказалось четным, а число заделанных просветов при этом было минимальным?
120. Китайская шахматная доска. На какое максимальное число различных частей можно разрезать шахматную доску (все разрезы проводятся только вдоль линий) так, чтобы при этом никакие две части не оказались полностью одинаковыми? Помните, что части, отличающиеся расположением черных и белых клеток, считаются различными. Так, единственная белая клетка отличается от единственной черной клетки; ряд из трех клеток, две из которых белые, а одна черная, отличается от такого же ряда с двумя черными и одной белой клетками и т. д. Если две части нельзя расположить на столе так, чтобы они выглядели совершенно одинаковыми, то они считаются различными; а поскольку на обратной стороне доски рисунок не нанесен, то части нельзя переворачивать другой стороной кверху.
121. Буквы из шахматных клеток. Однажды я развлекался тем, что пытался разрезать обыкновенную шахматную доску на буквы, из которых удалось бы сложить какую-нибудь фразу. На рисунке видно, как мне удалось составить предложение CUT ТНУ LIFE[23]23
Кончай с твоей жизнью (англ.).
[Закрыть] с точками между словами. Однако идеальное предложение должно было бы содержать, конечно, лишь одну точку, но мне не удалось его получить.
Эта фраза представляет собой призыв к преступнику покончить с той полной зла жизнью, которую он ведет. Сможете ли вы опять сложить из этих букв правильную шахматную доску?
Статические шахматные головоломки
122. Восемь ладей. На рисунке а видно, что каждая клеточка доски либо занята, либо находится под угрозой нападения одной из ладей и что каждая ладья «защищена» (если бы они были попеременно белыми и черными, то мы бы сказали «атакована») другой ладьей.
Поместив 8 ладей на любую горизонталь или вертикаль, мы получим тот же эффект. На рисунке б каждая клетка снова либо занята, либо находится под угрозой, но в этом случае каждая ладья не защищена. Теперь скажите, сколькими различными способами 8 ладей можно расположить на шахматной доске так, чтобы при этом каждая клетка оказалась либо занятой, либо под угрозой нападения, но чтобы ни одна ладья не была защищена другой ладьей? Я не хочу здесь вдаваться в вопросы, касающиеся отражений и поворотов, так что если вы расположите ладьи на другой диагонали, то это будет считаться другим расположением, аналогичным образом обстоит дело и с расположениями, получающимися из некоторого расположения с помощью поворотов.
123. Четыре льва. Эта головоломка состоит в том, чтобы выяснить, сколькими различными способами можно расположить четырех львов так, чтобы при этом на любой горизонтали и вертикали находилось не более чем по одному льву. Отражения и повороты не считаются различными.
Так, в приведенном на рисунке примере расположение львов вдоль второй диагонали мы не будем считать отличным от исходного. Действительно, если вы поднесете второе расположение к зеркалу или повернете его на четверть полного оборота, то получите первое расположение. Это простая маленькая головоломка, но она требует некоторого внимания.
124. Незащищенные слоны. Расположите наименьшее число слонов на обычной шахматной доске таким образом, чтобы каждая клетка оказалась либо занятой, либо под угрозой нападения. Можно заметить, что ладья в этом отношении более могуча, чем слон, ибо, где бы она ни располагалась, под ее угрозой всегда находятся 14 клеток, тогда как под угрозой слона может находится 7, 9, 11 или 13 клеток в зависимости от того, на какой диагонали он стоит, Здесь не лишне напомнить, что, говоря о диагоналях шахматной доски, мы не ограничиваемся двумя большими диагоналями, соединяющими противоположные ее углы, а имеем в виду и более короткие прямые, параллельные этим большим диагоналям. Читателю стоит хорошенько это запомнить, дабы избежать недоразумений в будущем.
125. Защищенные слоны. Сколько теперь потребуется слонов, чтобы каждая клетка оказалась либо занятой, либо под угрозой, а каждый слон находился под защитой другого слона?
126. Собрание слонов. Наибольшее число слонов, которых можно поместить на одной шахматной доске так, чтобы ни один слон не атаковал другого, равно 14. На рисунке показано простейшее расположение такого типа.
Фактически на квадратной доске любого размера число слонов, которых можно расположить так, чтобы они не атаковали друг друга, всегда на 2 меньше удвоенного количества клеток, расположенных вдоль одной из ее сторон. Интересная головоломка состоит в том, чтобы определить, сколькими различными способами 14 слонов можно расположить на обычной шахматной доске так, чтобы они не атаковали друг друга. Я приведу крайне простое правило, позволяющее определить число таких способов для доски любого размера.
127. Восемь ферзей. Ферзь на шахматной доске – куда более сильная фигура, чем слон. Если вы поместите ферзя на один из четырех квадратов в центре доски, то под его угрозой окажется не менее чем 27 других клеток, а если вы попытаетесь запрятать его в угол, то все равно он будет атаковать 21 клетку. Восемь ферзей можно расположить на доске таким образом, чтобы ни один из них не атаковал другого.
Существует старая головоломка (впервые предложенная Науком в 1850 г.), которая состоит в том, чтобы определить число различных способов, какими это можно сделать. Один такой способ приведен на рисунке, а всего число существенно различных способов равно 12. Если же мы будем считать повороты и отражения различными способами, то из этих 12 образуется 92 способа. Расположение, приведенное на рисунке, обладает определенной симметрией. Если вы перевернете страницу вверх ногами, то получите то же самое расположение, однако если вы повернете доску так, чтобы внизу оказалась одна из боковых сторон, то получите расположение, отличное от исходного. Если вы зеркально отразите эти 2 расположения, то получите еще 2 способа. Далее, все другие 11 расположений не симметричны, и, следовательно, из каждого из них с помощью таких поворотов и отражений получается по 8 способов. Таким образом, становится понятно, почему 12 существенно различных решений порождают 92 расположения, как я уже говорил, а не 96, как получилось бы, если бы все 12 решений оказались несимметричными. Следует ясно представлять себе природу поворотов и отражений, когда имеешь дело с головоломками на шахматной доске.
Сумеет ли читатель расположить 8 ферзей на шахматной доске таким образом, чтобы ни один из них не атаковал другого и чтобы никакие 3 ферзя не располагались ни на какой наклонной прямой одновременно? Взглянув еще раз на рисунок, мы можем заметить, что приведенное там расположение не удовлетворяет нужным условиям, поскольку на двух наклонных прямых, указанных пунктиром, располагается по три ферзя. Среди 12 существенных решений есть только одно, удовлетворяющее нашему дополнительному условию. Сможете ли вы найти его?
128. Восемь звезд. В этой головоломке 8 звезд нужно расположить на приведенной на рисунке доске так, чтобы пи одна звезда не оказалась на одной горизонтали, вертикали или диагонали с другой.
Вы видите, что одна звезда уже поставлена в клетку, передвигать ее нельзя, поэтому читателю придется расставить лишь 7 остальных звезд. Но вы не должны помещать звезды на заштрихованные клетки. Существует только одно решение данной головоломки.
129. Мозаика. Искусство создания рисунков или узоров из кусочков по-разному окрашенных твердых материалов очень и очень древнее. С ним, безусловно, были знакомы во времена фараонов, а в библейской книге Эсфирь мы находим упоминание о «мостовых из красного и голубого, и белого, и черного мрамора». Некоторые из дошедших до нас древних мозаик, особенно римских, показывают, что даже там, где геометрический узор и не бросается в глаза, над внешне беспорядочными расположениями их создатели в свое время изрядно поломали голову. Особенно в тех случаях, когда работа выполнялась с ограниченным числом цветов, они свидетельствуют об удивительной изобретательности, благодаря которой удалось добиться того, чтобы одинаковые оттенки не располагались вблизи друг друга. Читательницы, знакомые с искусством шитья всевозможных лоскутных одеял, покрывал, подушек и т. п., знают, сколь желательно при ограниченном выборе материала избежать близкого расположения одинаковых кусочков ткани. Наша головоломка в равной мере может относиться и к лоскутным одеялам, и, например, к выложенному плитками полу.
На рисунке видно, как квадратный участок пола можно выложить 62 квадратными плитками восьми цветов: фиолетового (Ф), красного (К), желтого (Ж), зеленого (3), оранжевого (О), розового (Р), белого (Б) и голубого (Г) так, чтобы при этом ни одна плитка не находилась на одной горизонтали, вертикали или диагонали с плиткой того же цвета «Шестьдесят четыре плитки при тех же условиях выложить было бы невозможно, но два заштрихованных квадратика заняты решетками вентиляции.
Головоломка состоит в следующем. Эти две решетки вентиляции следует переместить на квадраты, обведенные жирными линиями, а в угловые заштрихованные квадраты поместить две плитки. Сможете ли вы переместить 32 плитки так, чтобы в результате ни одна из плиток не оказалась на одной вертикали, горизонтали или диагонали с другой плиткой того же цвета?
130. Под «вуалью». Изучив приведенный здесь рисунок, читатель увидит, что я расположил на нем восемь букв V, восемь Е, восемь I и восемь L таким образом, что ни одна из букв не находится на одной горизонтали, вертикали или диагонали с такой же буквой. Так, ни одно V не лежит на одной прямой с другим V, ни одно Е – с другим Е и т. д.
Существует огромное число различных способов размещения букв при данном условии. Головоломка состоит в том, чтобы найти расположение, приводящее к наибольшему числу слов из четырех букв, которые можно читать сверху вниз, снизу вверх и по диагонали. Все повторения считаются другими словами, а всего можно использовать пять вариаций: VEIL, VILE, LEVY, LIVE и EVIL.[24]24
Veil – вуаль, vile – подлый, levy – сбор, live – живой, evil – зло (англ.).
[Закрыть]
Все станет совершенно ясным, если я скажу, что на приведенном рисунке различных слов – восемь, поскольку первая и последняя горизонталь дают VEIL, вторая и седьмая вертикаль – VEIL, а две диагонали, начинающиеся от L в 5-й горизонтали от Е в 8-й горизонтали обе дают как LIVE, так и EVIL. Всего слова можно прочитать восемь раз.
Эта трудная головоломка со словами приводится как пример использования шахматной доски при решении задач такого типа. Только тот, кто хорошо знаком с задачей о восьми ферзях, может надеяться решить ее.
131. Квадрат Баше. Одна из старейших карточных головоломок была, я полагаю, опубликована Клодом Гаспаром Баше де Мезириаком в 1624 г. В ней требовалось расположить 16 валетов, дам, королей и тузов в виде квадрата так, чтобы ни в каком ряду из четырех карт, вертикальном, горизонтальном или диагональном, не было двух карт одинаковой масти или одинакового достоинства. Это сделать довольно просто, но в головоломке требовалось указать, сколько всего существует таких способов. Выдающийся французский математик А. Лябосн в своем современном издании Баше приводит неправильный ответ. И все же головоломка очень проста. Любое расположение с помощью поворотов и зеркальных отражений, которые Баше рассматривал как новые решения, порождает еще семь расположений.
Обратите внимание, что речь идет о «ряде из четырех карт»; поэтому из диагоналей придется рассматривать лишь две большие диагонали.
132. Тридцать шесть ячеек с буквами. На рисунке показан ящик, содержащий 36 ячеек с буквами. Головоломка состоит в том, чтобы переставить ячейки таким образом, чтобы никакое А не оказалось на одной вертикали, горизонтали или диагонали с другим А, ни одно В – с другим В, ни одно С – с другим С и т. д.
Вы обнаружите, что поместить все буквы в ящик при этих условиях невозможно, однако постарайтесь поместить максимально возможное число таких букв. Естественно, разрешается пользоваться лишь буквами, изображенными на рисунке.
133. Теснота на шахматной доске. В головоломке требуется переставить 51 шахматную фигуру, приведенную на рисунке, таким образом, чтобы ни один ферзь не атаковал другого ферзя, ни одна ладья не атаковала другую ладью, ни один слон не атаковал другого слона и ни один конь не атаковал другого коня.
При этом мы не должны обращать внимания на то, что в промежутке между фигурами данного типа могут оказаться фигуры Других типов. Например, мы будем считать, что два ферзя атакуют друг друга даже в том случае, если на линии атаки окажутся, скажем, слон, конь и ладья. Это же относится и ко всем остальным типам фигур. Нетрудно расположить на доске фигуры каждого типа по отдельности; но сложности возникают при попытке совместить все эти расположения на одной доске, ибо для некоторых фигур может не оказаться свободного места.
134. Цветные фишки. На рисунке показаны 25 фишек, окрашенных в 5 цветов: красный (К), желтый (Ж), голубой (Г), оранжевый (О) и зеленый (З), причем фишек каждого цвета – по 5 штук (они отмечены номерами 1, 2, 3, 4 и 5).
Требуется так расположить их в виде квадрата, чтобы никакие два одинаковых цвета и никакие два одинаковых номера не оказались на одной из пяти горизонталей, пяти вертикалей и ни на одной из двух диагоналей. Сможете ли вы это сделать?
135. Деликатное «искусство» лизания марок. Страховой акт служит наиболее плодовитым источником занимательных головоломок, особенно занимательных, если вы случайно окажетесь среди освобожденных от налога. Кто-то предложил следующую небольшую головоломку, касающуюся деликатного «искусства» лизания марок. Если ваша карточка разделена на 16 квадратиков (4 X X 4), а у вас много марок достоинством в 1, 2, 3, 4 и 5 пенсов, то на какую наибольшую сумму вы сумеете наклеить на нее марок, если министр финансов запрещает вам наклеивать две марки одинакового достоинства на одной и той же горизонтали, вертикали или диагонали?
Разумеется, в каждую клетку можно наклеивать лишь одну марку. Вероятно, читатель, заглянув в решение, обнаружит, что его провели так же, как он сам проводил языком по маркам. Скорее всего, до максимума ему не хватит двух пенсов. Один мой приятель спросил в почтовом ведомстве, как следует наклеивать марки, но там его послали к чиновнику по таможенным и акцизным сборам, который направил его в страховое агентство, где ему посоветовали обратиться в некое общество, там в свою очередь его послали… так он и ходит до сих пор.
136. Сорок девять фишек. Сможете ли вы расположить 49 изображенных здесь фишек в виде квадрата так, чтобы при этом никакие две одинаковые буквы и никакие две одинаковые цифры не оказались на одной вертикали, горизонтали или диагонали?
Здесь под «диагоналями», как и на шахматной доске, понимаются прямые, параллельные любой из двух больших диагоналей.
137. Три овцы. У фермера было 3 овцы и 16 загонов, отделенных друг от друга жердями, как показано на рисунке. Сколько существует различных способов, которыми фермер может поместить этих овец в отдельные загоны так, чтобы каждый загон оказался либо занятым, либо расположенным на одной вертикали, горизонтали или диагонали с по крайней мере одной овцой? Я привел одно расположение, удовлетворяющее этим условиям.
Сколько других расположений сумеете найти вы? Решения, полученные с помощью поворотов и отражений из какого-то одного решения, мы не считаем отличными от него. Читатель может рассматривать овцу как ферзя. Тогда задача будет сводиться к тому, чтобы расположить трех ферзей таким образом, чтобы каждая клетка была либо занята, либо атакована по крайней мере одним ферзем, причем это следует сделать максимальным числом способов.
138. Головоломка с пятью собаками. В 1863 г. К. Ф. де Яниш первым стал обсуждать «Головоломку о пяти ферзях», где требовалось расположить 5 ферзей на шахматной доске так, чтобы каждая клетка либо оказалась занятой, либо находилась под угрозой нападения. Яниш показал, что если ни одному ферзю нельзя атаковать другого ферзя, то существует 91 способ размещения пяти ферзей, если не различать способы, полученные из данного с помощью поворотов и отражений. Если ферзям разрешается атаковать друг друга, то здесь существуют сотни способов.
На рисунке условно изображены 64 конуры. Можно заметить, что в 5 из них сидит по собаке, а при более пристальном взгляде обнаруживается, что каждая конура находится на одной прямой с по крайней мере одной из собак (по горизонтали, вертикали или диагонали). Возьмите любую конуру, какую пожелаете, и вы увидите, что всем удастся провести из нее прямую в одном из трех упомянутых направлений, проходящую через собаку.
Головоломка состоит в том, чтобы переставить 5 собак и определить, сколькими различными способами их можно разместить по 5 конурам вдоль прямой так, чтобы каждая конура всегда была на одной прямой по крайней мере с одной собакой. Размещения, получающиеся с помощью поворотов и отражений, мы здесь считаем различными.
139. Пять византийских полумесяцев. Когда Филипп Македонский, отец Александра Великого, при осаде Византии столкнулся с громадными трудностями, он послал своих людей сделать подкоп под стены. Однако замыслам полководца не суждено было осуществиться, ибо едва операция началась, как в небе появился месяц и, осветив все вокруг, выдал план Филиппа противнику. Византийцы, естественно, ликовали и в знак благодарности воздвигли храм в честь Дианы, а полумесяц стал с тех пор символом страны. Перед статуей Дианы квадратный участок пола был выложен 64 драгоценными плитками. Все они были однотонными, за исключением пяти, на которых был изображен полумесяц. Эти пять плиток по неким оккультным причинам были размещены таким образом, чтобы каждая плитка оказалась под наблюдением (то есть на одной вертикали, горизонтали или диагонали) по крайней мере одного из полумесяцев. Византийский архитектор выбрал расположение, приведенное на рисунке.
Закрыть один из этих полумесяцев значило совершить страшное кощунство, за которое виновного ожидала долгая и мучительная смерть. Но по случаю некоего празднества пришлось на этот участок пола положить квадратный коврик максимально возможных размеров (его размеры на рисунке показаны штриховкой).
Головоломка состоит в том, чтобы показать, как именно архитектор, если бы он предвидел ситуацию с ковром, мог бы расположить свои пять полумесяцев в соответствии с указанными условиями, предусмотрев место для квадратного ковра максимальных размеров, не закрывающего не только ни один полумесяц, но даже часть его.
140. Головоломка с ферзями и слоном. Обратите внимание на то, что каждая клетка приведенной на рисунке доски либо занята, либо находится под угрозой нападения.
Требуется поставить слона вместо ладьи на ту же клетку, а затем 4 ферзя переставить на другие места так, чтобы каждая клетка вновь оказалась либо занятой, либо под угрозой.
141. Южный Крест. На приведенном здесь рисунке изображены 5 планет и 81 неподвижная звезда, причем 5 звезд закрыты планетами.
Можно заметить, что каждая звезда, за исключением звезд с черным пятном в середине, расположена на одной вертикали, горизонтали или диагонали по крайней мере с одной из планет. Нужно так переставить планеты, чтобы все звезды оказались на одной прямой по крайней мере с одной планетой.
Переставляя планеты, вы можете каждую из них передвинуть один раз по вертикали, горизонтали или диагонали. Разумеется, после перестановки они закроют 5 новых звезд, отличных от тех, которые закрыты сейчас.
142. Головоломка с вешалками для шляп. Теперь я хочу представить головоломку с пятью ферзями, которую я в причудливом одеянии сформулировал в 1897 г. Поскольку тогда ферзи предстали в облике шляп, висящих на 64 вешалках, то я сохраняю ее название. На рисунке можно заметить, что каждая клетка либо занята, либо находится под угрозой нападения.
Требуется передвинуть одного ферзя на другую клетку так, чтобы каждая клетка все еще оставалась либо занятой, либо под угрозой; затем нужно передвинуть второго ферзя при том же условии, затем – третьего и, наконец, – четвертого. После того как будет передвинут четвертый ферзь, каждая клетка должна быть либо занята, либо находиться под ударом, но ни один ферзь не должен быть атакован другим ферзем. Разумеется, вы можете передвигать ферзей не обязательно «ходом ферзя», а просто переставлять их на любое место доски.
143. Амазонки. Эта головоломка основана на одной задаче, предложенной капитаном Тертоном. Передвиньте 3 ферзя на другие клетки так, чтобы на доске оказалось 11 клеток, не находящихся под угрозой нападения. Перемещения не обязательно должны совершаться «ходом ферзя». Вы можете переставлять ферзей, куда пожелаете. Существует только одно решение данной головоломки.
144. Головоломка с пешками. Поставьте две пешки в центр доски в позиции d4 и е5. Далее, разместите оставшиеся 14 пешек (всего 16) таким образом, чтобы никакие 3 пешки не располагались на одной прямой, идущей в любом направлении.
Обратите внимание, что я сознательно говорю о пешках, а не о ферзях, ибо здесь под прямыми понимаются не вертикали, горизонтали и диагонали, по которым ходит ферзь, а произвольные геометрические прямые; пешки же рассматриваются просто как геометрические точки, совпадающие с центром клетки, занятой данной пешкой.
145. Охота на льва. Мой друг капитан Потхэм Холл, знаменитый охотник, говорит, что нет ничего более захватывающего, чем столкновение со стадом – табуном – стаей (я добрую четверть часа вспоминал нужное слово, пока наконец не вспомнил) – с прайдом львов. Почему именно группа львов называется «прайдом», группа собак – «сворой», а группа тетеревов – «выводком», относится к тайнам филологии, в которые я здесь не буду вдаваться.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.