Электронная библиотека » Лев Кривицкий » » онлайн чтение - страница 42


  • Текст добавлен: 21 декабря 2013, 02:31


Автор книги: Лев Кривицкий


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 42 (всего у книги 204 страниц) [доступный отрывок для чтения: 66 страниц]

Шрифт:
- 100% +
8.6. Движение в квантовом мире как предпосылка космического порядка

Весьма интересную, хотя и далеко не безупречную интерпретацию движения в квантовом мире предложил российский физик В. Янчилин. Важна не только интерпетация, но и размышления автора о понимании элементарного порядка квантового мира. Вот как автор описывает исходное состояние на пути к предлагаемому им объяснению квантовых процессов:

«Когда в университете я изучал квантовую механику и пытался выяснить, что же в действительности описывают её процессы, то ничего не мог понять. То же самое можно было сказать и о других моих сокурсниках. По крайней мере, мы её понимали меньше, чем Фейнман, который, по его словам, сам квантовую механику не понимал. Преподаватели же, в свою очередь, утешали нас и говорили примерно так: «Не пытайтесь что-либо понять в квантовой механике, вместо этого учитесь работать с математическим аппаратом, а понимание придёт потом». Но, несмотря на такие обещания, понимание так и не пришло. Пришло не понимание, а всего лишь привыкание к формулам» (Янчилин В.Л. Логика квантового мира и возникновение жизни на Земле – М.: Новый центр, 2004 – 151 с., с. 89).

Непонимаине побудило автора к постоянным размышлениям, к которым его вдобавок побуждала его жена Фирюза, просившая объяснить, как же всё-таки на самом деле движется электрон. В результате автор попытался обосновать в какой-то мере наглядную модель принципиально ненаглядных процессов микромира, что привело его к понятию дискретного движения. Такое движение, по мнению автора, обусловлено свойством электрона (и других элементарных частиц) исчезать из одной точки пространства и появляться в другой. Исчезновение и появление подобного рода он интерпретирует как квантовые скачки.

Электрон движется внутри виртуального облака, объём которого ограничен той областью пространства, в котором волновая функция отлична от нуля (Там же с. 92). Как полагает В. Янчилин, эта функция определяется именно способностью электрона исчезать и появляться только в пределах этого облака, причём исчезать и появляться во всех точках виртуального облака, имея каждый раз разный импульс. За самое короткое время, за которое свет проходит расстояние, равное ядру атома, электрон успевает исчезнуть и появиться бесконечное число раз, вследствие чего он находится сразу во всех точках одного пространства. Это время составляет приблизительно 10-23 секунды, поскольку при движении за меньшее время будет превышена световая скорость и возникнет противоречие с общей теорией относительности.

Следует отметить, что попытка сделать наглядным принципиально ненаглядный процесс движения электрона при помощи представления о его исчезновении из одного места и появлении в другом и с другим импульсом к движению, здесь не очень удалось. Пока мы не ответим на вопрос, каким образом он исчезает и как появляется, никакой наглядности не получится. Со времён Лукреция нам известно «золотое правило» материалистической философии, положенное в основу научного познания: «из ничего ничто», т. е. ничто в ничто не исчезает и не появляется из ничего. На этом основан закон сохранения энергии и любое эволюционное учение. Поэтому оставаясь на научной почве, никак нельзя избавиться от вопросов, куда электрон исчезает и откуда появляется, из чего возникает и во что превращается и т. д. Ранее мы доказали, что ответы на эти вопросы находятся за пределами естественного человеческого способа восприятия, и могут быть получены на основе искусственного квантовомеханического способа восприятия.

Здесь же перед нами стоит совсем другая задача: показать, как из хаоса бестраекторного, принципиально наглядно непредставимого движения образуются элементы порядка и «летучие», мгновенно рассыпающиеся мобилизационные структуры, которые являются предпосылкой космической упорядоченности на элементарном уровне и в чрезвычайно больших массах образуют макроскопическую упорядоченность вещества.

Янчилин называет главу своей брошюры «Наглядное объяснение квантовых парадоксов». Мы не стремимся к наглядному объяснению квантовых явлений и парадоксов. Наша задача – вскрыть механизмы эволюции и показать, каким образом на самом деле уже на микроуровне упорядочивается хаос.

В. Янчилин признаёт, что электрон существует в виде электронного облака, но само это облако, по его мнению, образуется исчезновениями и появлениями электрона как частицы в разных точках облака, причём распределение скоростей электрона определяет форму облака и его перемещение. Вследствие постоянных появлений и исчезновений электрона за пределами облака, совершаемых с низкой, но всё же отличной от нуля вероятностью, электронное облако, образуемое прыжками электрона, достаточно быстро расплывается, расширяется и занимает объём, ограниченный определёнными препятствиями, например, стенкой, непроницаемым экраном и т. д. Таким образом, движение электрона в облаке совершенно хаотично, но он за короткое время, имея собственный радиус не более 10-16см, успевает побывать во всех точках охватываемого его дискретным движением облака. Если пренебречь последовательностью появлений и исчезновений электрона в разных частях облака, то вследствие чрезвычайно короткого времени его «облёта» облака можно с известной степенью условности заключить, что электрон как бы находится во всех точках облака одновременно.

Электрон как частица временно локализуется в определённой точке виртуального облака, чтобы в следующее мгновение его покинуть. Электрон как волна, появляясь в различных точках облака с определённой вероятностью, волнообразно распространяется за пределы облака, огибая различные препятствия и занимая пространство, ограниченное непроницаемыми препятствиями, что называется расплыванием волнового пакета.

Если это замкнутое пространство осветить, ворвавшиеся в него фотоны создадут вероятность столкновения одного из них с образующим облако электроном. В случае такого столкновения произойдёт редукция волновой функции и мгновенное «схлопывание» облака, уменьшение его размеров. Энергия фотона и направление его движения изменятся, а электрон на мгновение получит точное местоположение (Там же, с. 97).

При этом резкое уменьшение области локализации электрона вызовет столь же резкое возрастание величины электромагнитного поля, которое создаётся его зарядом, локализацию поля в чрезвычайно малом объёме. Это приведёт к столь же резкому увеличению неопределённости импульса электрона. Вот почему нельзя одновременно измерить и точно описать и импульс, и местоположение электрона. Чем более определённым становится импульс, тем менее определённым оказывается положение в облаке, и наоборот, что соответствует соотношению неопределённостей Гейзенберга.

Так же легко объясняется автором другой парадокс квантовой механики – прохождение «точечного» электрона через два отверстия одновременно. Вот как описывает В. Янчилин это явление:

«Электрон в виде виртуального облака вылетает из источника и движется к экрану с двумя отверстиями. При этом виртуальное облако непрерывно увеличивается в размерах. Когда облако долетает до экрана, то какая-то его часть проходит через одно отверстие, какая-то – через другое, а какая-то часть отражается от экрана и движется в обратную сторону… Если при дальнейшем движении эти волновые пакеты соединяются на детекторе, то произойдёт их интерференция. Хотя электрон при этом только один. Движение любого другого квантового объекта (например, фотона) будет происходить аналогично» (Там же, с. 101). Так объясняется корпускулярно-волновой дуализм и принцип дополнительности Бора.

Многое объясняет и пример случая «перетекания» квантового объекта через потенциальный барьер. Виртуальное облако расширяется вверх, при этом его плотность, которая прямо пропорциональна вероятности обнаружить частицу, уменьшается соответственно высоте препятствия и объёму облака. При этом полная энергия частицы остаётся постоянной. Чем выше барьер, тем ниже плотность облака на большой высоте и тем дольше облако будет перетекать через него. Но энергетический фактор более существен, чем плотность и связан с последней напрямую. Чем ниже плотность, тем ниже энергия электромагнитного поля. Именно энергетика, ограниченность энергоресурса не позволяет электронному облаку неограниченно расширяться.

В качестве примера перетекания элементарной частицы через потенциальный барьер автор приводит радиоактивный распад с испусканием альфа-частиц. Он отмечает, что если бы частица была классическим (т. е. макроскопическим) объектом, она никогда не могла бы преодолеть потенциальный барьер ядерных сил и вылететь из ядра. Ядерные силы притяжения (сильного взаимодействия) гораздо сильнее электромагнитных сил отталкивания, но они действуют на очень коротких расстояниях. Внутри ядра альфа-частица не обладает энергией для преодоления ядерных сил. Лишь поскольку альфа-частица представляет собой квантовый объект, она постепенно «просачивается» из ядра в соответствии с примером, описывающим «перетекание» частицы через барьер (Там же, с. 111).

Так же, разумеется, можно объяснить и так называемый «туннельный эффект», т. е. прохождение квантовых объектов через непроницаемые барьеры.

Мысленные эксперименты, приведенные В. Янчилиным, очень важны для понимания поведения квантовых объектов. Однако модель для их объяснения – дискретное движение микрообъектов – достаточно фантастична. Такая ненаучная фантастика проявляет себя при объяснении движения электрона в раздельных между собой виртуальных облаках, т. е. в условиях расщепления волнового пакета.

Автор мысленно помещает электрон в ограниченное пространство, заполняемое виртуальным облаком, а затем разделяет это пространство непроницаемым барьером. «Итак, – пишет В. Янчилин, – у нас получились две изолированные друг от друга комнаты, внутри которых движется дискретно (хаотически) только один электрон. И если мы начнём отодвигать друг от друга эти комнаты, то электрон будет продолжать двигаться хаотически, находясь по-прежнему в обеих комнатах… Расстояние между комнатами можно сделать сколь угодно большим – электрон будет продолжать двигаться в двух комнатах» (Там же, с. 101).

Причём, по мнению автора, волновые пакеты можно разнести даже на межпланетные или любые космические расстояния, электрон (или любая другая микрочастица) будет «прыгать» из одного пакета в другой, образуя тем самым виртуальное облако в обоих пакетах. Как же он ухитряется не преодолевать сверхсветовой барьер и запрет, налагаемый на сверхсветовую скорость общей теорией относительности?

А очень просто. Он же не перемещается, скажем, между Землёй, где находится один пакет, и Марсом, куда перенесен другой. Он просто исчезает и появляется:

«Нужно отметить, что теория относительности накладывает ограничение только на классическую скорость движения физических объектов. А хаотическое (дискретное) движение электрона не приводит к бесконечной скорости в классическом смысле, так как проявляется только в неопределённости его движения» (Там же, с. 97–98).

Очевидно, что подобное передвижение столь же непостижимо и чудотворно, как создание Всемогущим Богом материального мира из ничего. Всемогущество электрона, способного практически мгновенно преодолевать колоссальные расстояния, просто исчезая из одного пакета и появляясь в другом, ничуть не лучше объясняет движение в квантовом мире, нежели творение мира за семь дней.

Неудивительно, что исходя из подобного образа «дискретного» движения автор пытается объяснить природу жизни и возникновение жизни на Земле. Оказывается, что физической предпосылкой всего живого на Земле является биомасса, возникшая вследствие обмена волновыми пакетами и составляющая единое целое. Поэтому когда человек спит, он восстанавливает не просто энергетические ресурсы своего организма, а своё единение с биомассой путём обмена волновыми пакетами.

Однако оставим в покое биомассу и чудотворные электроны, которые её пронизывают. Вернёмся к тем реальным вопросам, которые поднимает автор и наводит на их решение с несомненным талантом и мобилизацией к новаторскому поиску. Проблема неопределённости, нелокальности и бестраекторного движения микрочастиц ставится и решается В. Янчилиным в совершенно новом ракурсе, который, несомненно, способствует более глубокой интерпретации квантовой механики, позволяющей ответить на главный вопрос: как из хаоса неопределённых движений микрочастиц образуются элементы порядка и определённости. Обратимся снова к текстам В. Янчилина, к логике его исследования и постановке проблемы:

«Проблема была не в том, чтобы понять, эту неопределённость, а в том, чтобы понять, как она образуется. Например, электрон имеет очень маленькие размеры, меньше, чем 10-16см, и поэтому его можно с хорошей точностью считать точечным. Но с другой стороны, из-за неопределённости в движении электрон может занимать достаточно большой объём. Скажем, в атоме водорода электрон существует в виде облака, размеры которого примерно 10-8см. Именно размеры электронного облака и определяют размеры атома. Каким же образом электрон умудряется заполнить объём, который больше его размера в 1024 раз? Электрон должен двигаться с бесконечной скоростью, чтобы заполнить такой объём пространства. Но скорость электрона очень мала, она значительно меньше скорости света» (Там же, с. 90). Таковы истоки размышлений автора, на основе которых он делает «квантовый прыжок» к обоснованию своей идеи дискретного движения. Надеемся, читатель простит нам длинные цитаты, которые мы используем в данном разделе нашего труда, чтобы, опираясь на чрезвычайно оригинальные размышления цитируемого автора, подойти к пониманию эволюционного значения квантовых парадоксов. Как мы уже видели, автор решает проблему движения микрочастиц путём подключения наглядного образа ненаглядного процесса:

«Итак, если электрон будет достаточно быстро исчезать и появляться (совершать «квантовые прыжки»), то он сможет за очень малое время побывать во всех точках достаточно большой области» (Там же, с. 91).

Итак, виртуальное облако по Янчилину образуется хаотическими движениями электрона, который не передвигается с огромной скоростью в образуемом им облаке, а просто с огромной скоростью исчезает и появляется в различных его точках, а затем и за его пределами, что способствует расширению облака – расплыванию волнового пакета. Думается, что всё обстоит как раз с точностью до наоборот. Не исчезновения и появления электрона образуют электронное облако, а исчезновения и появления виртуальных частиц в облаке образуют временные и летучие, быстро распадающиеся сгущения, которые позволяют рассматривать электрон как частицу. Появления и исчезновения соответствуют природе виртуальных частиц, которые тем и отличаются от других элементарных частиц, что они порождаются перепадами энергии физического вакуума, невещественной пустоты, вещественного ничто. По отношению к ним мы, по крайнем мере, можем высказать предположение, откуда они берутся и куда исчезают. Они возникают из материи, из которой в процессе «космической инженерии» формируется пространство-время нашей Метагалактики, которая, как и всякая материя, имеет определённые меры движения в виде минимальных энергетических выбросов. Эти выбросы отнюдь не означают нарушения закона сохранения энергии, поскольку они вызваны флуктуациями, случайными отклонениями в состоянии материи вакуума, из которой «соткано» пространство-время нашей Вселенной (и которое отгораживает Метагалактику от других Вселенных).

Всякая микрочастица представляет собой квант образующего её поля, т. е. облака виртуальных частиц, которые постоянно флуктуируют, случайно сбегаются в вакуумные конденсаты в определённой точке облака и сразу же разбегаются, чтобы тут де сбежаться в другой точке. Вот откуда берутся кажущиеся появления и исчезновения электрона как частицы. Электрон как частица есть квант электронного поля, так же как фотон – квант электромагнитного поля, бозон – квант слабого взаимодействия бозонного поля, глюон – квант сильного взаимодействия глюонного поля, гравитон, если он существует, – квант гравитационного поля и т. д. Квант есть кратковременный надрыв пространственно-временного континуума на микроуровне. Поэтому переход от кванта к кванту может происходить только скачкообразно. Такие надрывы образуются случайными сбеганиями виртуальных частиц в различных частях образуемых ими полевых «облаков». Сама же механика появления и исчезновения таких сбеганий описана В. Янчилиным совершенно безукоризненно.

Электрон как облако состоит из виртуальных частиц, которые своими появлениями и исчезновениями создают тот хаос, который определяет статистические предпосылки появления и исчезновения электрона как квантовой частицы в различных, заранее не определимых местах облака. Облако распространяется волнообразно, в соответствии с «упаковкой» виртуальных частиц в волновые пакеты. Эти пакеты различны по плотности и энергетическому ресурсу. Волновой пакет имеет тенденцию к расширению, заполнению определённого пространства, конфигурацию которого определяют силовые поля или любые другие барьеры, непроницаемые для пакета. Расширение пакета напоминает диффузию жидкости, а его распространение через различные барьеры похоже на перетекание жидкости через отверстия в сосуде. Но распространение облака не беспредельно, его пределы определяются запасом энергии виртуальных частиц, которая под действием сопротивления среды падает до нуля и гасит вероятность распространения виртуальных частиц за пределы пакета.

Редукция волновой функции, приводящая к практически мгновенному исчезновению электронного облака при столкновении электрона как частицы с другой частицей (например, фотоном), объясняется тем, что электромагнитное поле, рассеянное в облаке, в этот момент резко изменяет свою локализацию и концентрируется в объёме электрона как частицы, вследствие чего энергообеспечение для появления виртуальных частиц вне этого объёма оказывается исчерпанным.

Электрон как частица, соответственно, играет роль мобилизационной структуры в образующем его виртуальном облаке. Он появляется из хаоса виртуальных частиц путём их случайной самоорганизации и организует движение виртуального облака в определённом порядке в зависимости от условий среды и на основе экспансии во внешний мир (насколько позволяют энергоресурсы его электромагнитного поля). Но мобилизационные структуры элементарных частиц – самые ненадёжные и нестойкие в мире. Возникнув в одном месте образующего их облака, они тут же распадаются и сразу возникают в другом, обеспечивая подчинение механики движения в микромире вероятностным законам.

Благодаря гибкости и нестойкости электронных облаков, уникальной способности волновых пакетов обходить всевозможные препятствия и просачиваться через вещественные образования, огромные массы элементарных частиц, наслаиваясь друг на друга, приобретают способность выстраивать самые разнообразные порядки макроскопического уровня. Так нестойкие мобилизационные структуры элементарных части становятся предпосылкой космического порядка.

8.7. Невидимая материя

Открытие так называемой «тёмной», т. е. невидимой материи в конце XX века внесло страшную путаницу в модель Метагалактики и поставило перед наукой проблему, не имеющую пока сколько-нибудь удовлетворительного разрешения. Эта материя, которую в разных источниках называют также скрытой, тёмной, неизвестной или странной, охватывает, как оказалось, 95 % массы вещества Метагалактики. Английское название «темная материя» (dark matter) не вполне удачно, так как такая материя абсолютно прозрачна для любых излучений.

Первые сведения о существовании такой материи были получены при измерении скорости вращения ряда спиральных галактик. В соответствии с законами Кеплера ядра галактик должны были вращаться быстрее периферии. Однако отсутствие этого эффекта показало, что эти галактики подвергаются воздействию гравитации каких-то ненаблюдаемых скоплений материи. В конце 80-х годов XX века было обнаружено в астрономических наблюдениях огромное скопление галактик протяжённостью около 700 млн. световых лет, получившее название Великой стены. Содержа в себе многие тысячи галактик, Великая стена напоминала мыльную пену, а её структура не оставляла сомнений в том, что она могла возникнуть лишь под воздействием невидимых источников гравитации.

Далее были исследованы гравитационные поля многих видимых звёзд и скоплений звёздной пыли и установлено, что эти поля недостаточны для их движения по наблюдаемым траекториям. В последнее десятилетие наблюдения при помощи мощнейшего телескопа Хаббла показывали наличие вблизи крупных скоплений галактик отклонений света, идущего от находящихся за ними звёздных систем. Эти отклонения, принимавшие форму светящихся дуг, кругов или полуокружностей оказались не менее чем в 60 раз больше суммарной массы этих скоплений.

Астрономами установлено, что невидимая масса охватывает и нашу Галактику колоссальной сферой, так что вокруг и внутри неё находится ещё одна, ненаблюдаемая галактика.

Невидимая материя ничем, кроме гравитационного воздействия на видимую, светящуюся материю не проявляет себя. Она не излучает никаких электромагнитных колебаний и не отражает их, не наблюдается приборами всеволновой астрономии, не улавливает потоки частиц и не заслоняет свет, идущий от звёзд и галактик.

В настоящее время выдвинуты десятки гипотез, призванных объяснить существование невидимой материи и её влияние на порядок в космосе. Эти гипотезы исходят прежде всего из попыток объяснения необычного вещественного строения невидимой материи, специфического характера составляющих её микрочастиц.

В 1984 г. Э. Уитмен предположил, что невидимая материя состоит из огромного числа кварков, которые из-за малых размеров и специфических свойств способны образовывать сверхплотное вещество. По расчётам Уитмена, вещество объёмом с теннисный мячик весило бы 1012 тонны. Именно из-за концентрации колоссальных масс в малом объёме невидимая материя не может быть обнаружена астрономическими наблюдениями. Астрономы восприняли это предположение как крайне маловероятное. Если бы 95 % вещества Метагалактики было составлено из подобной сверхплотной материи, она была бы так или иначе обнаружена если не в световом диапазоне, то средствами инфракрасной или радиоастрономии.

Претендентами на роль невидимой материи были так называемые бурые, или коричневые карлики – космические образования, занимающие как бы промежуточное положение между звёздами и планетами. Возможность их существования обосновал американский астрофизик, индиец по происхождению Шив Кумар в 1963 г. У бурых карликов вследствие отсутствия у них необходимой массы не происходит, как у обычных звёзд, термоядерная реакция превращения водорода в гелий, а термоядерные реакции с участием дейтерия и лития начинаются, но через некоторое время прекращаются вследствие исчерпания радиоактивного топлива. В 1998 г. первый бурый карлик был обнаружен с помощью телескопа.

Предполагается, что бурые карлики так же распространены в Метагалактике, как и обычные светящиеся звёзды. Однако расчёты астрофизиков показывают, что массы бурых карликов явно не хватает для того, чтобы объяснить всю огромную гравитационную мощь невидимой материи. Ведь светящаяся материя, сконцентрированная в звёздах, составляет не более 5 % гравитирующей массы в Метагалактике.

Была опровергнута и нейтринная гипотеза возникновения невидимой материи. Высокоточные измерения космического фонового излучения, проведенные в 2001 г., показали, что невидимая материя не может состоять из нейтрино, так как в этом случае она разогрелась бы до высоких температур и проявила бы себя в наблюдениях и измерениях. Среди известных науке элементарных частиц нет таких, которые могли бы составлять огромную массу невидимой материи.

Большинство исследователей связывает существование невидимой материи с чёрными дырами – прорывами в пространственно-временной структуре материи. В последние годы чёрные дыры чаще рассматриваются как своеобразные «коридоры», соединяющие пространство-время одной Метагалактики с другой. Тем самым признаётся не только возможность существования множества миров, но и существования специфической пространственно-временной среды Метагалактики, которая может контактировать с пространственно-временной средой другой, соседней Метагалактики и испытывать её воздействие. По мнению известного исследователя чёрных дыр английского астрофизика Р. Пенроуза, с геометрией пространства-времени нашей Метагалактики происходит нечто необычное, и это необычное связано с воздействием какой-то другой Метагалактики, ограниченной от нашей иной геометрией пространства-времени.

Всё это может быть интерпретировано не только в физическом, но и в мировоззренческом контексте. Наша Метагалактика – относительно молодая (не более 20 млрд. лет жизни, хотя эта цифра, определенная в рамках эталонной модели, вызывает больше сомнения), очень активная и даже «агрессивная» Вселенная, эволюционирующая путём очень быстрого расширения своего пространства-времени. Её мобилизационная структура нацелена на экспансию, что предполагает сопротивление рядом лежащей пространственно-временной системы другой Метагалактики, возможно, более старой и поэтому сужающейся. Сопротивление соседней Метагалактики может выражаться во взаимном искривлении пространственно-временных континуумов каждой из конкурирующих систем. Наползая на соседнюю пространственно-временную непрерывность, наша Метагалактика может испытывать деформации своей пространственно-временной геометрии, которые, как и всякие искривления пространства-времени, могут оказывать сильное гравитационное воздействие на окружающее вещество. Это воздействие будет эквивалентным воздействию некоего невидимого вещества.

При этом совершенно необязательно участие чёрных дыр. Это могут быть изгибы пространства-времени, пространственно-временные «холмы» и «ямы», причём «ямы», не образующие разрывов или проколов пространственно-временного «листа», а только выгибающие его. При столкновении Метагалактик возможны самые причудливые искривления пространственно-временных континуумов, которые для земных наблюдений могут представляться какими-то тёмными Галактиками или невидимыми звёздами. С этой точки зрения может существовать невещественная гравитация, выражающаяся в сильных искривлениях пространственно-временного континуума нашей Метагалактики, и никакой невидимой материи не существует.

Но роль невидимой материи в качестве своеобразного «стержня», обеспечивающего своим мощным гравитационным воздействием прочность галактик и их скоплений, а также возможность существования галактик, состоящих из невидимой материи, может свидетельствовать о том, что перед нами всё-таки масса, оказывающая мобилизационное воздействие на светящуюся материю. Формы невидимой материи могли явиться мобилизационными источниками образования ядер галактик и звёзд. Это могли быть огромные чёрные дыры, засасывающие светящуюся материю и перекачивающие её в другую Метагалактику. Тем более, что многие спиральные галактики выглядят в точности так же, как если бы их светящееся вещество затягивало в какую-то колоссальную воронку.

Возможно также, что значительная часть невидимой материи состоит из вещественных образований, составленных из каких-то неизвестных элементарных частиц, не обнаруженных на Земле. Эти частицы стабильны, не имеют электромагнитного заряда, обладают очень значительным гравитационным полем. В земном же микромире, как известно, мы не находим таких тяжёлых микрочастиц. Ведь гравитационное взаимодействие в земном микромире настолько незначительно, что им можно пренебречь. Но это не значит, что разнообразие «космической инженерии» не могло выразиться в формировании таких частиц в необозримом Космосе. Очень большая масса помешала бы микрочастицам быть элементарными частицами в земном понимании этого феномена. Но космический мир отличен от земного, и чем больше мы будем о нём узнавать, тем больше этих отличий будем в нём открывать. В принципе, нет ничего невозможного в существовании супергравитона – кванта гравитационного поля с массой в миллиарды раз более тяжёлой, чем гравитон, который физики пытаются обнаружить на Земле. Супергравитон – очень странная частица, такой с точки зрения наших нынешних знаний вообще не может быть. Но наши знания будут расширяться и углубляться по мере космизации науки и человечества.

Уже в 1933 г. американский астрофизик немецкого происхождения Фриц Цвикки провёл расчёты устойчивости различных галактик и пришёл к выводу, что сила тяготения, которая скрепляет эти галактики и не даёт их частям унестись по касательной в окружающее пространство, должна быть в десятки или даже сотни раз больше, чем та, которая порождается суммарной массой светящихся объектов этих галактик. И в нашей спиральной Галактике, известной под поэтическим названием Млечный путь, огромное количество звёзд, находящихся в отдалении от ядра, вращаются с такой скоростью, что их сохранение в составе Галактики обеспечивается, несомненно, тяготением её невидимой, наиболее массивной части. Итак, невидимая материя скрепляет видимую материю воедино, не даёт ей распадаться и разваливаться на части, образует дискретные системные блоки из ядра и периферии, в которых в относительно стабильных условиях развёртываются разнообразные и разнохарактерные эволюционные процессы. Средством такой «сборки» системных блоков как предпосылки упорядочения Космоса выступает гравитация. Её роль в обеспечении прочности макроскопических образований во многом аналогична той, которую в микромире играет сильное ядерное взаимодействие.

Невидимая материя может существовать и в виде так называемых суперструн. Центральная идея теории суперструн была выдвинута в 1968 г. английским физиком М. Грином и американским физиком Дж. Шварцем. Размышляя над проблемой несоизмеримости общей теории относительности и квантовой механики Шварц и Грин пришли к выводы, что причиной этой несоизмеримости является представление об элементарных частицах как точечных объектах. Но если рассматривать их как объекты, нанизанные на чрезвычайно тонкие (размеры 10-35 см) и очень длинные, охватывающие мегамир нити, или струны, то будет найдено соединительное звено между микро– и мегамиром. Все элементарные частицы с этой точки зрения представляют собой колебания, вибрации этих невидимых струн. Каждой частице соответствует определённый квантовый тон. Все космические структуры возникают как результат этих колебаний, хотя для того, чтобы эти колебания стали доступны математическому описанию, необходим не трех– и четырёхмерный, а десятимерный Космос.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации