Электронная библиотека » Джирл Уокер » » онлайн чтение - страница 3


  • Текст добавлен: 3 июня 2019, 10:40


Автор книги: Джирл Уокер


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 83 страниц) [доступный отрывок для чтения: 27 страниц]

Шрифт:
- 100% +
1.14. Удар сзади и травма шейных позвонков

Когда в задний бампер машины въезжает едущая следом машина, сидящий в передней машине нередко получает травму шеи. Инженеры и медики-исследователи долго пытались объяснить этот феномен. В 1970-е годы они наконец пришли к заключению, что травма возникает из-за того, что голова сидящего в передней машине, находящаяся над спинкой кресла, дергается назад при рывке машины вперед. Это получило название хлыстовой травмы. Шея сильно растягивается при резком разгибании, а затем сильно сжимается при последующем резком сгибании головы. В результате этих исследований у автомобильных кресел появились подголовники, но водители продолжали получать травмы шеи при ударах сзади. Из-за чего все-таки происходят эти травмы?


ОТВЕТ • Причиной хлыстовой травмы является то, что голова пассажира и его тело резко перемещаются относительно друг друга. Такое воздействие на шейный отдел позвоночника повреждает его, причем опасно перемещение в любую сторону.

1.15. Повороты на гоночном автомобиле

Скоростные гонки часто выигрываются благодаря правильным действиям пилота на поворотах, когда скорость уменьшается. Рассмотрим поворот на 90° на плоском треке «Формулы-1». Очевидно, что оптимальный способ прохождения поворота зависит от характеристик систем управления автомобилем, опыта и мастерства гонщика и качества трассы. Но стоит ли гонщику в принципе совершать поворот по круговой траектории? Такой выбор обычно предполагает, что время, затраченное на поворот, будет минимальным, но почему иногда этот выбор не является оптимальным? Почему пилоты, привыкшие к плоским трекам «Формулы-1», испытывают трудности в гонке «Индианаполис-500», где трасса на виражах наклонена? В частности, почему болид там заносит, когда он входит в поворот?


ОТВЕТ • Пилот-новичок совершает поворот по круговой траектории. Опытный гонщик вначале слегка поворачивает руль и при этом тормозит, затем поворачивает более резко, а потом едет по траектории с меньшей кривизной и при этом ускоряется. Поворот тогда занимает больше времени, но позволяет выйти на прямолинейный участок трассы на большей скорости, чем у пилота-новичка. Большая скорость на прямолинейном участке с лихвой компенсирует потерю времени на повороте.

Такая тактика имеет еще одно преимущество. Если поворот проходится слишком быстро, сила, приложенная к шинам, превысит предельную силу трения между шинами и покрытием, колеса начнут проскальзывать и машина потеряет управление. Чтобы не терялось сцепление с поверхностью трека, опытный гонщик сначала тормозит, а потом резко поворачивает. А так как остальная часть поворота – плавная, водитель может ускориться и при этом не потерять сцепление с дорогой.

Чутье опытного пилота «Формулы-1» подсказывает ему, как действовать на плоских поворотах. Но ощущения на наклонных виражах совсем иные, и гонщики «Формулы-1», вероятно, слишком поздно входят в поворот.

1.16. Дорожки для спринта

Почему обычно одну и ту же дистанцию на прямолинейных дорожках бегуны преодолевают быстрее, чем на искривленных? Если треки плоские и овальные, почему бегун на внешней дорожке имеет преимущество перед бегуном на внутренней дорожке, даже если дистанции на обеих дорожках одинаковы? Почему скорость на таких дорожках зависит от формы овала?


ОТВЕТ • Входя в поворот, бегун замедляется, выходя из него – опять разгоняется до своей скорости на прямолинейном участке. Для того чтобы поворот стал возможен, должна возникнуть центростремительная сила, направленная к центру поворота. В данном случае центростремительная сила возникает за счет сил трения между подошвами обуви бегуна и дорожкой. В результате действия этой направленной к центру поворота силы, приложенной к подошвам обуви, тело бегуна стремится отклониться наружу, его как бы откидывает по направлению от центра поворота. И для восстановления равновесия бегун замедляется, чтобы уменьшить действующие силы, и наклоняется внутрь поворота, чтобы противодействовать силам, стремящимся отклонить его наружу. Чем круче поворот, тем больше бегун должен замедлиться и наклониться внутрь. Поэтому тот, кто бежит по внешней дорожке (дорожке с меньшей кривизной), вообще говоря, имеет преимущество перед тем, кто бежит по внутренней дорожке (которая имеет большую кривизну).

Когда трек плоский и овальный, время пробега по всей дорожке во многом определяется временем прохождения поворотов. В принципе, на овальных треках большого радиуса развиваются большие скорости, чем на овальных треках малого радиуса, поскольку кривизна изогнутых участков на треках большого радиуса меньше, чем на треках малого радиуса. Лучший вариант (если это, конечно, не прямолинейный трек) – окружность. У нее кривизна наименьшая.

1.17. Иллюзия задирания носа самолета при взлете

Реактивный самолет, взлетая с палубы авианосца, приводится в движение мощными двигателями, при этом он выталкивается вперед с помощью катапульты, установленной на палубе. Результирующее огромное ускорение позволяет самолету достичь скорости отрыва на коротком расстоянии, равном длине палубы. Однако это же высокое ускорение вызывает у пилота желание резко опустить нос самолета вниз, когда самолет отрывается от палубы. Пилоты натренировались не обращать внимания на это желание, но иногда самолет после взлета врезается прямо в океан. В чем причина этого эффекта?


ОТВЕТ • Ощущение вертикальности у человека зависит от визуальных ориентиров и вестибулярного аппарата, расположенного во внутреннем ухе. Рецепторами этого аппарата являются волосковые клетки с выступающими ресничками, которые погружены в студенистую жидкость. Когда вы держите голову прямо, жидкость находится в покое и волоски клеток располагаются вертикально вдоль направления действующей на вас силы тяжести; система посылает в мозг сигнал о том, что вы держите голову вертикально. Когда вы откидываете голову назад, жидкость смещается, изгибая волоски, и рецепторы посылают в мозг сигнал о том, что голова отклонилась от вертикали. Аналогично, при горизонтальном ускорении положение волосков в жидкости изменяется, и рецепторы сообщают, что вы движетесь вперед. В этом случае сигналы, поступающие в мозг от рецепторов, оказываются теми же, что и при отклонении головы назад, что не соответствует действительности. Однако ошибочные сигналы игнорируются мозгом, если визуальные подсказки говорят, что никакого наклона нет. То же самое происходит, например, когда вы разгоняетесь в автомобиле. У пилота, резко разгоняющего самолет ночью на палубе авианосца, почти нет визуальных ориентиров. Поэтому у него возникает очень убедительная иллюзия, что наклон реален. В результате пилоту кажется, что самолет отрывается от палубы с высоко задранным носом. Без специальной тренировки он будет стараться выровнять самолет, опуская его нос резко вниз, и направит самолет в океан.

1.18. Короткая история. Рейс 143 «ЭйрКанада»

Двадцать третьего июля 1983 года рейс 143 компании «Эйр Канада» готовили к длительному перелету из Монреаля в Эдмонтон, и экипаж запросил у наземных служб информацию о том, сколько топлива заправлено в баки. Пилотам было известно, что для полета на борту должно быть 22 300 кг топлива. Они знали эту цифру в килограммах, поскольку Канада недавно перешла на метрическую систему мер (до этого вес топлива измерялся в фунтах). Но на земле могли измерять количество топлива только в литрах. Техники сообщили: заправлено 7682 л. Чтобы понять, сколько топлива на борту и сколько еще не хватает, пилоты попросили назвать коэффициент, позволяющий пересчитать литры топлива в килограммы. Им было сказано, что этот коэффициент равен 1,77. Его-то они и использовали, посчитав, что 1 л топлива весит 1,77 кг. Получилось, что заправлено 13 597 кг топлива и для дозаправки необходимо еще 4917 л.

К сожалению, заправщики ошиблись: по старой привычке, возникшей еще до перехода на метрическую систему, они сообщили коэффициент, переводящий литры горючего в фунты, а не в килограммы (1 литр весит 1,77 фунта). Фактически на борту топлива было всего 6172 кг, и требовалось добавить еще 20 075 л. Следовательно, когда рейс 143 вылетел из Монреаля, на его борту было всего 45 % топлива, необходимого для перелета.

По пути в Эдмонтон на высоте 7,9 км топливо кончилось, и самолет начал падать. Хотя тяги вообще не было, пилоты ухитрились перевести самолет в режим планирования и начать спуск. Ближайший действующий аэропорт был слишком далеко, и добраться до него планируя было невозможно, поэтому они направили самолет на старый заброшенный военный аэродром.

К несчастью, взлетная полоса этого аэродрома была переделана в трассу для автогонок и поперек трассы был установлен стальной разделительный барьер. К счастью, когда самолет ударился о взлетную полосу, переднее шасси отлетело, а нос самолета свалился на взлетную полосу. Маневр, называемый «скольжение на крыло», затормозил самолет, так что он остановился совсем близко от стального барьера, из-за которого за ним наблюдали ошеломленные гонщики и болельщики. Все находившиеся на борту благополучно покинули самолет. Вывод: если не указаны единицы измерения, любые цифры остаются просто цифрами, которые ничего не значат.

1.19. Страх и ужас в парке аттракционов

Почему, катаясь на американских горках, мы испытываем страх? Конечно, это связано с высотой аттракциона, скоростью и иллюзией падения, но ведь те же ощущения можно испытать и в скоростном наружном лифте со стеклянными стенками. Однако никто не выстраивается в очередь и не платит за возможность прокатиться на таком лифте.

А что сказать об аттракционах, при катании на которых вас швыряет из стороны в сторону? Почему на таких аттракционах хочется во что-нибудь вцепиться, а порой даже закричать?

Американские горки строят для того, чтобы создавать у нас иллюзию опасности (это-то и привлекает к ним публику), но инженеры сделали все возможное, чтобы они были абсолютно безопасны. Несмотря на это, каждый год среди миллионов посетителей находится несколько бедолаг, для которых подобное развлечение заканчивается визитом к врачу. Это недомогание так и называют – мигрень американских горок. Его симптомы – головокружение и головная боль – могут проявиться не сразу, а через несколько дней. Они настолько сильны, что требуется медицинская помощь. В чем же причина появления мигрени американских горок?


ОТВЕТ • Одни аттракционы щекочут нервы благодаря высоте, скорости или большому ускорению (на американских горках оно иногда достигает 4 g), а другие – благодаря быстрому вращению, при котором возникает центробежная (направленная вовне) сила. Но обычно самые пугающие аттракционы – это те, где вы вдруг попадаете под действие быстро и неожиданно меняющихся сил. Если на вас действуют постоянная сила и постоянное ускорение, вам кажется, что все под контролем. Подсознательное ощущение опасности возникает, когда неожиданно меняется величина или направление силы. Элемент неожиданности провоцирует на подсознательном уровне экзистенциальное ощущение игры со смертью.

Обычные американские горки. Дух захватывает и от высоты, и от больших скоростей, когда с грохотом мчишься по старым, ходящим ходуном деревянным американским горкам. Когда быстро проскакиваешь нижнюю изогнутую секцию, кажется, что центробежная сила инерции вдавливает тебя в сиденье; когда попадаешь на верхний сильно изогнутый участок, кажется, что тебя с силой от сиденья отрывает. Когда пролетаешь через вершину первой и самой высокой горки, кажется, что падаешь. Если к тому же сидеть в первом вагончике и почти не видеть перед собой рельсов, возникает полная иллюзия падения. Однако, по-моему, еще страшнее сидеть в самом конце поезда. Когда приближаешься к вершине холма, а большинство вагончиков уже начали спуск вниз, в спину тебя толкает сила, нарастающая сначала медленно, а затем все быстрее (она увеличивается по экспоненте), но как только ты достигаешь вершины холма, сила мгновенно исчезает. Кажется, что чья-то злая воля толкает тебя к краю пропасти, а затем сбрасывает вниз.

Американские горки «Дикая мышь». Вагончики по рельсам движутся поодиночке. Каждая кабинка закреплена на оси над снабженной колесами рамой, скользящей по рельсам; ось расположена у вагончика сзади. На крутом повороте рама послушно поворачивает по рельсам, но сам вагончик продолжает двигаться прямо и только потом поворачивает. В такие моменты возникает иллюзия, что вагончик слетел с рельсов.

Современные американские горки. Вертикальные петли и винтовые участки создают ощущение, что центробежная сила быстро меняет величину и направление, а ты сам переворачиваешься вверх ногами. Все это вселяет ужас. Когда, замедляясь, поднимаешься по вертикальной петле, центробежная сила должна уменьшиться. Чтобы этого не случилось, кривизна трека резко увеличивается. Еще страшнее, если сидишь спиной к направлению движения и не можешь знать заранее, что предстоит изменение силы, скорости или ускорения. Или если мчишься в темноте – тогда тоже заранее не известно, что ждет в следующий момент.

Вращающийся барабан. Стоя около внутренней стенки большого вращающегося цилиндра, чувствуешь себя как бы придавленным к ней мощной центробежной силой (рис. 1.4а). Такая сила может изменить представление о том, где низ, и создать иллюзию, что тело отклоняется назад. Если эта сила достаточно велика, пол можно вообще убрать, а удерживать от падения будет сила трения между спиной и стенкой. Хотя ощущение, что сила направлена наружу, весьма правдоподобно, на самом деле удерживает от падения сила, направленная внутрь: стенка толкает тебя по направлению к центру, чтобы ты продолжал движение по кругу. Поскольку ты не соскальзываешь вниз по стенке, сила трения должна быть направлена вверх и равняться твоему весу.


Рис. 1.4 / Задача 1.19. Силы, действующие на человека на аттракционах: а) во вращающемся барабане и б) на карусели.


Чертово колесо, карусель и вращающиеся качели. На таких аттракционах ощущения от воздействия центробежной силы не столь остры. Когда кабинка, вращаясь, проходит через самую высокую точку чертова колеса, кажется, что эта сила поднимает тебя вверх. В самой низкой точке круга она как бы вдавливает тебя в сиденье. На каруселях кажется, что центробежная сила сейчас сбросит тебя (рис. 1.4б). Это ощущение сильнее, если твоя лошадка «скачет» вблизи края карусели: она движется по кругу быстрее лошадки, находящейся ближе к центру. Когда катаешься на цепочных качелях, вращающиеся вокруг центрального столба цепи отклоняются от вертикали, как если бы центробежная сила выталкивала тебя наружу. На самом деле на всех трех аттракционах центробежной силы нет. Наоборот, есть центростремительная сила (она действует со стороны сиденья на чертовом колесе, со стороны лошадки на карусели или цепей на качелях). Она-то и делает вращение возможным.

Аттракционы с вращающимися рычагами. Ты сидишь в кабинке, прикрепленной к наружному концу рычага, который вращается на шарнире вокруг конца другого рычага, расположенного ближе к центру. Если рычаги вращаются на шарнирах в одном направлении, ты ощущаешь наибольшую центробежную силу и движешься с максимальной скоростью, проходя через самую удаленную от центра точку. Когда рычаги вращаются в разные стороны, скорость в самой удаленной точке наименьшая (поскольку вращения встречные), но действующая в этой точке сила меняется максимально быстро, поскольку там твоя кабинка проезжает самый искривленный участок траектории.

Башня свободного падения. Ты сидишь в кабинке на высоте примерно 40 м, в какой-то момент кабинку внезапно отпускают и отправляют практически в свободное падение. Возникает ощущение невесомости, поскольку и ты, и сиденье под тобой падаете с одной и той же скоростью и уже нет ощущения, что сиденье тебя удерживает. Некоторым любителям аттракционов такие ощущения доставляют удовольствие.

Мигрень американских горок может возникнуть на любом аттракционе, где человек испытывает большое и быстро меняющееся по направлению ускорение. Из-за большого ускорения в головном мозге возникает напряжение, а резкая смена направления ускорения приводит к смещению мозга относительно черепа, из-за чего может возникнуть сотрясение мозга и повреждение кровеносных сосудов в мозговых оболочках.

1.20. Короткая история. Цирковые трюки «чертова петля»

Современные парки развлечений изобилуют аттракционами, на которых испытываешь острые ощущения, но те меркнут по сравнению с некоторыми велосипедными цирковыми трюками, которые выполнялись в начале XX века. Поскольку один цирк старался перещеголять другой, разрабатывались и исполнялись рискованные трюки, и если исполнителям удавалось избежать травм, то трюки повторялись по несколько раз. Один из самых ранних трюков был продемонстрирован в 1901 году в цирке Адама Форпо и братьев Селлз. Акробат, известный под именем Старр, съехал по наклоненной под углом 52° дорожке свысоты 18 м. Может, угол и не очень впечатляет, но дорожка состояла из трех секций раздвижных лестниц, так что ехать пришлось по очень неровной поверхности.

В следующем году в Нью-Йорке в спорткомплексе «Мэдисон-сквер-гарден» та же цирковая труппа продемонстрировала еще один трюк на велосипеде – в исполнении акробата, выступавшего под именем Дьяболо. Он съезжал на велосипеде по укрепленной на потолке дорожке, начало которой находилось чуть ниже люстр, потом проезжал по внутренней стороне петли диаметром 11 м и затем останавливался с помощью страховочной сетки. Все это время поблизости стояла машина скорой помощи. В 1904 году тот же цирк представил еще один трюк под названием «Великолепный Портос». Дорожка была той же, но верхняя часть петли отсутствовала, то есть Портосу надо было пролететь по воздуху 15 м вниз головой, а потом приземлиться на вторую часть петли.

Но, пожалуй, самый смелый велосипедный трюк был показан в 1905 году, когда цирк Барнума и Бейли выступал в «Мэдисон-сквер-гарден». Номер начался с того, что перед зрителями предстали Уго Анчилотти, застывший на велосипеде высоко на одной дорожке, и его брат Фердинанд, сидевший на велосипеде еще выше на второй дорожке, расположенной напротив первой (рис. 1.5). По сигналу братья помчались вниз. Когда Уго проскочил резко изогнутый нижний конец своей дорожки, он оторвался от нее и пролетел 14 м, после чего приземлился на другую часть дорожки, а затем повторил трюк, пролетев через разрыв во второй петле 9 м. В это же время Фердинанд, проехав по нижней части петли, взлетел, пролетел вниз головой по криволинейной траектории и опустился на вторую часть своей дорожки. В самый захватывающий момент представления Фердинанд летел головой вниз всего метром ниже Уго, который совершал свой полет в разрыве первой петли. Этот трюк был действительно очень опасен. Когда его попытались повторить в вечернем шоу, во время пролета разрыва в петле Фердинанд неудачно упал, и шоу, естественно, было отменено.


Рис. 1.5 / Задача 1.20. Велосипедный трюк братьев Уго и Фердинанда Анчилотти.


Позже в цирковых трюках стали заменять велосипеды на автомобили – частично из-за того, что автомобили в то время были новинкой. Один или двое акробатов мчались в авто вниз по дорожке, переворачивались в воздухе один или два раза, а потом приземлялись на вторую дорожку. Но и к этим видам цирковых трюков к 1912 году интерес ослаб – вероятно, потому, что зрители привыкли к ним и перестали чувствовать страх. Физика, лежащая в основе трюков, опять окуталась флером театральности только в более поздние времена, когда Эвел Книвел, его сын Робби Книвел и другие каскадеры начали съезжать на мотоциклах с трамплинов и перепрыгивать через автомобили и фуры.

1.21. Как поймать высокий мяч в бейсболе?

[2]2
  Несколько задач этого раздела касаются бейсбола – игры, чрезвычайно популярной в США и почти неизвестной у нас. Мы приведем здесь лишь те сведения о бейсболе, которые могут потребоваться при разборе задач. Бейсбольная площадка имеет форму квадрата со стороной 27,4 м. В каждом углу квадрата расположены базы, одна из которых называется домом. Подающий (питчер) находится в центре поля. Он бросает мяч игроку команды соперника – бьющему (хиттеру, или бэттеру), который в этот момент стоит в «доме». Этот игрок должен отбить брошенный ему мяч за пределы поля и успеть за время полета мяча добежать вдоль границы поля до следующей базы. В игре используются обтянутый кожей пробковый или каучуковый мяч весом около 148 г и диаметром около 7 см и деревянная или алюминиевая бита длиной около 107 см. Прим. пер.


[Закрыть]

Как игрок догадывается, где он должен находиться, чтобы поймать флай (высокий мяч), выпущенный в аутфилд (внешнюю часть поля)? Аутфилдер[3]3
  Аутфилдер – игрок, находящийся во внешнем поле и принимающий мяч в перчатку. Прим. пер.


[Закрыть]
может быстро прибежать в нужную точку и дожидаться мяча там. Или он может прикинуть скорость, которая требуется для того, чтобы прибежать в эту точку одновременно с мячом, и бежать туда с этой скоростью. Безусловно, сориентироваться игроку помогает его игровой опыт. Но может ли он усмотреть в полете мяча какие-нибудь подсказки, облегчающие ему принятие решения?

Роберт Вайншток из колледжа Оберлин, говоря о мастерстве аутфилдера, вспоминает, как однажды Бейб Рут поймал высокий мяч от Джимми Фокса из клуба «Филадельфия Атлетикс». Рут ожидал длинного высокого мяча от Фокса в глубине левого поля, но Фокс ударил мяч косо, и мяч получился высокий, но короткий. Как только звук удара достиг уха Рута, он подбежал точно к нужному месту на поле, подождал там и поймал мяч в перчатку.


ОТВЕТ • Хотя аутфилдер пользуется разными подсказками, чтобы поймать флай, главными, по-видимому, являются два угла. Один из них – вертикальный угол (угол возвышения над горизонтом), под которым игрок видит мяч, летящий в сторону внешнего поля (рис. 1.6а). Если игрок уже на правильном месте, где он наверняка поймает мяч, он увидит, что в полете этот угол будет увеличиваться, но с уменьшающейся скоростью (вначале он возрастает быстрее, а потом медленнее). Если игрок находится слишком близко (и должен отбежать назад), этот угол увеличивается все быстрее. Если игрок находится слишком далеко (и должен пробежать вперед), вертикальный угол сначала увеличивается, а потом начинает уменьшаться. Игрок по опыту знает, что нужно перемещаться по полю до тех пор, пока не станет видно, что в конечной фазе полета мяча вертикальный угол возрастает и скорость этого возрастания уменьшается как надо.


Рис. 1.6 / Задача 1.21. а) Траектория высокого мяча, вид сбоку. б) Траектория мяча, вид сверху.


Другой важный угол помогает выбрать правильную позицию для приема мяча, когда мяч летит слева или справа от игрока. В этом случае мяч летит в сторону внешнего поля под углом θ в горизонтальной плоскости между направлением на место удара и направлением на мяч (рис. 1.6б). Игрок должен бежать так, чтобы этот угол возрастал с постоянной скоростью. Тогда игрок сможет бежать к месту, где он поймает мяч, с более-менее постоянной скоростью, и ему в последний момент не придется совершать рывок.

Все эти приемы отрабатываются на тренировках, хотя на самом деле такая тактика естественна – ведь собаки, пытающиеся поймать брошенную хозяином игрушку, поступают так же (что подтверждают многочисленные видео, снятые на камеру, прикрепленную к ошейнику).


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации