Текст книги "Я++: Человек, город, сети"
Автор книги: Уильям Митчелл
Жанр: Архитектура, Искусство
сообщить о неприемлемом содержимом
Текущая страница: 13 (всего у книги 26 страниц)
Геокодирование
Вычисленное с помощью электроники положение поможет при наличии карты с сеткой координат: указать свою позицию можно буквально пальцем. Но если у вас есть доступ к геоинформационной системе (ГИС) – то есть базе данных, в которой конкретные сведения поставлены в соответствие географическим координатам, – появляется возможность использовать специальные программы, которые извлекут оттуда сведения, относящиеся к вашему местоположению23.
Одним из наиболее часто встречающихся типов геоинформационной системы является электронная карта города. В базе данных обозначаются координаты перекрестков, а сами улицы воспринимаются как соединения между этими узлами. Программа графически представляет эти данные в виде электронной версии карты местности, и она же рассчитывает кратчайший путь между указанными адресами. Так работают такие интернет-сервисы, как Mapquest. Совместив подобную геоин-формационную систему с GPS-приемником, получаем автомобильную навигационную систему, способную беспрерывно отображать текущее положение машины на экране приборной доски, высчитывать кратчайший путь и задавать направление движения24.
Внутри зданий вместо городских карт в базах данных служб эксплуатации и обслуживания (СЭО) хранятся планы этажей или даже их трехмерные модели. Помимо пространственной конфигурации базы данных СЭО, как правило, содержат информацию о владельцах каждого помещения, его использовании, состоянии интерьеров, имеющейся мебели и оборудовании, отделочных материалах и предоставляемых услугах.
Сетками городских улиц и планами этажей геокодирование, безусловно, не ограничивается. Существует целая индустрия, специализирующаяся на создании и обслуживании подобных баз данных для самых разных нужд. Планировщики городов и маркетологи используют ГИС для нанесения на карту демографических и экономических данных, геологи – для анализа запасов полезных ископаемых, инженеры сетей снабжения – для обозначения трубопроводов и кабелей и так далее. Более того, различия между специализированными базами данных ГИС и любыми хранящимися в сети сведениями понемногу стираются; пространственные метаданные могут быть увязаны практически с любым сетевым контентом, что и происходит все чаще25. Этот процесс может быть автоматизирован, как в случае со встроенным в фотоаппарат чипом GPS, прилагающим координаты к каждому кадру, с тем чтобы точки съемки немедленно наносились на карту, а изображения сортировались по географическому принципу. В целом базы данных с пространственной индексацией способны служить персонализированным путеводителем по любой местности.
Поскольку системы ГИС и СЭО цифровые, все преимущества удобного хранения и эффективного поиска цифровых данных используются ими для обеспечения мгновенного доступа к бескрайним пластам информации. Информация эта, если только ей не нужны частые обновления, может кэшироваться в транспортном средстве или портативном устройстве. Если же она имеет более динамичный характер, ее можно постоянно подкачивать с оперативно обновляемого беспроводного сервера. (Сравните этот огромный запас невидимой и мгновенно доступной информации с письмом, спрятанным за лентой шляпы Леопольда Блума!) Сортировать и фильтровать эти сведения можно в соответствии с текущими потребностями – например, используя механизмы взаимной рекомендации для выбора ресторана или книжного магазина на улице, по которой вам случилось прогуливаться.
Более того, выводящиеся на экран карты и планы – не единственный способ представления информации. Автомобильные навигационные системы, к примеру, можно настроить на режим последовательных устных инструкций, что особенно удобно, когда надо следить за дорогой. Текст путеводителя может быть геокодирован для прочтения вслух в нужный момент, и тогда из пассивного хранилища информации о достопримечательностях он становится автоматическим экскурсоводом, постоянно выдающим интересные и уместные в текущем контексте сведения26. Знаменитые композиторы могут сочинять музыкальное сопровождение к городам и зданиям точно так же, как они сочиняют музыку к фильмам, – а звуковая дорожка будет автоматически монтироваться в зависимости от скорости вашего движения. Все, что имеет отношение к какой-либо конкретной точке (будь то поле исторической битвы или место преступления), можно извлечь и упорядочить для создания исчерпывающей электронной картины.
Разные типы транспортных средств способны по-разному использовать геокодирование. Тележка в магазине может отслеживать путь покупателя между полок и выдавать персонализированные предложения, основанные на истории его покупок27. Если вам нравятся кукурузные хлопья, но что-то вы их давно не брали, толкая тележку по бакалейному отделу, вы получите соответствующее напоминание. Велосипед можно настраивать на определенную физическую нагрузку, после чего он будет прокладывать ваш путь по горкам или объезжать подъемы, в зависимости от указаний.
Системы ГИС и СЭО, пространственные метаданные и связанные с ними технологии до сих пор не были избалованы вниманием теоретиков социологии и культурологии28. Тема звучит не слишком увлекательно, а горы связанной с ней литературы по большей части описывают техническую сторону вопроса. Но пусть это не вводит в заблуждение: использование этих технологий дает начало новым и весьма важным взаимоотношениям между информацией и обитаемым пространством – взаимоотношениям, которые с развитием беспроводных связей займут еще более видное место. Сведения все чаще будут снабжаться географическими координатами, а цифровые дубли городов станут теснее связаны со своими физическими прототипами.
Переосмысление доступа
Возникающие перекрестные связи цифровых и физических пространств позволяют нам переосмыслить традиционную функцию города – минимизацию времени и усилий, которые его обитатели затрачивают на то, чтобы получить доступ к ресурсам и друг к другу. Как правило, города выполняют эти задачи, сочетая стратегии пространственного дизайна – высокой плотности, эффективного транспорта, внятной планировки, снижающей вероятность растеряться и что-то перепутать, – с системами уличных указателей, карт и справочной информации. Поскольку конфигурация городов достаточно стабильна, обитатели могут со временем выстроить ментальные карты, которые оперативно направляют их к тому, что им нужно. Системы хранения и доступа к информации, вроде специализированных баз данных и интернета, тоже стремятся минимизировать время поиска, добиваясь этого с помощью индексирования, ссылок и эффективных процедур поиска и хранения. Сами эти территории и способы передвижения по ним различны, но цели в обоих случаях очень похожи.
В результате растущих перекрестных связей стратегии дизайнеров городской среды и создателей информационных систем начинают сходиться. Еще не так давно физические объекты горожане искали физическим способом, а онлайн-информацию – электронным. Сегодня кроме этого они могут воспользоваться сочетанием физического перемещения и позиционирующих устройств для доступа к геокодированной цифровой информации, а могут электронным образом определять местонахождение физических объектов – от украденных автомобилей до туристических достопримечательностей.
Более того, должным образом запрограммированное устройство с геопозиционированием способно предлагать решения, используя пространственные и временные данные. Зная текущее местоположение и следующую цель, оно вычислит самый короткий и самый быстрый путь. Имея расписание общественного транспорта и стоимость билетов – предложит оптимальный способ туда добраться. Зная ваши интересы и временные рамки – составит персонализированную экскурсию. Если вам нужно встретиться с определенным человеком – найдет и обозначит удобное для обоих место и при необходимости поможет узнать друг друга. Зная ваше расписание, местоположение и время, устройство сможет отслеживать, там ли вы, где должны сейчас находиться, и ненавязчиво напоминать, что вам уже пора на следующую встречу.
Пространственное соотнесение
Автомобильная навигационная система с доступом к ГИС и чипом GPS непрерывно соотносит карту на экране приборной доски с окружающим пространством, придавая ей верное направление и обозначая текущее положение автомобиля примерно в ее центре. Мониторы, с помощью которых пассажиров авиарейсов информируют о продвижении к пункту назначения, работают похожим образом. Это простой, но действенный способ сопоставить компьютерную информацию с реальным миром, то есть однозначно привязать ее к физическим объектам, к которым она относится.
Более изощренная техника подразумевает отображение данных на лобовом стекле таким образом, чтобы слои графической и текстовой информации накладывались на пейзаж впереди, создавая виртуальные вывески и указатели. Кроме прочего, в этом случае вам больше не нужно отвлекаться на приборную доску. До сих пор такой способ визуализации использовался в основном на военных самолетах (где лишний взгляд на приборы может очень дорого стоить), но у него есть все шансы стать привычным и на других видах транспорта.
Портативные и носимые эквиваленты такой системы – прозрачные дисплеи, встроенные в высокотехнологичные подзорные трубы, очки, бинокли или видоискатели. Один из типов прозрачных дисплеев использует миниатюрную панель электронных ламп или светоизлучающих элементов. Другой основан на принципе проекции на сетчатку: импульсный луч маломощного лазерного диода отражается крошечным подвижным зеркалом прямо в глаз и таким образом быстро создает пиксельное изображение на сетчатке29. Достаточно навести соответствующим образом запрограммированный прозрачный дисплей на интересующий вас объект, и он выведет всеобъемлющие сведения. А может, и добавит комментарий к фото или видео.
Наивысшего уровня пространственной соотнесенности можно (по крайней мере в принципе) достигнуть сочетанием точного позиционирования головы с технологией виртуальных очков и трехмерной компьютерной моделью местности. В результате получается система так называемой дополненной реальности30. Позиционирование головы, точное пространственное соотнесение и создание удобных и компактных очков с прозрачными дисплеями – задачи огромной технической сложности. Но системы дополненной реальности изящно сочетают преимущества прямого и косвенного соотнесения информации с объектами, так что наверняка найдут применение во многих областях. Например, их можно устанавливать в «умные каски», в которых строительные рабочие смогут не хуже рентгеновских аппаратов видеть скрытые коммуникации и конструктивные элементы здания. А строительные чертежи уступят место «воздушным замкам» – полномасштабным, точно соотнесенным трехмерным моделям, по которым будет вестись разметка и сборка строительных конструкций.
В других контекстах и для других целей требуются другие способы пространственного соотнесения информации и другие степени точности. Для получения сведений о погоде или пробках на дорогах хватит точности в несколько километров. Водителя, при наличии правильно сориентированной и обновленной карты на приборной доске, устроит точность в несколько метров. Строительному рабочему, которому для сборочных операций с миллиметровой погрешностью нужны незанятые руки, понадобится крепящаяся на голове система дополненной реальности высочайшего качества.
В любом случае пространственное соотнесение в сочетании с геокодированием берет с интернет-страниц и устройств хранения неприкрепленные тексты, изображения и звуки и привязывает их к конкретной пространственно-временной ситуации. Динамично перетасовывая этикетки, комментарии, конкретные инструкции и отвлеченные сведения о физических объектах, людях, и местах, к которым они относятся, эти системы предоставляют то, чего лишена всемирная паутина, а именно – контекст. Вместо прецессии симулякров, которую Жан Бодрийяр ввел в культурологический дискурс в 80-х31, мы имеем специально созданную для каждой конкретной точки инфоинсталляцию – гибридную конструкцию, где цифровая информация дополняет физическое окружение новым смысловым уровнем, а физическое окружение помогает установить значение цифровой информации. Это добавляет новое измерение к архитектуре и создает новые возможности для установления фактов, конструирования вымыслов и измышления лжи.
Электронные дворцы памяти
Цицерон, без сомнения, пришел бы от всего этого в восторг. В трактате «De oratore» он отмечал, что расположение сведений в определенном порядке необходимо для их запоминания и архитектурное пространство вполне может обеспечить этот порядок. Эту мысль он проиллюстрировал историей про поэта Симонида, который вспомнил, где сидел каждый из присутствовавших на пире гостей, после того как обвалившаяся крыша погребла их под собой, изуродовав до неузнаваемости. Цицерон продолжает:
Это вот и навело его на мысль, что для ясности памяти важнее всего распорядок. Поэтому тем, кто развивает свои способности в этом направлении, следует держать в уме картину каких-нибудь мест и по этим местам располагать воображаемые образы запоминаемых предметов. Таким образом, порядок мест сохранит порядок предметов, а образ предметов означит самые предметы, и мы будем пользоваться местами, как воском, а изображениями, как надписями32.
Так, по легенде, родилась мнемотехника – искусство запоминания, с помощью которого ораторы древности могли произносить длинные речи по памяти. В своей книге Фрэнсис Йейтс вкратце изложила процедуру, подробно описанную Квинтилианом:
Для того чтобы сформировать в памяти ряд мест, говорит он, нужно вспомнить какое-нибудь здание, по возможности более просторное и состоящее из самых разнообразных помещений – передней, гостиной, спален и кабинетов, – не проходя также мимо статуй и других деталей, которыми они украшены. Образы, которые будут помогать нам вспоминать речь, – в качестве примера таких образов, говорит Квинтилиан, можно привести якорь или меч, – располагаются затем в воображении по местам здания, которые были запечатлены в памяти. Теперь, как только потребуется оживить память o фактах, следует посетить по очереди все эти места и востребовать у их хранителей то, что было в них помещено. Нам следует представить себе этого античного оратора мысленно обходящим выбранное им для запоминания здание, пока он произносит свою речь, извлекая из запечатленных мест образы, которые он в них расположил33.
В зарождающейся сегодня электронной мнемотехнике информация располагается не в головах, но в цифровых устройствах, с физическими пространствами она соотносится методом геокодирования, вызывать ее можно, буквально обходя разные места, а представлена она может быть в мультимедийном формате при помощи таких устройств, как прозрачные видеодисплеи или наушники34. Таким образом, весь город становится громадным, построенным нами сообща дворцом памяти, раскрывающим свое содержимое передвигающимся по нему обитателям.
Возвращение битов
Давным-давно (году так в 1995-м), когда Большой электронный взрыв, приведший к созданию сегодняшней вселенной цифровых сетей, был в самом разгаре, часто казалось, что киберпространство сможет повторить, улучшить и в итоге заменить собой физическое пространство как основное место нашего обитания. Интерфейс персонального компьютера с разложенными по нему документами напоминал светящуюся копию реального рабочего стола. Виртуальные сообщества представлялись на экране уютными деревушками – куда более приятными и благоустроенными, чем реальные города большинства из нас. В кабинетах проектировщиков системы САПР и цифровые модели быстро вытесняли кульманы и рейсфедеры. Специалисты в области компьютерной графики, развитие которой от одной конференции SIGGRAPH до другой напоминало путь западной живописи от Мазаччо до Мане, стремились к еще более реалистичному воплощению физических сцен – вот-вот кинематографистам уже не понадобятся ни живые актеры, ни настоящие декорации. Видеоигры и виртуальные пространства заполнялись человекоподобными аватарами и трехмерными моделями знакомых предметов. Мастера киберпанка предвкушали момент, когда мы скинем жалкую плоть и, обретя идеальное виртуальное тело, заживем среди пикселей. Интернет, уверяли нас, изменил все – расстояний больше не существовало, экономика стала невесомой. Возможно (в новом изводе древнего стремления к трансцендентальной телесности), мы обретем вечную жизнь в прочно сработанном кремнии.
Однако на более глубоком структурном уровне незаметно набирал силу сопряженный процесс: физический мир обретал многие важнейшие черты киберпространства. Материальные предметы со встроенными вычислительными и коммуникационными возможностями начинали работать как графические объекты на экране компьютера: нажатия или перемещения достаточно для получения некоего вычислительного результата. С помощью геопозиционирования физические артефакты учились сообщать о своем местоположении – почти как курсоры в экранной системе координат. Через беспроводные связи места, тела и устройства могли сплетаться так же плотно, непрерывно и незаметно, как и страницы в сети. Онлайн-информация – вне зависимости от ее физического местонахождения – становилась доступной в любом месте и в любое время. К тому моменту, когда лопнул и сдулся доткомовский пузырь, стало ясно, что физическое пространство и киберпространство переплетены, оказывая друг на друга неоднозначное влияние и непрерывно обмениваясь и делясь своими функциями.
К началу 2000-х биты вернулись из киберпространства и разошлись по своим местам в материальном мире.
8. Раскрепощенное производство
Мы производим необходимые нам вещи, соединяя проект, энергию и материалы, каждый из этих компонентов может быть доставлен на место производства через сети. Выпекая на кухне пирог, вы следуете рецепту, который мог прийти по почте, применяете тепловую энергию, поступающую, скорее всего, по трубам в виде газа, и смешиваете ингредиенты, свезенные со всего мира различными транспортными сетями. Если, сидя в офисе, вы распечатываете на лазерном принтере какую-нибудь картинку, проект передается по компьютерной сети, электричество, запускающее печатающий механизм, идет по проводам, а бумагу и картридж (самое слабое звено этой цепи), скорее всего, доставили на грузовике.
Предметов, которые производились бы прямо на месте из природного сырья, осталось совсем немного. Гораздо чаще они собираются из других предметов; иными словами, создаются в сетях снабжения посредством многоступенчатых процессов. Узлами этих сетей являются места, где материалам в соответствии с определенным проектом придают новую форму путем управляемого использования энергии. Сегодня – в особенности в области изготовления и сборки электронных компонентов – такие сети могут охватывать весь мир, а само производство требует тщательной координации деятельности, одновременно происходящей на множестве площадок.
В эпоху ремесленного производства множество операций по изготовлению и сборке выполнялось последовательно и в одном месте – в мастерской ремесленника. Этот способ производства воспевал в своих трудах Уильям Моррис. Индустриализация воспользовалась преимуществами разделения труда, специализации и параллельных процессов; линии сборки формируют транспортные сети, соединяющие места специализированного производства. В нынешнюю эру сетей современные транспортные и телекоммуникационные возможности позволяют еще большее пространственное разделение труда. Результатом этого стало распространение сборочных линий с территории завода на весь мир. Производители XXI века управляют не просто заводами, но сложными сетями снабжения.
Децентрализованное производство
Пока машины, соединяющие проект, энергию и материалы в узлах сетей снабжения, были громоздкими, тяжелыми и дорогостоящими (как, например, скоростные печатные прессы или аппараты для промышленной записи компакт-дисков), их было немного и располагались они чаще всего стационарно. В таком виде они могли не справляться с потоком производственных задач и становиться причиной заторов. Более того, как одинаково хорошо известно олигархам и революционерам-марксистам, такие машины предоставляют возможности для приобретения политической власти путем захвата средств производства. Однако когда миниатюризация открывает дорогу к разработке и распространению небольших и недорогих производственных устройств (таких как лазерный принтер), емкость сетей снабжения может легко стать избыточной. Производство можно децентрализовать и даже сделать мобильным. В таких условиях политическая власть может быть распределена (а централизованная – упразднена) посредством массового производства и распространения подобных устройств.
Рассмотрим, к примеру, эволюцию сетей снабжения таким скромным товаром, как кубики льда. Крупные поставки замороженной воды начались, когда из рек и озер Новой Англии с помощью ледяного плуга стали извлекать большие блоки льда1. С повышением эффективности и охвата крупнотоннажных транспортных сетей стала возможна их доставка на все более дальние расстояния. Из громадных хранилищ неподалеку от места добычи эти блоки на грузовых судах могли доставляться даже, к примеру, в Калькутту, где они помещались в городские льдохранилища, откуда наконец на специальных тележках добирались до домашних ледников. К началу 1880-х работающие на паровой тяге заводы по производству искусственного льда начали составлять существенную конкуренцию экспорту – в особенности в жарких странах, вдали от источников природного льда. Такие предприятия зависели только от местного водоснабжения, энергоснабжения и транспортных сетей – они стали первым шагом на пути к децентрализации производства льда. Затем последовало появление электрических сетей, небольших электрических двигателей, рефрижераторов с герметичным корпусом и массовых моделей домашних холодильников. Когда-то централизованное, к 1950-м годам производство льда стало раздробленным и вернулось в жилища. Сегодня небольшие автоматизированные льдогенераторы стали узлами в домашних сетях электро– и водоснабжения; кубики льда выпрыгивают прямо из дверцы холодильника, а расстояние от места производства до стакана сократилось с тысяч километров до нескольких сантиметров.
Сравнительные преимущества централизованного и децентрализованного производства, кроме того, определяются пропускной способностью сетей, стоимостью транспортировки и связанными с ней потерями. К примеру, сталелитейные предприятия чаще всего строятся около месторождений железной руды и угля, поскольку транспортировка сырья на большие расстояния значительно дороже доставки менее громоздкой конечной продукции. Ледяные заводы располагались рядом с рынками сбыта, поскольку во время перевозки лед таял. Первые фабрики индустриальной эры концентрировались вокруг источников гидравлической или паровой энергии, поскольку станки должны были располагаться в пределах досягаемости ременных приводов и других механических средств, использовавшихся для передачи мощности. Но когда важнейшие сети становятся повсеместными и эффективными, как современные электросети и интернет, значимость расстояния снижается соответственно: где именно вы подключите свой персональный компьютер и скачаете из сети документ для распечатки – большого значения не имеет.
Влияние сетей заметнее всего и, вероятно, наиболее опасно для устоявшихся отраслей, когда мобильное, легко воспроизводимое программное обеспечение превращает большое количество интернет-узлов в избыточно мощную, географически рассредоточенную систему производства и дистрибуции. Когда юристы звукозаписывающих компаний пытались закрыть файлообменную сеть KaZaA, обнаружилось, что ее разработчики живут в Нидерландах, программисты – в Эстонии, место создания исходного кода неизвестно, фирма-дистрибьютор базируется в Австралии, но зарегистрирована на Вануату, а сама программа установлена на компьютерах 60 миллионов интернет-пользователей в 150 странах мира2. В долгосрочной перспективе у сложившейся музыкальной индустрии шансов не больше, чем у экспортеров льда из Новой Англии.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.