Электронная библиотека » Александр Герасимович » » онлайн чтение - страница 19

Текст книги "COVID-19/SARS-CoV-2"


  • Текст добавлен: 12 апреля 2023, 15:03


Автор книги: Александр Герасимович


Жанр: Руководства, Справочники


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 19 (всего у книги 25 страниц)

Шрифт:
- 100% +

141. Boehmer, T.K.; Kompaniyets, L.; Lavery, et al. Association Between COVID-19 and Myocarditis Using Hospital-Based Administrative Data – United States, March 2020-January 2021. MMWR Morb. Mortal Wkly. Rep. 2021, 70, 1228—1232.

142. Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. The Lancet. 2022;399 (10332):1303—1312. doi:10.1016/S0140—6736 (22) 00462—7.

143. Ward IL, Bermingham C, Ayoubkhani D, et al. Risk of covid-19 related deaths for SARS-CoV-2 omicron (B.1.1.529) compared with delta (B.1.617.2): retrospective cohort study. BMJ. 2022;378:e070695. doi:10.1136/bmj-2022-070695.

144. Butt AA, Dargham SR, Coyle P, et al. COVID-19 Disease Severity in Persons Infected With Omicron BA.1 and BA.2 Sublineages and Association With Vaccination Status. JAMA Intern Med. 2022;182 (10):1097. doi:10.1001/jamainternmed.2022.3351.

145. Wolter N, Jassat W, Walaza S, et al. Clinical severity of SARS-CoV-2 Omicron BA.4 and BA.5 lineages compared to BA.1 and Delta in South Africa. Nat Commun. 2022;13 (1):5860. doi:10.1038/s41467-022-33614-0.

146. Jassat W, Abdool Karim SS, Ozougwu L, et al. TRENDS IN CASES, HOSPITALISATION AND MORTALITY RELATED TO THE OMICRON BA.4/BA.5 SUB-VARIANTS IN SOUTH AFRICA. Epidemiology; 2022. doi:10.1101/2022.08.24.22279197.

147. Lewnard JA, Hong V, Tartof SY. Association of SARS-CoV-2 BA.4/BA.5 Omicron Lineages with Immune Escape and Clinical Outcome. Epidemiology; 2022. doi:10.1101/2022.07.31.22278258.

148. Tamura T, Yamasoba D, Oda Y, et al. Comparative Pathogenicity of SARS-CoV-2 Omicron Subvariants Including BA.1, BA.2, and BA.5. Microbiology; 2022. doi:10.1101/2022.08.05.502758.

149. Chang CC, Vlad G, Vasilescu ER, et al. Previous SARS-CoV-2 Infection or a Third Dose of Vaccine Elicited Cross-Variant Neutralizing Antibodies in Vaccinated Solid Organ Transplant Recipients. Infectious Diseases (except HIV/AIDS); 2022. doi:10.1101/2022.04.13.22273829.

150. Hansen CH, Friis NU, Bager P, et al. Risk of Reinfection, Vaccine Protection, and Severity of Infection with the BA.5 Omicron Subvariant: A Danish Nation-Wide Population-Based Study. SSRN Journal. Published online 2022. doi:10.2139/ssrn.4165630.

151. Burkholz S, Rubsamen M, Blankenberg L, Carback RT, Mochly-Rosen D, Harris PE. Increasing Cases of SARS-CoV-2 Omicron Reinfection Reveals Ineffective Post-COVID-19 Immunity in Denmark and Conveys the Need for Continued Next-Generation Sequencing. Public and Global Health; 2022. doi:10.1101/2022.09.13.22279912.

152. Carazo S, Skowronski DM, Brisson M, et al. Protection against omicron (B.1.1.529) BA.2 reinfection conferred by primary omicron BA.1 or pre-omicron SARS-CoV-2 infection among health-care workers with and without mRNA vaccination: a test-negative case-control study. The Lancet Infectious Diseases. Published online September 2022:S1473309922005783. doi:10.1016/S1473—3099 (22) 00578—3.

153. Carazo S, Skowronski DM, Brisson M, et al. Protection against Omicron Re-Infection Conferred by Prior Heterologous SARS-CoV-2 Infection, with and without MRNA Vaccination. Infectious Diseases (except HIV/AIDS); 2022. doi:10.1101/2022.04.29.22274455.

154. Annie, F.H.; Embrey, S.; Alkhaimy, H.; et al. Association between myocarditis and mortality in covid-19 patients in a large registry. J. Am. Coll. Cardiol. 2021, 77, 3037.

155. Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; et al. European Society of Cardiology Working Group on Myocardial and Pericardial Diseases Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636—2648.

156. Mason, J.W.; O’Connell, J.B.; Herskowitz, A.; et al. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N. Engl. J. Med. 1995, 333, 269—275.

157. Kang, M.; Chippa, V.; An, J. Viral Myocarditis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022.

158. Ammirati, E.; Frigerio, M.; Adler, E.D.; et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: An expert consensus document. Circ. Heart Fail. 2020, 13, e007405.

159. Thomas SJ, Moreira ED, Kitchin N, et al. Six Month Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. medRxiv. Published online July 28, 2021:2021.07.28.21261159. doi:10.1101/2021.07.28.21261159 22.

160. Siripanthong, B.; Nazarian, S.; Muser, D.; et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020, 17, 1463—1471.

161. Scully M, Singh D, Lown R. et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med 2021; 384 (23) 2202—2211.

162. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med 2021; 384 (22) 2092—2101.

163. Schultz NH, Sørvoll IH, Michelsen AE. et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med 2021; 384 (22) 2124—2213.

164. Warkentin, et al. Spontaneous prothrombotic disorder ressembling to HIT. Am J Med 2008; 121: 632—636.

165. Greinacher A, Selleng K, Warkentin TE. Autoimmune heparin-induced thrombocytopenia. J Thromb Haemost 2017; 15 (11) 2099—2114.

166. Padmanabhan A, Jones CG, Pechauer SM. et al. IVIg for treatment of severe refractory heparin-induced thrombocytopenia. Chest 2017; 152 (03) 478—485.

167. von Hundelshausen P, Lorenz R, Siess W, Weber C. Vaccine-induced immune thrombotic thrombocytopenia (VITT): targeting pathomechanisms with Bruton tyrosine kinase inhibitors. Thromb Haemost 2021; DOI: 10.1055/a-1481-3039.

168. McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol 2020; 2 (07) e437-e445.

169. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 2020; 20 (06) 355—362.

170. Yu J, Yuan X, Chen H, Chaturvedi S, Braunstein EM, Brodsky RA. Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition. Blood 2020; 136 (18) 2080—2089.

171. ISTH statement on AstraZeneca COVID-19 vaccine and thrombosis. Accessed May 10, 2021 at: https://www.isth.org/news/556057/ISTH-Statement-on-AstraZeneca-COVID-19-Vaccine-and-Thrombosis.htm.

172. Hursting MJ, Pai PJ, McCracken JE. et al. Platelet factor 4/heparin antibodies in blood bank donors. Am J Clin Pathol 2010; 134 (05) 774—780.

173. United States Centers for Disease Control and Prevention. SARS-CoV-2 Variant Classifications and Definitions. Centers for Disease Control and Prevention. Published February 11, 2020. Accessed July 6, 2021. https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html.

174. GISAID. GISAID Tracking of SARS-CoV-2 Variants. GISAID: Global initiative on sharing all influenza data. Accessed July 6, 2021. https://www.gisaid.org/hcov19-variants.

175. Outbreak info. Outbreak info B.1.427/429 Lineage Report. outbreak.info. Accessed July 6, 2021. https://outbreak.info.

176. Ying Liu, Joacim Rocklöv. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J Travel Med. 2021 Aug 9;taab124. doi: 10.1093/jtm/taab124. Online ahead of print.

177. Outbreak info. Outbreak info P.2 Lineage Report. outbreak.info. Accessed July 6, 2021. https://outbreak.info.

178. Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020;71 (9):2459—2468.

179. Goossens H, Ferech M, Vander Stichele R, Elseviers M, ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet. 2005;365 (9459):579—87.

180. Llor C, Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf. 2014;5 (6):229—41.

181. Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Guervilly C, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. NEJM. 2018;378 (21):1965—1975.

182. Goligher EC, Tomlinson G, Hajage D, Wijeysundera DN, Fan E, Jüni P, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc Bayesian analysis of a randomized clinical trial. JAMA. 2018;320 (21):2251—2259.

183. Разведка США опубликовала новый отчет о происхождении коронавируса. Байден отреагировал [Электронный ресурс] URL: https://news.liga.net/world/news/razvedka-ssha-opublikovala-novyy-otchet-o-proishojdenii-koronavirusa-bayden-otreagiroval (дата обращения: 2.09.21).

184. Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020;71 (9):2459—2468.

185. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43 (3):304—377.

186. After 142 Days, Hong Kong Man Tests Positive for Covid-19 Again. What Does This Mean for the World? [Электронный ресурс] URL: https://www.news18.com/news/world/after-142-days-hong-kong-man-tests-positive-for-coronavirus-again-what-does-this-mean-for-the-world-2823217.html (дата обращения: 2.09.21).

187. Auguste Dargent, Emeric Chatelain, Louis Kreitmann, Jean-Pierre Quenot, Martin Cour, Laurent Argaud, COVID-LUS study group. Lung ultrasound score to monitor COVID-19 pneumonia progression in patients with ARDS. PLoS One. 2020 Jul 21;15 (7):e0236312. doi: 10.1371/journal. pone.0236312. eCollection 2020.

188. Chiara Robba, Denise Battaglini, Lorenzo Ball… Distinct phenotypes require distinct respiratory management strategies in severe COVID-19. Respir Physiol Neurobiol. 2020 Aug;279:103455. doi: 10.1016/j.resp.2020.103455. Epub 2020 May 11.

189. Hasan K Siddiqi, Mandeep R Mehra. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020 May;39 (5):405—407. doi: 10.1016/j. healun.2020.03.012. Epub 2020 Mar 20.

190. Reza Keikha, Ali Jebali. The miRNA neuroinflammatory biomarkers in COVID-19 patients with different severity of illness. [Article in Spanish]. Neurologia. 2021 Jul 16. doi: 10.1016/j.nrl.2021.06.005. Online ahead of print.

191. Favas TT, Dev P, Chaurasia RN, Chakravarty K, Mishra R, Joshi D et al. Neurological manifestations of COVID-19: a systematic review and meta-analysis of proportions. Neurol Sci. 2020;41 (12):3437—3470.

192. Abdullahi A, Candan SA, Abba MA, Bello AH, Alshehri MA, Afamefuna V et al. Neurological and musculoskeletal features of COVID-19: a systematic review and meta-analysis. Front Neurol. 2020;11:687.

193. Nanda S, Handa R, Prasad A, Anand R, Zutshi D, Dass SK, et al. COVID-19 associated Guillain-Barré syndrome: contrasting tale of four patients from a tertiary care centre in India. Am J Emerg Med. 2020;39:125—8.

194. Beaud V, Crottaz-Herbette S, Dunet V, Vaucher J, Bernard-Valnet R, Du Pasquier R, et al. Pattern of cognitive deficits in severe COVID-19. J Neurol, Neurosurg Psychiatry. 2020;jnnp-2020-325173.

195. McMichael TM, Currie DW, Clark S, Pogosjans S, Kay M, Schwartz NG, et al. Epidemiology of Covid-19 in a longterm care facility in King County, Washington. NEJM. 2020;382 (21):2005—2011.

196. Tay HS, Harwood R. Atypical presentation of COVID-19 in a frail older person. Age Ageing. 2020;affaa068.

197. CDС [Электронный ресурс] URL: https://www.cdc.gov/mmwr/volumes/69/wr/mm6930e1.htm#F1_down (дата обращения: 2.09.21).

198. Jenny C. NGAI, Fanny W. KO, Susanna S. NG… The long‐term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology. 2010 Apr; 15 (3): 543—550. Published online 2010 Mar 19. doi: 10.1111/j.1440—1843.2010.01720.x.

199. Marco Ho-Bun Lam, Yun-Kwok Wing… Mental Morbidities and Chronic Fatigue in Severe Acute Respiratory Syndrome Survivors Long-term Follow-up. Arch Intern Med. 2009;169 (22):2142—2147. doi:10.1001/archinternmed.2009.384.

200. Maxime Taquet, … 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021 May;8 (5):416—427. doi: 10.1016/S2215—0366 (21) 00084—5. Epub 2021 Apr 6.

201. WHO. The use of non-steroidal anti-inflammatory drugs (NSAIDs) in patients with COVID-19. Geneva: World Health Organization; 2020.

202. Della Bona,… Systemic fibrinolysis for acute pulmonary embolism complicating acute respiratory distress syndrome in severe COVID-19: a case series. European Heart Journal – Cardiovascular Pharmacotherapy, Volume 7, Issue 1, January 2021, Pages 78—80, https://doi.org/10.1093/ehjcvp/pvaa087. Published: 14 July 2020.

203. ВВС [Электронный ресурс] URL: https://www.bbc.com/russian/features-56029977 (дата обращения: 1.09.21).

204. minfin [Электронный ресурс] URL: https://index.minfin.com.ua/reference/coronavirus/vaccination (дата обращения: 1.09.21).

205. C. Buddy Creech; Shannon C. Walker; Robert J. Samuels. SARS-CoV-2 Vaccines. JAMA. 2021;325 (13):1318—1320. doi:10.1001/jama.2021.3199.

206. ВОЗ [Электронный ресурс] URL: https://www.who.int/news-room/feature-stories/detail/the-sinovac-covid-19-vaccine-what-you-need-to-know (дата обращения: 1.09.21).

207. Alejandro Jara, Eduardo A. Undurraga, …Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. September 2, 2021. N Engl J Med 2021; 385:875—884. DOI: 10.1056/NEJMoa2107715.

208. Piero Olliaro. What does 95% COVID-19 vaccine efficacy really mean? VOLUME 21, ISSUE 6, P769, JUNE 01, 2021. Published: February 17, 2021, DOI:https://doi.org/10.1016/S1473-3099(21)00075-X.

209. Laith J. Abu-Raddad, Adeel A. Butt. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. July 8, 2021.N Engl J Med 2021; 385:187—189. DOI: 10.1056/NEJMc2104974.

210. JENNIFER M. DAN, … Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. SCIENCE 5 Feb 2021 Vol 371, Issue 6529. DOI: 10.1126/science. abf4063.

211. Andreas Greinacher, Thomas Thiele, Theodore E Warkentin, Karin Weisser, Paul A Kyrle, Sabine Eichinger. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med. 2021 Jun 3;384 (22):2092—2101. doi: 10.1056/NEJMoa2104840.

212. Schultz et al, Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination; June 3, 2021 N Engl J Med 2021; 384:2124—2130. DOI: 10.1056/NEJMoa2104882.

213. M. Scully et al, 2021, Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination, doi: 10.1056/NEJMoa2105385.

214. Ismail Elalamy et al. SARS-CoV-2 Vaccine and Thrombosis: An Expert Consensus on Vaccine-Induced Immune Thrombotic Thrombocytopenia. Thromb Haemost 2021; 121 (08): 982—99. DOI: 10.1055/a-1499-0119.

215. Gresele et al, 2021, Blood Transfusion – 4 2021 (July-August). Management of cerebral and splanchnic vein thrombosis associated with thrombocytopenia in subjects previously vaccinated with Vaxzevria (AstraZeneca): a position statement from the Italian Society for the Study of Haemostasis and Thrombosis (SISET), Doi:10.2450/2021.0117—21.

216. Dougherty JA, Yarsley RL. Intravenous Immune Globulin (IVIG) for treatment of autoimmune heparin-induced thrombocytopenia: a systematic review. Ann Pharmacother 2021; 55: 198—215.

217. World Bank. Global Economic Prospects. Washington, DC: World Bank; 2020.

218. Kuipers S, Cannegieter SC, Middeldorp S, Robyn L, Büller HR, Rosendaal FR. The absolute risk of venous thrombosis after air travel: a cohort study of 8,755 employees of international organisations. PLoS Med 2007; 4 (09) e290.

219. WHO. WHO Research Into Global Hazards of Travel (WRIGHT) Project: final report of phase I. Accessed May 10, 2021 at: https://bit.ly/3l7aYDr.

220. Maxime Taquet, Masud Husain, John R Geddes, Sierra Luciano, Paul J Harrison. Cerebral venous thrombosis and portal vein thrombosis: A retrospective cohort study of 537,913 COVID-19 cases. VOLUME 39, 101061, SEPTEMBER 01, 2021. Published: July 31, 2021. DOI:https://doi.org/10.1016/j.eclinm.2021.101061.

221. ВОЗ [Электронный ресурс] URL: https://www.who.int/news-room/commentaries/detail/immunity-passports-in-the-context-of-covid-19 (дата обращения: 1.09.21).

222. diritto [Электронный ресурс] URL: https://www.diritto.it/corte-di-strasburgo-stabilisce-che-il-green-pass-non-incostituzionale (дата обращения: 4.09.21).

223. WHO – COVID-19 Weekly Epidemiological Update Edition 56, Edition 128 published 1 February 2023 (дата обращения: 2.02.23).

224. McAlister FA, Nabipoor M, Chu A, Lee DS, Saxinger L, Bakal JA. Lessons from the COVID-19 Third Wave in Canada: The Impact of Variants of Concern and Shifting Demographics. Infectious Diseases (except HIV/AIDS); 2021. doi:10.1101/2021.08.27.21261857.

225. Pascall DJ, Mollett G, Blacow R, Bulteel N, et al. The SARS-CoV-2 Alpha variant causes increased clinical severity of disease. https://www.medrxiv.org/content/10.1101/2021.08.17.21260128v1.

226. Kang M, Xin H, Yuan J, et al. Transmission dynamics and epidemiological characteristics of Delta variant infections in China. medRxiv. Published online January 1, 2021:2021.08.12.21261991. doi:10.1101/2021.08.12.21261991.

227. Twohig KA, Nyberg T, Zaidi A, et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis. Published online August 27, 2021:S1473—3099 (21) 00475—8. doi:10.1016/S1473—3099 (21) 00475—8.

228. gisaid [Электронный ресурс] URL: https://www.gisaid.org/hcov19-variants (дата обращения: 8.09.21).

229. Lorenzo Azzi, Giulio Carcano, Francesco Gianfagna… Saliva is a reliable tool to detect SARS-CoV-2. J Infect. 2020 Jul;81 (1):e45-e50. doi: 10.1016/j. jinf.2020.04.005. Epub 2020 Apr 14.

230. Giovanni A. Rossi, Oliviero Sacco, Enrica Mancino, Luca Cristiani & Fabio Midulla. Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases. Infection volume 48, pages665—669 (2020). 31 July 2020. doi: 10.1007/s15010-020-01486-5.

231. Bergmann CC, Silverman RH. COVID-19: Coronavirus replication, pathogenesis, and therapeutic strategies. Cleve Clin J Med. 2020 Jun;87 (6):321—327. doi: 10.3949/ccjm.87a.20047. Epub 2020 May 4.

232. Kirtipal N, Bharadwaj S, Kang SG. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol. 2020 Nov;85:104502. doi: 10.1016/j.meegid.2020.104502. Epub 2020 Aug 13.

233. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020 Jun;46 (6):1099—1102. doi: 10.1007/s00134-020-06033-2. Epub 2020 Apr 14.

234. Izcovich A, Ragusa MA, Tortosa F, Lavena Marzio MA, Agnoletti C, Bengolea A, Ceirano A, Espinosa F, Saavedra E, Sanguine V, Tassara A, Cid C, Catalano HN, Agarwal A, Foroutan F, Rada G.Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One. 2020 Nov 17;15 (11):e0241955. doi: 10.1371/journal. pone.0241955. eCollection 2020.

235. WHO. COVID-19 Clinical management Living guidance 25 January 2021. (дата обращения: 8.09.21).

236. Elshafeey F, Magdi R, Hindi N, Elshebiny M, Farrag N, Mahdy S, et al. A systematic scoping review of COVID-19 during pregnancy and childbirth. Int J Gynaecol Obstet. 2020.

237. Bridwell RE, Carius BM, Long B, Oliver JJ, Schmitz G. Sepsis in pregnancy: recognition and resuscitation. West J Emerg. 2019;20 (5):822—832.

238. Allotey J, Stallings E, Bonet M, Yap M, Chatterjee S, Kew T et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ. 2020;370:m3320.

239. Carl Heneghan, Tom Jefferson, su telegraph.co.uk, 5 luglio 2020. URL consultato il 19 settembre 2020.

240. COVID-19 may not have originated in China, existed for many decades, su news.cgtn.com, CGTN, 6 luglio 2020. URL consultato il 19 settembre 2020.

241. «Covid-19 potrebbe essere rimasto ’dormiente’ per anni e riattivato dalle condizioni ambientali» [collegamento interrotto], su c, L’HuffPost, 6 luglio 2020. URL consultato il 19 settembre 2020.

242. The major genetic risk factor for severe COVID-19 is inherited from Neandertals (PDF), su biorxiv.org, 3 luglio 2020. URL consultato il 19 settembre 2020.

243. B Simonetta, Il coronavirus potrebbe essere rimasto inattivo ovunque da chissà quanti anni, su ilsole24ore.com, Il Sole 24 ORE, 7 luglio 2020. URL consultato il 19 settembre 2020.

244. M Iaconelli, G Bonanno Ferraro, P Mancini e C Veneri, CS N°39/2020 – Studio ISS su acque di scarico, a Milano e Torino Sars-Cov-2 presente già a dicembre – ISS, su iss.it. URL consultato il 19 settembre 2020.

245. UniSR – Viaggio al centro del virus: com’è fatto SARS-CoV-2 https://bit.ly/3YkJWuO посещение 10.01.2023.

246. The Washington Post, su Washington Post, 1º gennaio 1970. URL consultato il 23 dicembre 2020.

247. Sam Meredith, A new coronavirus variant is seen spreading across Europe, research says, su CNBC, 29 ottobre 2020. URL consultato il 22 dicembre 2020.

248. Emma B. Hodcroft, Moira Zuber e Sarah Nadeau, Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020, Epidemiology, 28 ottobre 2020, DOI:10.1101/2020.10.25.20219063. URL consultato il 22 dicembre 2020.

249. Neil M. Expert: New covid-19 variant may have spread here via north. Irish Examiner. Oct 30 2020. Available from: https://search-proquest-com.wikipedialibrary.idm.oclc.org/newspapers/expert-new-covid-19-variant-may-have-spread-here/docview/2456035970/se-2?accountid=196403.

250. Adam DC, Wu P, Wong JY, et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong, in Nat. Med., settembre 2020, DOI:10.1038/s41591-020-1092-0, PMID 32943787.

251. Al-Tawfiq JA, Rodriguez-Morales AJ, Super-spreading events and contribution to transmission of MERS, SARS, and SARS-CoV-2 (COVID-19), in J. Hosp. Infect., vol. 105, n. 2, giugno 2020, pp. 111—112, DOI:10.1016/j. jhin.2020.04.002, PMC 7194732, PMID 32277963.

252. Liu Y, Eggo RM, Kucharski AJ, Secondary attack rate and superspreading events for SARS-CoV-2, in Lancet, vol. 395, n. 10227, marzo 2020, pp. e47, DOI:10.1016/S0140—6736 (20) 30462—1, PMC 7158947, PMID 32113505.

253. Frieden TR, Lee CT, Identifying and Interrupting Superspreading Events-Implications for Control of Severe Acute Respiratory Syndrome Coronavirus 2, in Emerging Infect. Dis., vol. 26, n. 6, giugno 2020, pp. 1059—1066, DOI:10.3201/eid2606.200495, PMC 7258476, PMID 32187007.

254. Lau MSY, Grenfell B, Thomas M, et al. Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA, in Proc. Natl. Acad. Sci. U.S.A., vol. 117, n. 36, settembre 2020, pp. 22430—22435, DOI:10.1073/pnas.2011802117, PMID 32820074.

255. Cazzolla Gatti R, Velichevskaya A, Tateo A, et al. Machine learning reveals that prolonged exposure to air pollution is associated with SARS-CoV-2 mortality and infectivity in Italy, in Environ. Pollut., vol. 267, agosto 2020, p. 115471, DOI:10.1016/j. envpol.2020.115471, PMC 7442434.

256. Hamner L, Dubbel P, Capron I, et al. High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice – Skagit County, Washington, March 2020, in MMWR Morb. Mortal. Wkly. Rep., vol. 69, n. 19, maggio 2020, pp. 606—610, DOI:10.15585/mmwr.mm6919e6, PMID 32407303.

257. CDC. Human Coronavirus Types. [Cited 2021 March 19]. Available from: https://www.cdc.gov/coronavirus/types.html.

258. Paules CI, Marston HD, Fauci AS. Coronavirus Infections-More Than Just the Common Cold. JAMA. 2020;323 (8):707—708.

259. Pal M, Berhanu G, Desalegn C, et al. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): an Update. Cureus. 2020;12 (3):e7423.

260. Wang Q, Qiu Y, Li JY, et al. Cleavage Site Predicted in the Spike Protein of the Novel Pneumonia Coronavirus (2019-nCoV) Potentially Related to Viral Transmissibility. Virol Sin. 2020;35 (3):337—339.

261. Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581 (7807):215—220.

262. Ke Z, Oton J, Qu K, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020;588 (7838):498—502.

263. Walls AC, Park YJ, Tortorici MA, et al. Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181 (2):281—292.e6.

264. Duan L, Zheng Q, Zhang H, et al. The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: implications for the Design of Spike-Based Vaccine Immunogens. Front Immunol. 2020;11:576622.

265. Sternberg A, Naujokat C. Structural features of coronavirus SARS-CoV-2 spike protein: targets for vaccination. Life Sci. 2020;257:118056.

266. Sayeeda Rahman; M T Villagomez Montero; Kherie Rowe; et al. (2021). Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Review of Clinical Pharmacology, (), —. doi:10.1080/17512433.2021.1902303.

267. Li F, Li W, Farzan M, et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005 Sep 16;309 (5742):1864—1868.

268. Watanabe Y, Bowden TA, Wilson IA, et al. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj. 2019;1863:1480—1497.

269. Park JE, Li K, Barlan A, et al. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci U S A. 2016 Oct 25;113 (43):12262—12267.

270. Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Nat Acad Sci USA. 2014;111 (42):15214—15219.

271. Coutard B, Valle C, De Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742. •• This study highlighted the detailed structure of coronavirus.

272. Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117:11727—11734.

273. Hoffmann M, Kleine-Weber H, Pöhlmann S, et al. Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020;78 (779—84.e5):779—784.e5.

274. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367 (6483):1260—1263.

275. National Institutes of Health. Novel Coronavirus Structure Reveals Targets for Vaccines and Treatments. [Cited 2021 March 19]. Available from: www.nih.gov/news-events/nih-research-matters/novel-coronavirus-structure-reveals-targets-vaccines-treatments.

276. Menachery VD, Dinnon KH, Jr YBL, et al. Trypsin Treatment Unlocks Barrier for Zoonotic Bat Coronavirus Infection. J Virol. 2020 Feb 14;94 (5):e01774—19.

277. Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020;25 (4):2000058.

278. Pilailuk O, Rome B, Siripapom P, et al. Early transmission patterns of coronavirus disease 2019 (COVID-19) in travellers from Wuhan to Thailand January 2020. Euro Surveill. 2020;25 (8):2000097.

279. Kalyanasundaram S, Krishnamurthy K, Sridhar A, et al. Novel Corona Virus Pandemic and Neonatal Care: it’s Too Early to Speculate on Impact! SN Compr Clin Med. 2020;1—7. DOI:10.1007/s42399-020-00440-8

280. Martínez-Perez O, Vouga M, Cruz Melguizo S, et al. Association Between Mode of Delivery Among Pregnant Women With COVID-19 and Maternal and Neonatal Outcomes in Spain. JAMA. 2020;324 (3):296—299.

281. Dong L, Tian J, He S, et al. Possible vertical transmission of SARSCoV-2 from an infected mother to her new born. JAMA. 2020;323 (18):1846—1848..

282. Chen Y, Peng H, Wang L, et al. Infants born to mothers with a new coronavirus (COVID-19). Front Pediatr. 2020;8:104.

283. Arnaez J, Montes MT, Herranz-Rubia N, et al. The impact of the current SARS-CoV-2 pandemic on neonatal care. Front Pediatr. 2020;8:247.

284. Zou L, Ruan F, Huang M, et al. Carica virale SARS-CoV-2 in campioni delle vie respiratorie superiori di pazienti infetti. N Inglese J Med. 2020;382 (12):1177—1179.

285. Liu J, Zheng X, Tong Q, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020;92 (5):491—494.

286. Hu G, Christman JW. Editorial: alveolar Macrophages in Lung Inflammation and Resolution. Front Immunol. 2019;10:2275.

287. Fahey E, Doyle SL. IL-1 Family Cytokine Regulation of Vascular Permeability and Angiogenesis. Front Immunol. 2019;10:1426.

288. Moore BB, Kunkel SL. Attracting Attention: discovery of IL-8/CXCL8 and the Birth of the Chemokine Field. J Immunol. 2019;202 (1):3—4.

289. Felsenstein S, Herbert JA, McNamara PS, et al. Immunology and treatment options. Clin Immunol. 2020;215:10.

290. Gonzales JN, Lucas R, Verin AD. The Acute Respiratory Distress Syndrome: mechanisms and Perspective Therapeutic Approaches. Austin J Vasc Med. 2015;2 (1):1009.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации