Электронная библиотека » Джирл Уокер » » онлайн чтение - страница 8


  • Текст добавлен: 3 июня 2019, 10:40


Автор книги: Джирл Уокер


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 83 страниц) [доступный отрывок для чтения: 24 страниц]

Шрифт:
- 100% +
1.56. Ложе факира

После того как я увидел на показательных выступлениях каратистов ложе факира (доску, утыканную гвоздями), я стал его использовать на своих лекциях по физике. Мой показ состоял из двух частей. В первой я снимал майку и ложился между двумя досками с гвоздями, причем на верхнюю доску становились один или два человека. Хотя гвозди причиняли изрядную боль, они редко прокалывали кожу. Какие факторы уменьшают риск быть проколотым?

Во второй части я опять ложился между двумя досками с гвоздями, но на этот раз на верхнюю доску мой ассистент ставил бетонный блок, который потом разбивал тяжелой кувалдой. Эта часть опасна по многим причинам, одна из которых – осколки, которые могут отлететь и поранить кого-нибудь. (Однажды, когда я давал представление «Физический фейерверк», номер с ложем факира был последним. Мой постоянный ассистент не смог со мной поехать, так что пришлось попросить помочь пригласившего меня профессора. Он как следует замахнулся кувалдой, но под таким углом, что большинство бетонных осколков полетело прямо мне в лицо. Один из кусков сильно ударил меня в подбородок, и когда я, пошатываясь, встал и хотел дать заключительные пояснения, все было залито кровью – тело, брюки, туфли. Никогда больше этот опыт не заканчивался так драматически и никогда аудитория не реагировала так остро.) Почему безопаснее разбивать большой блок, чем маленький?


ОТВЕТ • Когда на доске надо мной стоят люди, их вес распределяется на большое количество гвоздей, вбитых в верхнюю доску, так что давление каждого гвоздя на мою кожу оказывается недостаточным, чтобы проколоть ее. Давление на спину больше, поскольку эти гвозди поддерживают еще и мой вес (и, соответственно, давят на мою спину с дополнительной силой). Экспериментально я определил, какой вес стоящих на мне людей еще не приводит к прокалыванию кожи спины. (Да, было больно, но наука требует жертв.)

Большой блок, поставленный сверху, не только добавлял опыту зрелищности, но и делал его более безопасным, на что есть две не очень очевидные причины. 1. Для того чтобы с силой нажать на меня, верхняя доска и блок, лежащий на ней, должны с ускорением двинуться вниз, но из-за большой массы блока это ускорение меньше. 2. Большая часть энергии кувалды идет на то, чтобы разбить блок, а не на то, чтобы привести в движение доску. В первый раз, когда я провел опыт с ложем факира в аудитории, я вместо большого блока использовал маленький кирпич. И после удара кувалдой оглушенный пролежал на полу несколько минут.

1.57. Висящие ложки

Вымойте как следует свой нос и небольшую легкую ложку, подышите на внутреннюю поверхность углубления ложки, а потом прижмите эту поверхность к носу. Проверьте, прилипла ли она, слегка переместив ее и немного ослабив нажатие. Если почувствуете, что она держится, уберите руки. И получите то, чего хотели: ложка свисает у вас с носа. Все будут в восторге.

Почему ложка повисла? Чем помогло то, что сначала на нее подышали? Как долго может ложка висеть на носу? Одно время я всем говорил, что мой рекорд – час и 15 минут – был поставлен во французском ресторане в Торонто. Однако на самом деле это случилось на стоянке для грузового транспорта в Юнгстауне, где один бандитского вида байкер пошутил, что ложка продержится дольше, если он слегка изменит форму моего носа.


ОТВЕТ • Если ни на носу, ни на ложке нет следов жира, трение между ложкой и носом должно быть достаточным, чтобы удержать ложку на месте. Она будет неподвижно висеть при условии, что ее центр масс лежит на вертикали, проходящей через точку, в которой она прилипла к носу. В противном случае, когда вы ложку отпустите, сила тяжести будет стремиться повернуть ее, и она может соскользнуть. Конденсация выдыхаемого вами воздуха на ложке помогает ей приклеиться к носу. Хотя слой воды, если он сравнительно толст, действует как смазка, очень тонкий слой является клеем из-за возникающих между молекулами воды и соседними молекулами поверхностей носа и ложки электростатических сил притяжения; кроме того, ложку прижимает к носу атмосферное давление.

1.58. Следы от камней

На дне высохших озер, которыми изобилуют Калифорния и Невада, иногда попадаются камни, от которых идут длинные следы, прочерченные на твердой корке дна. Эти следы иногда достигают десятков метров в длину, а масса камней – 300 кг. Откуда взялись следы? Камни решили прогуляться? Или их перекатывал какой-то псих? Какова бы ни была причина, передвинуть эти камни очень тяжело, поскольку трение между камнями и твердой поверхностью пустыни огромно.


ОТВЕТ • Многие ученые пытались выяснить происхождение этих следов. Одна из теорий объясняла их появление намерзанием дождевой воды во время редких заморозков. Когда дует ветер и порывы его достаточно сильны, они в состоянии сдвинуть камни, завернутые в ледяные «фантики», и те могут прочертить полосы на твердой поверхности пустыни.

Сторонники другой теории считают, что следы могли появиться во время ливней, случающихся, хотя и редко, в пустыне. Когда дождь смачивает поверхность пустыни, образуется смазка, и шквалистый ветер может сдвинуть или перекатить камни – в результате остаются следы. Трение между камнями и поверхностью оказывается минимальным, когда земля покрывается тонким слоем грязи, а под ним находится все еще твердая основа. В этот момент порыв ветра может резко сдвинуть камень, а для продолжения движения требуется меньшая сила.

1.59. Узлы

В морском узле, показанном на рис. 1.18а, два конца – один свободный, а другой привязан к грузу. Если увеличить нагрузку, может ли узел проскользнуть, то есть может ли свободный конец выскочить из узла, так что узел развяжется? Или же этот узел самозатягивающийся?


Рис. 1.18 / Задача 1.59. а) Морской узел. б) Элементы морского узла.


ОТВЕТ • Можно математически проанализировать силы трения и натяжения веревки в узле и таким образом определить, что будет с узлом при большой произвольной нагрузке: будет ли он удерживать груз или развяжется. Здесь мы проведем простой анализ и начнем со свободного конца, который не натянут (рис. 1.18б). Свободный конец проходит под петлей, образованной другой частью веревки, накинутой сверху на него и прижимающей его к стержню. Чтобы свободный конец не выскользнул из-под петли, трение, создаваемое этим давлением, не должно быть меньше натяжения веревки, стремящегося вытянуть свободный конец из-под петли.

Веревка в этом узле обвивает стержень дважды (двумя витками). Натяжение на конце той петли, которая находится ближе к свободному концу, мало, а на другом конце витка – велико. Чтобы этот виток оставался неподвижным, трение между веревкой и стержнем должно быть достаточно велико, чтобы уравновесить разницу в натяжениях веревки на обоих концах этого витка.

Затем веревка обвивает стержень еще раз и проходит под второй петлей. Натяжение на конце веревки, противоположном свободному, создается грузом. Если верхняя часть веревки в этом витке создает достаточное давление на нижнюю, виток остается неподвижным.

Таким образом, в морском узле есть три требования на трение в разных точках узла. Если во всех этих точках веревка натянута и трение достаточно, чтобы удержать узел от проскальзывания, узел будет держать при любой нагрузке. Но если в какой-то из них веревка ослабла, узел развяжется, как только нагрузка сделается достаточно большой.

Некоторые типы узлов развязываются при большой нагрузке, даже если все части веревки в витках и переходах между витками сильно натянуты. Другие автоматически затягиваются с увеличением нагрузки: тогда узел надежен и только веревка может порваться на отрезке между грузом и узлом.

1.60. Лазанье по скалам

Когда вы карабкаетесь вверх по широкой трещине в горе, вам поможет прием, используемый, например, при подъеме в трубе. Для этого необходимо принять положение «в распор» – прижаться спиной к одной стенке трещины и упереться ногами в другую (рис. 1.19). До тех пор, пока вы можете давить на стенки с достаточной силой, вы не упадете, но подъем потребует от вас много сил. Есть ли какое-то определенное расстояние по вертикали между ногами и плечами, при котором необходимое давление, позволяющее не упасть, будет наименьшим?


Рис. 1.19 / Задача 1.60. Движение вверх методом «подъем в трубе».


А вот еще несколько из множества возможных вопросов:

1. Если на вертикальной скале вы нащупали небольшой выступ на уровне ног, как лучше упереться в него – носком ботинка или ребром его?

2. Допустим, вы находитесь на крутом склоне скалы, на котором вы еще можете стоять вертикально. Почувствуете ли вы себя более устойчиво, если наклонитесь вперед и обопретесь на руки, чтобы увеличить общее трение?

3. Если две плиты пересекаются под острым углом, что безопаснее: карабкаться вверх по одной из них или по линии их пересечения?

4. Почему скалолазы часто окунают пальцы в толченый мел?

5. Какую веревку лучше использовать для организации страховочной цепи при скалолазании и альпинизме – растяжимую или жесткую?

6. Благодаря вбитым в скалу крючьям (промежуточным точкам страховки) альпинист, если сорвется, пролетит только до ближайшего крюка. Однако здесь есть другая опасность – веревка может растянуться и порваться. Многие новички-скалолазы считают, что все зависит от высоты скалолаза относительно последнего крюка в момент падения: чем больше эта высота, тем больше растянется веревка и тем вероятнее, что она порвется. Почему они не правы?


ОТВЕТ • Во-первых, ни одно из упражнений, которые мы тут рассматриваем, нельзя повторять без участия профессионалов, поскольку все допущения, принятые для объяснений, здесь очень приблизительны, а в реальности в каждом случае есть множество факторов, влияющих на ситуацию.

В методе «подъем в трубе» существует позиция, когда минимизируется давление, с которым ноги и плечи будут давить на стенку. В принципе, можно найти эту позицию, поставив сначала ноги низко и уменьшая их давление на стенку до тех пор, пока не начнется проскальзывание. Если затем переставить ноги повыше и опять давить ими на стенку на пределе проскальзывания, это давление будет меньше, чем в первой позиции. Однако при этом увеличится сила, с которой необходимо давить на стенку плечами, поскольку уменьшилась сила, с которой на противоположную стенку давят ноги, а для того, чтобы скалолаз не упал, сумма сил трения должна быть равна его весу. Переставляя ноги все выше и выше до тех пор, пока уже плечи едва не начнут проскальзывать, вы как раз и найдете положение, в котором давление на стенки будет минимальным.

Теперь ответы на другие вопросы по порядку.

1. Наименьшее усилие требуется, если используется ребро ботинка. Чтобы стабилизировать ногу, мускулы ноги должны уравновесить крутящий момент, образованный силой давления со стороны уступа. Этот крутящий момент больше, если упираться носком ботинка, поскольку расстояние между носком и костью ноги больше, чем расстояние между боковой частью ноги и костью.

2. Как правило, человек более устойчив, когда стоит вертикально. Если он наклонится, сила трения между ботинками и поверхностью склона уменьшится и ботинки могут начать проскальзывать. Можно создать дополнительное трение, оперевшись руками о скалу, но если вынести руки слишком далеко вперед, сила трения между ними и поверхностью окажется направленной вниз по склону и будет только уменьшать устойчивость.

3. Нужно подниматься по линии пересечения плит, поскольку ее наклон меньше, чем наклон каждой из плит.

4. Скалолазы используют мел, чтобы убрать лишнюю влагу с кончиков пальцев и увеличить сцепление пальцев с выступами. Бытует мнение, что влага уменьшает статическое трение между пальцами и каменной поверхностью и мел поэтому должен увеличить трение до значения, характерного для сухой кожи. Однако одно исследование показало, что мел на самом деле уменьшает трение по двум причинам: 1) высушивая кожу, мел уменьшает эластичность кончиков пальцев; 2) частички мела образуют скользкий слой между пальцами и скалой. Тем не менее до сих пор альпинисты любят использовать мел, и, видимо, нужны новые исследования в этой области.

5. Альпинисты, в отличие от спелеологов, используют веревку, которая под действием нагрузки деформируется. При падении на такой веревке альпинист останавливается не мгновенно, и сила, действующая на него в момент остановки, не такая большая. Когда веревка начинает растягиваться, волокна веревки трутся друг о друга и нагреваются, большая часть потенциальной и кинетической энергии, теряемой альпинистом при падении, превращается в конце падения в тепловую энергию, выделяемую внутри веревки.

6. Опытные альпинисты знают, что риск обрыва веревки определяется величиной коэффициента опасности 2H/L, где H – высота альпиниста по отношению к самой высокой промежуточной точке страховки, а L – длина веревки от альпиниста до страховочной станции, где веревка надежно закреплена (или до страхующего – человека, удерживающего веревку). В зависимости от величины H и L этот коэффициент опасности может быть очень высок, даже если H мало, но при этом мало и L. По мере того как альпинист ползет вверх и L растет, при той же величине H риск становится меньше.

1.61. Как бегают по скалам снежные бараны

Скалолазы взбираются на скалы в ботинках со специальными подошвами, которые увеличивают трение между ботинками и поверхностью склона. Если поверхность влажная, лазанье может стать опасным. Вспомним, как трудно пройти по мокрому полу и не поскользнуться. У снежных баранов нет ботинок со специальными подошвами, но, тем не менее, они способны беззаботно скакать по скалистым склонам, даже если те влажные или покрыты мхом. Как бараны цепляются за скалы?


ОТВЕТ • При ходьбе у человека первой с полом соприкасается пятка ноги, на которую он наступает. Если пол влажный, сила трения, возникающая между полом и пяткой, мала, и нога может поехать вперед, а человек – упасть. У снежного барана первой в контакт со скальной поверхностью входит задняя часть раздвоенного копыта как раз в том месте, где обе половинки копыта соединяются. Площадь этой области мала, так что она легко вдавливается в мох или во что-то другое, чем покрыты камни. Когда нагрузка на копыто увеличивается, уже большая часть его двух пальцев соприкасается с поверхностью камня. При этом пальцы слегка разъезжаются, и копыто становится V-образным. Кромки копыта сдирают с поверхности камня мох и зацепляются за любую неровность, не давая копыту проскальзывать вперед, когда вес животного перенесен на него полностью.

1.62. Перемещение истуканов по острову пасхи

Доисторические люди, обитавшие на острове Пасхи, изваяли сотни каменных истуканов, которых потом перетаскивали по всему острову и устанавливали в разных местах. Как они делали это, имея в своем распоряжении только примитивные средства?


ОТВЕТ • Скорее всего, гигантские каменные статуи острова Пасхи передвигались доисторическими обитателями острова на деревянных салазках по почти одинаковым бревнам, служившим роликами. И хотя передвижение этих салазок требовало от островитян огромных усилий и затрат энергии, это было намного легче, чем тащить их по земле, когда пришлось бы преодолевать несравнимо большую силу трения полозьев о землю. В новейшие времена была проделана реконструкция этого процесса: 25 человек протащили копию истукана весом 9000 кг на 45 м за 2 минуты.

1.63. Древние сооружения стоунхенджа

Как каменные блоки мегалитических сооружений Стоунхенджа, находящиеся на равнине Солсбери, были доставлены на место и установлены в нужной позиции? Блоки, из которых состоят конструкции Стоунхенджа, делятся на два типа: опоры – стоящие вертикально огромные каменные блоки из песчаника (сарсены) и перемычки – чуть меньшие каменные плиты, лежащие сверху на сарсенах.


ОТВЕТ • Маловероятно, что каменные блоки перевозились на расстояния больше 5–10 км, несмотря на красивые мифы об их происхождении. Возможно, материал для строительства был принесен на равнины Солсбери движущимися ледниками в ранний ледниковый период, задолго до того, как Стоунхендж был построен.

Ученые полагают, что древние строители укладывали каменный блок на волокуши, изготовленные из связанных вместе бревен. Их тянули за веревки люди или домашние животные. Работу облегчала смазка, наносимая на землю перед волокушами.

Для установки опорных блоков на место также могли использовать волокуши. Блок на бревнах втягивали вверх по насыпи, которая заканчивалась крутым обрывом (рис. 1.20а). Возможно, когда блок тащили по пологой верхушке насыпи и его передняя часть зависала над обрывом, на заднюю часть блока ставили дополнительный блок. Он служил для перемещения центра масс: когда опорный блок балансировал над ямой, этот дополнительный блок перемещался вперед до тех пор, пока сарсен не опрокидывался в яму. После этого натягивали веревки, которыми обвязывалась вершина стоящего наклонно блока, и выпрямляли его.


Рис. 1.20 / Задача 1.63. a) Подъем опорного блока в Стоунхендже. б) Подъем плиты-перемычки.


Один из возможных способов подъема плит-перемычек и установки их на пару опорных блоков был опробован в наше время в маленьком чешском городе. Цементную плиту весом 5124 кг протянули по двум дубовым балкам, поверхность которых была ошкурена и смазана жиром (рис. 1.20б). Каждая из этих 10-метровых балок шла от земли до вершины одного из двух опорных блоков, на которые должна была быть установлена перемычка. Плита затаскивалась наверх с помощью веревок, которые одним концом были обмотаны вокруг плиты, а другим привязаны к концам двух еловых бревен. На другом конце каждого бревна располагалась платформа, на которой стояли или лежали рабочие. Когда их собиралось достаточное количество, бревно поворачивалось вокруг вершины вертикальной опоры и протягивало плиту немного вверх по балке. После этого под нижний конец плиты подставлялись колодки, чтобы она не соскользнула вниз, пока платформу перемещали для следующего подтягивания плиты. Так, «по-утиному», подтягивая сначала одну сторону, потом другую, плиту подняли по балкам вверх, при этом на платформе находилось всего восемь-девять рабочих.

1.64. Как поднимали каменные блоки при строительстве египетских пирамид

Строителям египетских пирамид приходилось поднимать вырубленные в каменоломнях каменные блоки, грузить их на салазки и везти на площадку. Средний вес камней составлял 2300 кг, но попадались и особо крупные экземпляры, весившие 14 000 кг. Как древние строители умудрялись поднимать их, если тогда еще не было ни машин, ни полиспастов (талей), да и вообще устройств с колесами?

Возможно, использовался следующий метод. Под блок вбивался клин, приподнимавший край, под него подсовывалось несколько гибких шестов так, чтоб их концы выступали за противоположный край блока. Затем выступающие концы одного или двух шестов слегка приподнимались (скажем, на полсантиметра) и удерживались на месте с помощью подложенных под них клиньев из прочного материала. Такая же процедура проделывалась и с другими шестами, пока все они не оказывались поднятыми на одинаковую высоту – в результате весь блок немного поднимался. Как такой метод позволял поднять огромный вес всего лишь нескольким людям? Почему так важно, чтобы шесты были гибкими?

Как строители могли затаскивать эти блоки наверх и складывать из них стены пирамид? В частности, использовались ли при этом глиняные пандусы?


ОТВЕТ • Поднимать большой вес с помощью гибких шестов значительно легче, чем с помощью жестких. Предположим, вы протащили жесткие шесты под плитой. Чтобы поднять свободный конец такого жесткого шеста, вы должны приложить к нему силу, направленную вверх и почти равную по величине половине веса плиты. Действительно, когда каменную плиту поднимают на одном шесте, она перестает касаться всех остальных шестов и, соответственно, опираться на них. Таким образом, рабочим пришлось бы принимать на себя весь этот колоссальный вес.

А когда под блоком проложены гибкие шесты, можно в одиночку поднять конец любого шеста, применив силу, значительно меньшую веса блока. Действительно, когда поднят конец гибкого шеста, блок не теряет контакта с остальными шестами и они продолжают его поддерживать.

Чтобы поднять блоки на пирамиду, строители, возможно, использовали глиняные пандусы – либо прямые, с нужной стороны пирамиды, либо спиральные, вокруг всей пирамиды. Бригада строителей могла тащить блок на веревках по такому пандусу, поливая его водой, чтобы уменьшить трение между его поверхностью и блоком. Чем меньше уклон пандуса, тем меньшую силу необходимо прикладывать, чтобы втащить камень, а следовательно, требуется и меньше строителей. Однако каким бы заманчивым ни казалось это объяснение, мы понимаем, что те пандусы должны были быть страшно длинными (до 1,5 км в длину), а перетаскивание огромной плиты по спиральному пандусу, опоясывающему пирамиду, – процесс и долгий, и опасный.

Более правдоподобно другое объяснение: скорее всего, блоки втягивали непосредственно на нужную грань пирамиды на салазках (рис. 1.21а). Когда очередной уровень пирамиды был выложен, строители шлифовали внешнюю поверхность уложенных блоков, то есть делали ее гладкой, и салазки хорошо скользили по ней. Кроме того, их полозья смачивались водой, и трение становилось совсем маленьким. Расчеты показывают, что бригада из 50 человек могла поднять не очень тяжелый блок за несколько минут. Такими темпами пирамиду могли возвести в те сроки, о которых говорят историки. Можно было бы справиться еще меньшими силами, если бы египтяне догадались перекинуть веревку на противоположную сторону пирамиды через строительную площадку наверху, привязали бы к концу веревки другие салазки и посадили бы в них людей (рис. 1.21б). Эти салазки служили бы противовесом. Как только строители сдвигали салазки с плитой с места, салазки на противоположной грани пирамиды помогали бы тащить их к вершине. В этом методе есть еще одно преимущество: когда блок поднят, салазки-противовес оказываются на земле, и их можно опять нагружать.


Рис. 1.21 / Задача 1.64. Два варианта подъема каменной плиты на пирамиду.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации