Текст книги "Новый физический фейерверк"
Автор книги: Джирл Уокер
Жанр: Физика, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 83 страниц) [доступный отрывок для чтения: 27 страниц]
1.6. Закручивание автомобиля при экстренном торможении
Когда машины, в которых нет системы АБС (антиблокировочной системы), экстренно тормозят, они начинают вращаться, а иногда даже ехать задом наперед (рис. 1.2а). Что заставляет их вращаться и почему не все типы автомобилей закручиваются при резком торможении? Какой стратегии лучше придерживаться, чтобы восстановить управляемость, если автомобиль уже начал вращаться? Куда нужно поворачивать колеса – в сторону заноса или в сторону предполагаемого движения?
Рис. 1.2 / Задача 1.6. а) Разворот автомобиля при резком торможении. Показаны силы трения, действующие на шины при размещении двигателя под передним капотом (б) и задним капотом (в).
ОТВЕТ • Разворачивает обычно автомобили, у которых двигатель крепится спереди, поскольку больший вес у них приходится на передние колеса и меньший – на задние. Это означает, что, скорее всего, сначала заблокируются задние колеса и они начнут скользить первыми, а уже потом – передние. И тогда любой случайный поворот, вызванный, например, неровностью дороги, быстро приведет к развороту.
Для того чтобы объяснить, отчего возникает разворот, рассмотрим трение между покрытием дороги и шиной, когда машина, у которой двигатель спереди, начинает поворачивать налево по отношению к первоначальному направлению движения (рис. 1.2б). Силы трения, приложенные к проскальзывающим задним шинам, направлены назад. Силы трения, приложенные ко все еще вращающимся передним шинам, параллельны передней оси и направлены налево и частично назад. Все эти силы создают крутящий момент, стремящийся развернуть машину в горизонтальной плоскости вокруг ее центра масс. Момент сил, приложенных к передним колесам, больше, и он пытается развернуть машину в том же направлении, в котором машина уже начала вращаться. Таким образом, угол поворота все растет, и машина разворачивается.
Если же двигатель расположен у машины сзади, роли сил трения, действующих на передние и задние колеса, меняются и крутящие моменты, приложенные к задним колесам, преобладают – они стремятся уменьшить начальный поворот (рис. 1.2в).
Согласно стандартным рекомендациям, если вашу машину начинает закручивать, вы должны выворачивать передние колеса в сторону первоначального движения. При этом вы создадите крутящий момент, приложенный к передним колесам, который будет препятствовать закручиванию. Но если вы не самый опытный водитель, то можете перестараться – и машину закрутит в противоположном направлении.
1.7. Скользить или не скользить
Предположим, что вы едете по шоссе и тут на дорогу выскакивает огромный лось. Предположим также, что в машине нет АБС (антиблокировочной системы). Должны ли вы тормозить юзом, для чего надо как можно сильнее нажать на тормоз и тем самым блокировать колеса, или же следует нажимать на тормоз лишь до тех пор, пока не почувствуете, что скольжение вот-вот начнется, то есть колеса не блокировать? Если автомобиль входит в режим полного скольжения (режим юза), почему скольжение так резко заканчивается в конце тормозного пути?
ОТВЕТ • В учебниках обычно рекомендуют второй вариант, правильно отмечая, что машина останавливается именно из-за трения между дорогой и шинами. Если колеса крутятся, трение можно увеличивать до определенного уровня, выжав педаль тормоза до некоторой величины. Если вы нажмете на тормоз сильнее, колеса заблокируются, шины начнут проскальзывать, трение уменьшится и тормозной путь увеличится.
Наилучший способ, как пишут в учебниках, – сильно тормозить, но только до тех пор, пока не начнется проскальзывание, и тогда тормозной путь будет минимальным. На самом деле это не совсем верно, поскольку в таком случае тормозной путь может быть на 25 % длиннее, чем если бы вы заблокировали колеса и тормозили юзом.
Совет из учебника в экстренной ситуации может оказаться неправильным по двум причинам. Во-первых, у вас вряд ли будет время для экспериментов с тормозами. Вторая причина связана с крутящими моментами, создаваемыми силами трения между колесами и дорогой. Эти моменты стремятся наклонить машину, повернув вокруг горизонтальной оси, проведенной через центр масс (рис. 1.3), что уменьшает нагрузку на задние колеса и увеличивает на передние. Предположим, вы нажали на тормоз с таким усилием, что колеса еще крутятся, но еще чуть-чуть – и заскользят. Поскольку колеса все еще вращаются, а нагрузка на задние колеса уменьшилась, именно они (а не передние, испытывающие большую нагрузку) уже находятся на грани проскальзывания, и сила трения, приложенная к задним колесам, мала. Следовательно, общее трение у всей машины будет меньше, а тормозной путь – больше.
Рис. 1.3 / Задача 1.7. Машина наклоняется вперед при торможении.
Теперь предположим, что вы нажали на тормоз с такой силой, что заблокировали все колеса, то есть машина пошла юзом. При полном скольжении трение между колесами и покрытием дороги зависит от нагрузки на них. Поскольку нагрузка на передние колеса увеличена, сила трения между ними и дорогой велика. Но даже притом, что нагрузка на задние колеса мала, увеличенное трение между передними колесами и покрытием означает, что общее трение больше, чем в предыдущем случае, а следовательно, тормозной путь машины короче. И все же блокировать колеса без крайней необходимости не стоит, так как при скольжении теряется контроль над машиной, и она вполне может развернуться (см. задачу 1.6) и даже столкнуться с движущимися в том же или в противоположном направлении машинами.
Резкая остановка в режиме полного скольжения объясняется тем, что внезапно возрастает трение между шинами и асфальтом. При скольжении в области их соприкосновения в начале торможения образуется смазка из расплавившегося гудрона и резины (см. ниже задачу 1.8). Но при замедлении автомобиля количество расплавленного вещества – смазки – уменьшается, и трение внезапно возрастает.
1.8. Торможение юзом
При экстренном торможении, если колеса блокируются, шины начинают скользить по асфальту и на нем остаются следы. Предположим, машина начинает скользить на определенной скорости и останавливается. Влияет ли на длину тормозного следа вес машины? А рисунок протектора и ширина шин? Что, если «резина лысая»?
Почему остановить машину труднее, когда дорога лишь слегка мокрая, чем когда по ней ручьями течет вода?
ОТВЕТ • При экстренном торможении трение между шинами и дорогой сначала увеличивается до максимальной величины, а затем падает, когда колеса блокируются и начинают проскальзывать. При скольжении от шин отрываются кусочки, а дорога и сами шины нагреваются. Шина может расплавиться, а если дорога покрыта составом, содержащим битум, может расплавиться и он. В таком случае образуется жидкая смазка, и трение еще уменьшается.
Расплавленное вещество быстро вернется в твердое состояние, но след от проскальзывавших колес останется надолго, возможно, на несколько месяцев. Часто по всей длине следа тянутся бороздки, возникшие либо из-за рельефа покрышек, либо из-за того, что в основании дороги лежит рыхлый гравий.
На бетонированных покрытиях следы скольжения остаются редко, а если и остаются, то они почти невидимы и образованы в основном оторванными или расплавленными фрагментами шин.
Если машина весь путь до остановки проходит юзом и ни с чем не сталкивается, длина тормозного следа позволяет установить ее скорость в момент, когда скольжение началось. Правда, это значение скорости можно определить только ориентировочно, поскольку в этих расчетах используется слишком много параметров. Один из них – масса (или вес) автомобиля. Для тяжелого автомобиля тормозной путь до остановки немного длиннее, чем для более легкого, в первую очередь из-за того, что при большем весе образуется больше смазки. (В судах при разборе ДТП и в книгах по физике этим фактором пренебрегают.)
А еще длина тормозного следа зависит от состояния дороги: он короче, если асфальт содержит вкрапления камня, и длиннее, если он отполирован шинами большого количества машин. Длина тормозного пути не зависит от ширины шин, так как, в принципе, силы трения между шинами и дорогой зависят только от веса, который давит на шины, от рисунка протектора (а следовательно, от сцепления шин с поверхностью дороги), но не от их ширины.
Если дорога сухая, бороздки на шинах не сильно влияют на длину тормозного пути, если же дорога влажная, их влияние может оказаться существенным. Когда воды много, как, например, во время ливня, шины начинают скользить на тонком слое воды (аквапланирование). При этом движении трение почти нулевое, шины не соприкасаются с дорогой: поскольку вода не может найти выхода и вытечь из-под шин, они как бы парят над асфальтом. Чтобы уменьшить аквапланирование, на шинах делаются бороздки, которые направляют и выводят воду с нижней части шин наружу. Аквапланирование влияет еще сильнее, если до дождя дорога была грязной, потому что смешанная с водой грязь образует очень вязкую смазку – что-то вроде жидкой глины, и тогда трение между шиной и дорогой снижается еще сильнее. При экстренной остановке это может застать водителей врасплох – ведь они считали, что раз дождь только начался, то дорога еще не настолько намокла, чтобы началось аквапланирование. Зато после того, как дождь смоет грязь, а дорога высохнет, трение между шиной и дорогой станет больше, чем до дождя, поскольку грязи на ней не останется.
Но даже если воды недостаточно, чтобы началось аквапланирование, она все же может значительно уменьшить трение между шиной и дорогой. За сухую дорогу шина зацепляется, потому что нижняя часть шины прогибается под весом и все время плотно прижимается к поверхности дороги. Из-за этого она может подстраиваться под неровности дороги, заполняя собой небольшие выбоины и вбирая в себя легкие выступы. Такое плотное прилегание шины к неровностям дороги и обуславливает большое трение, требующееся при аварийной остановке. Когда же дорога мокрая, выемки заполнены водой, а когда шина «запечатывает» собой кусок дороги, вода из этих ямок не может никуда уйти, и дорога оказывается как бы выровненной, без бугров. Таким образом, шина уже не может зацепиться за эти неровности.
Если машину начинает вращать во время аварийной остановки, следы на дороге будут искривленными. Это вращение может начаться как из-за того, что задние колеса заблокируются раньше передних, так и из-за уклона дороги (часто средняя часть дороги делается выше, чем ее края, чтобы дождевая вода с нее стекала).
Если колесо все еще крутится во время заноса, оно боком трется о дорогу и оставляет следы, на которых не видны типичные для следов, оставляемых при скольжении, бороздки. Если дорога настолько неровная, что машина на ней будет подпрыгивать, или если торможение неоднородно, любые следы могут быть прерывистыми. Короткие разрывы в следах обычно говорят о том, что автомобиль подпрыгивал, а длинные могут означать, что водитель пытался остановиться, нажимая и отпуская тормоз.
1.9. Короткая история. Рекордные тормозные пути
Рекорд длины тормозного пути на общественных дорогах был установлен в 1960 году на шоссе М1 в Англии водителем «ягуара». Длина следа составляла 290 м. В суде утверждалось, что скорость автомобиля в момент, когда колеса только-только заблокировались, составляла примерно 160 км/ч. Но если принять коэффициент трения шин о покрытие дороги равным 0,7, можно подсчитать, что скорость машины составляла 225 км/ч.
Длина тормозного пути «ягуара», конечно, впечатляет, но она бледнеет при сравнении с рекордом, установленным Крейгом Бридлавом в октябре 1964 года на соляном озере Бонневиль-Солт-Флэтс. Пытаясь побить рекорд скорости для наземного автомобиля – 805 км/ч, Бридлав проехал на своем автомобиле «Спирит оф Америка» («Дух Америки») с установленным на нем ракетным двигателем мерную милю сначала в одном направлении, а потом в обратном, чтобы можно было учесть влияние ветра. Когда он мчался по мерной миле второй раз, его скорость составила 869 км/ч.
Для торможения он использовал парашют, но его стропы оторвались из-за недостаточной прочности, второй парашют тоже не сработал. Тогда он выжал педаль тормоза «в пол», но влияние тормозов сказалось в основном на появлении гигантского тормозного следа длиной почти 10 км, после чего они сгорели. После этого автомобиль продолжал мчаться со скоростью около 800 км/ч, проскочил две линии телефонных столбов, чудом не столкнувшись с ними. В конце концов он остановился, но как! Въехал на набережную, перескочил парапет и на скорости все еще больше 250 км/ч рухнул в соляное озеро глубиной 5 м. Бридлав был крепко пристегнут ремнями к сиденью и едва не утонул в салоне затопленного автомобиля. Но мерную милю Бридлав проехал и установил новый рекорд скорости, превысив предыдущий почти на 40 км/ч. Его средняя скорость составляла 841 км/ч.
1.10. Почему дятлам и толсторогим баранам не грозит сотрясение мозга
Дятел долбит клювом древесину, добывая пищу (насекомых, живущих под корой), строя дупла для выведения птенцов, а также выбивая громкую дробь для привлечения самки. При этих ударах голова дятла тормозит с отрицательным ускорением примерно в 1000 g (то есть в тысячу раз больше ускорения свободного падения). Для человека такая перегрузка смертельна или в лучшем случае может обернуться для него серьезной травмой мозга – сотрясением. Почему же дятел не падает с дерева замертво каждый раз, когда вонзает свой клюв в дерево?
Сражаясь за самку в брачный сезон, самцы толсторогого барана с разбегу врезаются друг в друга и со страшной силой сталкиваются рогами и головами. И при этом они не падают на землю без сознания. Некоторые виды рогатых динозавров (например, трицератопсы) тоже наносили друг другу сокрушительные удары рогами. Почему же после таких столкновений соперники остаются целы и невредимы?
ОТВЕТ • До сих пор не вполне понятно, почему мозг дятла способен выдерживать огромные перегрузки, когда птица долбит дерево, но есть два основных предположения. Во-первых, клюв дятла движется строго по прямой. Некоторые исследователи считают, что сотрясение мозга у людей и животных происходит при боковых смещениях головы относительно шеи (в которой находится ствол головного мозга), а при движении головы вперед-назад вероятность сотрясения меньше. Во-вторых, мозг дятла плотно прилегает к черепу: он отделен от черепной коробки лишь тонким слоем вязкой жидкости, поэтому остаточные смещения или колебания ткани мозга сразу после удара не настолько сильные, чтобы вызвать повреждения.
Сшибающихся головами баранов обычно спасают три обстоятельства. 1. Их рога слегка деформируются во время удара, увеличивая время соударения и тем самым уменьшая силу удара. 2. Чтобы смягчить удар в голову, кости черепа также могут слегка сдвигаться или поворачиваться в соответствующих соединениях (швах черепа) наподобие пружин или шарниров. 3. Большая часть энергии удара гасится сильными шейными мышцами животных. И хотя соударения со стороны выглядят совершенно устрашающе, крепкие мышцы животных надежно защищают мозг от сотрясений, а прочные рога не ломаются при ударе. Трицератопсов, возможно, спасала еще и развитая система пазух, окружавших черепную коробку и служивших амортизаторами ударов.
1.11. Короткая история. Рекордные ускорения
В июле 1977 года на пересохшем озере Эль-Мираж в штате Калифорния Китти О’Нейл установила два рекорда на гоночном автомобиле типа «драгстер» на дистанции 402,3 м. Стартуя с места, она развила самую высокую зарегистрированную финишную скорость (скорость в конце дистанции) и поставила рекорд, преодолев дистанцию за самое короткое в истории время – 3,72 с. Развитая ею скорость была поразительной – 632,1 км/ч. Среднее ускорение на дистанции составило 47,1 м/с2. Это почти в 5 раз больше ускорения свободного падения. На других соревнованиях на дистанции 1600 м она показывала среднюю скорость 843 км/ч, но при этом ускорения были меньше.
В декабре 1954 года на базе Холломан ВВС США в Нью-Мексико полковник ВВС доктор Джон Стапп пристегнулся к сиденью на ракетных санях[1]1
Платформа, которая движется по рельсам испытательного трека с помощью ракетных двигателей. Прим. ред.
[Закрыть], оснащенных девятью ракетными двигателями. После запуска двигателей сани за 5 с разогнались до скорости 1018 км/ч. На стадии включения двигателей ускорение саней составило 56,4 м/с2, или 5,76 g. Цифра говорит сама за себя, однако настоящим испытанием для полковника стала остановка с помощью гидротормоза: сани замедлялись с ускорением 20,6 g, сбросив скорость до нуля всего за 1,4 с.
В мае 1958 года на той же базе Холломан Эли Бидинг-младший развил скорость 117 км/ч на похожих санях. В самой скорости нет ничего примечательного, она обычна для автобанов. Впечатляет время разгона – 0,04 с. За это время человек не успевает буквально и глазом моргнуть. Ускорение Бидинга составило 82,6 g, этот рекорд не побит до сих пор (речь идет о контролируемых ситуациях).
В июле 1977 года в Нортгемптоншире (Англия) гоночный автомобиль Дэвида Пэрли был смят при наезде на препятствие – его скорость со 174 км/ч снизилась до нуля всего за 66 см пути. Ускорение, которое он испытал, было почти смертельно – 179,8 g, но Пэрли выжил, хотя получил 29 переломов и 3 вывиха, а его сердце останавливалось 6 раз.
1.12. Лобовые столкновения автомобилей
Вы ведете автомобиль в тоннеле с односторонним движением и вдруг видите, что какой-то автомобиль едет вам навстречу. Что вы должны сделать, чтобы облегчить последствия надвигающейся аварии? Должны ли вы ускориться, замедлиться, остановиться или поехать назад?
Лобовые столкновения – самые страшные из всех автомобильных аварий. Удивительный факт: собранная статистика, касающаяся лобовых столкновений, говорит о том, что риск (вероятность) летального исхода для водителя меньше, если в машине кроме водителя находится и пассажир. Но почему?
ОТВЕТ • Лучший выход – остановиться и, если возможно, поехать назад. Полная кинетическая энергия или импульсы машин перед столкновением определяют тяжесть соударения. Если вы не погасите свою скорость, приближаясь ко второй машине, обе величины будут большими, и удар будет жестким.
В американском футболе, в котором игроки выступают в серьезной защитной амуниции, все не так. Там игрок одной команды может специально ускориться, когда бежит навстречу игроку другой команды. Но вся разница с автомобилями в том, что футболист как раз хочет, чтобы удар был посильнее, а правильно развернув корпус, он к тому же может направить его на уязвимые места соперника или сделать так, чтобы тот потерял равновесие и упал.
Вероятность фатального исхода зависит от изменения скорости в процессе соударения: большое изменение скорости означает, что на вас во время удара действовала большая сила, вызвавшая огромное ускорение. Например, если ваша машина имеет маленькую массу, а другая машина – большую, скорость вашей машины может измениться настолько, что она в результате будет отброшена назад. Дополнительная масса в вашей машине, будь то пассажир или даже мешок с песком в багажнике, может снизить изменение скорости, а следовательно, и риск фатального исхода. Вот численный пример: предположим, массы вашей и встречной машины одинаковы. И ваши с водителем встречной машины массы тоже равны. В этом случае риск фатального исхода для вас уменьшится на 9 %, если рядом с вами будет сидеть пассажир весом 80 кг.
1.13. Короткая история. Представление с участием локомотивов
Это произошло 15 сентября 1896 года в американском городе Уэйко. Уильям Краш – сотрудник компании «Миссури – Канзас – Техас Рэйлроудс» – придумал беспроигрышную идею для шоу. На противоположных концах участка железнодорожных путей длиной 6,4 км он разместил два старых локомотива. Один был выкрашен в красный цвет, другой – в зеленый. Идея состояла в том, чтобы столкнуть локомотивы друг с другом на полной скорости.
Известно, что публика любит смотреть на катастрофы, и 50 000 зрителей заплатили за право насладиться зрелищем крушения. После того как топки были заправлены топливом, а дроссельные заслонки открыты и зафиксированы, локомотивы двинулись навстречу друг другу. В момент встречи их относительная скорость составляла 145 км/ч.
Оказаться рядом со столкнувшимися локомотивами, чья кинетическая энергия трансформировалась в кинетическую энергию разлетевшихся обломков, – все равно что побывать на месте взрыва средней мощности. В результате несколько зрителей было убито разлетевшимися обломками, сотни ранены. Но остальные зеваки, вероятно, посчитали, что не зря потратили деньги.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?