Автор книги: Освальд Шпенглер
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 47 страниц)
Так что все явившееся на свет из античного бодрствования оказывается возвышенным до ранга действительного лишь посредством скульптурной ограниченности. Что невозможно начертить, не является «числом». Платон, Архит и Евдокс говорят о плоских и телесных числах, подразумевая наши вторую и третью степень, и само собой разумеется, что понятия более высоких целочисленных степеней для них не существовало. Четвертая степень представилась бы грекам, исходя из скульптурного основополагающего чувства, которое тут же связывает с этим выражением четырехмерную, причем материальную протяженность, полной нелепицей. Такое выражение, как e—ix, постоянно встречающееся в наших формулах, или применявшееся Николаем Оресмом уже в XIV в. 5{1}1
Стихотворение из цикла «Кроткие ксении», ч. VI. По-немецки:
Wenn im Unendlichen dasselbeSich wiederholend ewig flieβt,Das tausendfältige GewölbeSich kraftig ineinander schlieβt;Stromt Lebenslust aus alien Dingen,Dem kleinsten wie dem gröβten Stern,Und alles Drängen, alles RingenIst ewige Ruh in Gott dem Herrn.
[Закрыть]/2, показалось бы им совершенным абсурдом. Евклид называет сомножители произведения сторонами (πλευραί). Исследование целочисленного отношения двух отрезков производится с помощью вычислений с дробями – конечными, что понятно само собой. Как раз поэтому и не может появиться представление о числе нуль, потому что у него нет никакого графического смысла. Не надо только, исходя из обыкновений нашего иначе устроенного мышления, выдвигать здесь то возражение, что это-то как раз и были «начальные ступени» в развитии математики «вообще». В рамках того мира, который создал вокруг себя античный человек, античная математика являет собой нечто вполне завершенное. Не такова она лишь для нас. Вавилонская и индийская математика уже давно сделали важными частями своих числовых миров то, что было бессмыслицей для античного числового ощущения, и многие греческие философы об этом знали. Математика «вообще», скажем это еще раз, – иллюзия. Математическое и вообще научное мышление тогда является истинным, убедительным, «мысленно неизбежным», когда оно всецело соответствует собственному чувству жизни. В противном случае оно невозможно, ложно, бессмысленно, или, как предпочитаем мы выражаться с высокомерием исторических умов, «примитивно». Современная математика, этот шедевр западного гения (разумеется, «истинная» лишь для него), представилась бы Платону смехотворным и праздным заблуждением, приключившимся в ходе попытки приблизиться к истинной математике, а именно к математике античной. Вне всякого сомнения, мы не можем даже и представить, сколь многому из великих идей чуждых культур мы дали погибнуть, потому что были не способны, исходя из нашего собственного мышления и его пределов, их усвоить либо, что то же самое, потому что воспринимали их как ложные, излишние или бессмысленные.
6
Античная математика как учение о наглядных величинах желает иметь дело исключительно с фактами чувственного и настоящего, и таким образом она ограничивает свои исследования, как и область своей применимости, примерами из сферы близкого и малого. Рядом с этой последовательностью в действиях в практическом поведении западной математики проступает нечто нелогичное, что, собственно, как следует признали лишь после открытия неевклидовых геометрий. Числа суть порождения отделенного от чувственного восприятия понимания, чистого мышления[48]48
Ср. т. 2, с. 15 сл.
[Закрыть]. Свою абстрактную значимость они несут в себе самих. Напротив того, их точная применимость к действительности понимающего восприятия представляет собой особую проблему, причем такую, которая то и дело ставится вновь и никогда не получает удовлетворительного разрешения. Конгруэнтность математической системы с фактами повседневного опыта вовсе не разумеется сама собой. Несмотря на дилетантское предубеждение относительно непосредственной математической очевидности созерцания, как мы это находим у Шопенгауэра, евклидова геометрия, имеющая поверхностную тождественность с бытовой геометрией всех эпох, приблизительно согласуется с созерцанием лишь в очень узких пределах («на бумаге»). О том, как обстоит дело при больших отстояниях, говорит тот простой факт, что для нашего глаза параллельные на горизонте сходятся. На нем основана вся перспектива в живописи. Несмотря на это Кант, непростительным для западного мыслителя образом пасовавший перед «математикой дали», ссылается в виде примеров на фигуры, в которых как раз по причине их малости вовсе не может проявиться специфически западная, инфинитезимальная проблема пространства. Правда, Евклид также избегал того, чтобы для придания своей аксиоме наглядной убедительности сослаться, к примеру, на такой треугольник, углы которого помещаются в месте наблюдателя и на двух неподвижных звездах, ведь это не может быть ни вычерчено, ни «усмотрено», однако с точки зрения античного мыслителя это было правильно. Здесь о себе заявляло то же самое чувство, которое пугалось иррационального и не отваживалось на то, чтобы воспринять ничто как нуль, как число, а значит, чтобы сохранить символ меры, избегало неизмеримого также и в созерцании космических связей.
Аристарх Самосский, вращавшийся в 288–277 гг. в Александрии в кругу астрономов, несомненно поддерживавших связь с халдейско-персидскими школами и разработавший там ту гелиоцентрическую[49]49
Впрочем, в единственном уцелевшем от него сочинении он придерживается геоцентрической точки зрения, так что можно предполагать, что он дал халдейской ученой гипотезе овладеть собой лишь на время.
[Закрыть] систему мира, которая при ее повторном открытии Коперником затронула до самой глубины метафизическую страсть Запада (достаточно вспомнить Джордано Бруно), поскольку являлась исполнением колоссальных предчувствий и удостоверением того фаустовского, готического мироощущения, которое принесло жертву идее бесконечного пространства уже в архитектуре своих соборов, – этот самый Аристарх Самосский был воспринят античностью с полным безразличием и уже вскоре (можно было бы сказать – намеренно) забыт вновь. Круг его сторонников состоял из нескольких ученых, которые почти все происходили из Передней Азии. Самый известный его поборник Селевк (ок. 150) был из Селевкии на Тигре. В самом деле, для этой культуры Аристархова система не имела в душевном плане никакого значения. Она была скорее опасна ее мироощущению. И все же в отличие от системы Коперника (это решающее обстоятельство постоянно остается без внимания) благодаря той редакции, которая была ей придана, она точно соответствовала античному мироощущению. В качестве завершения космоса Аристарх принял всецело ограниченный телесно, пустой шар, который можно охватить оптическими средствами наблюдения, и в его середине находилась мыслившаяся по-коперникански планетная система. Античная астрономия всегда держала Землю и небесные тела за что-то принципиально разное, как бы ни воспринимались происходившие здесь движения в деталях. Подготовленная уже Николаем Кузанским и Леонардо идея, что Земля – лишь звезда в ряду прочих звезд[50]50
Strunz F. Gesch. d. Naturwiss. im Mittelalter (1910). S. 90.
[Закрыть], способна вписаться в Птолемееву систему ничуть не хуже, чем в коперниканскую. Однако с принятием концепции небесного шара был обойден угрожавший чувственно-античному понятию границы принцип бесконечного. Не возникает даже мысли о безграничном мировом пространстве, которая, казалось бы, неизбежна уже здесь, между тем как соответствующее представление далось вавилонскому мышлению еще давно. Наоборот. В своем знаменитом трактате «О числе песчинок» (как явствует уже из самого названия, это было опровержение инфинитезимальных тенденций, хотя его вновь и вновь рассматривают в качестве первого шага на пути к современным интегральным методам) Архимед доказывает, что если заполнить это стереометрическое тело – а ничем иным Аристархов космос не является – атомами (песчинками), это приведет к очень большим, но не бесконечным результатам. Однако это как раз и есть отрицание всего, что означает анализ для нас. Вселенная нашей физики представляет собой энергичнейшее отрицание всякой материальной ограниченности, как это доказывают неизменно терпящие крушение и тем не менее заново навязываемые уму гипотезы о материальном, т. е. мыслимом опосредованно созерцаемым мировом эфире. Евдокс, Аполлоний и Архимед, без сомнения наиболее изощренные и отважные математики античности, полностью осуществили чисто оптический анализ ставшего на основе скульптурно-античного граничного значения, прибегая главным образом к циркулю и линейке. Они пользуются продуманными и труднодоступными для нас методами интегрального исчисления, в которых проглядывает лишь видимое сходство с методом определенного интеграла Лейбница, и применяют геометрические места точек и координаты, представляющие собой исключительно именованные размерные числа и отрезки, а не, как это было у Ферма и прежде всего Декарта, неименованные пространственные отношения, значения точек по отношению к их положению в пространстве. Сюда относится в первую очередь метод исчерпания Архимеда[51]51
Метод исчерпания Архимеда был подготовлен Евдоксом и использовался для вычисления объема пирамиды и конуса – «средство, к которому прибегали греки, чтобы обойти запрещенное понятие бесконечного» (Heiberg. Naturwiss. u. Math. im klass. Alt. (1912). S. 27).
[Закрыть] в его недавно открытом трактате, обращенном к Эратосфену, где он, например, обосновывает квадратуру сегмента параболы на исчислении вписанных прямых углов (больше уже не подобных многоугольников). Однако как раз остроумный, бесконечно запутанный способ, которым он, опираясь на некоторые геометрические идеи Платона, достигает результата, являет собой колоссальную противоположность этой интуиции и вроде бы на первый взгляд схожей интуиции Паскаля. Не существует (если всецело отвлечься от Риманова понятия интеграла) более резкой противоположности этому, чем то, с чем мы имеем дело в (к несчастью, называемых так и поныне) квадратурах, где «поверхность» дается как ограниченная функцией и уже даже речи нет о графических средствах. Нигде та и другая математика не подходит одна к другой так близко и нигде с большей отчетливостью не сказывается непреодолимый раскол между душами, выражениями которых они являются.
Чистые числа, сущность которых египтяне словно бы прятали, испытывая глубокую робость перед тайной, в кубическом стиле своей ранней архитектуры, являлись ключом к смыслу всего ставшего, косного, а значит, преходящего также и для греков. Каменное изваяние и научная система отрицают жизнь. Математическое число как формальный базовый принцип простирающегося мира, присутствующее здесь лишь исходя из человеческого бодрствования и только для него, особенностью каузальной необходимости связано со смертью, подобно тому как хронологическое число связано со становлением, с жизнью, с необходимостью судьбы. Эта связь строго математической формы с концом органического бытия, с появлением его неорганического остатка, трупа, все с большей отчетливостью выявляется в качестве источника всякого великого искусства. Развитие ранней орнаментики делается нам заметным уже на утвари и сосудах погребального культа. Числа – это символы преходящего. Косные формы отрицают жизнь. Формулы и законы распространяют по картине природы оцепенение. Числа умерщвляют. Это Матери «Фауста», царящие в величавом одиночестве «в лишенных образов мирах…
В предчувствии окончательной тайны Гёте соприкасается здесь с Платоном. Матери, заповедное – платоновские идеи – знаменуют возможности душевности, ее нерожденные формы, которые воплотились в зримом мире, с глубочайшей необходимостью упорядоченном на основе идеи этой душевности, в виде деятельной и созданной культуры, искусства, идей, государства, религии. На этом основывается родство числового мышления данной культуры с ее идеей мира, связь, которая возвышает это мышление над простым знанием и познанием до значения мировоззрения и приводит к тому, что существует столько же математик – числовых миров, – сколько имеется высших культур. Это делает понятным и даже необходимым тот факт, что величайшие мыслители в области математики, эти подлинные художники в царстве чисел, пришли к пониманию решающих математических проблем своих культур с помощью глубоких религиозных интуиций. Так следует представлять себе создание античного, аполлонического числа Пифагором, основателем религии. Это же прачувство руководило Николаем Кузанским, великим епископом Бриксенским, когда ок. 1450 г. он, отталкиваясь от наблюдения бесконечности Бога в природе, открыл основные характерные особенности исчисления бесконечно малых. Лейбниц, окончательно установивший свои методы и обозначения двумя столетиями позже, сам на основе чисто метафизических наблюдений божественного принципа и его связей с бесконечными протяжениями развил идеи analysis situs [топология (лат.)], эту, быть может, гениальнейшую интерпретацию чистого пространства, освобожденного от всего чувственного, богатые возможности которой были развиты лишь в XIX в. Грассманом в его «Учении о протяженности» и прежде всего Риманом, подлинным его творцом, в его символике двусторонних поверхностей, представляющих свойства уравнений. Кеплер же и Ньютон, оба от природы до крайности религиозные, так и сохранили незыблемой свою, подобную Платоновой, убежденность в том, что именно посредством чисел им удалось интуитивно постигнуть сущность божественного миропорядка.
7
Лишь Диофант, как приходится слышать вновь и вновь, освободил античную арифметику от ее привязанности к чувственному, расширил и повел дальше, алгебру же, как учение о неопределенных величинах, хотя и не создал, но представил на обозрение – внезапно, несомненно, как переработку уже имевшихся идей. Правда, то было не обогащение, но полнейшее преодоление античного мироощущения, и уже одно это должно было бы доказывать, что внутренне Диофант уже больше не принадлежал античной культуре. В нем деятельно сказывается новое ощущение числа или, скажем так, ощущение границы в отношении действительного, ставшего – уж больше не греческое, из чувственно-данных граничных значений которого явилась наряду с евклидовой геометрией осязаемых тел еще и пластика обнаженной скульптуры и деньги как монета. Нам неизвестны детали разработки этой новой математики. В «позднеантичной» математике Диофант стоит настолько особняком, что высказывались даже предположения о влиянии со стороны Индии. Однако вновь это окажется воздействием тех раннеарабских высших школ, чьи научные результаты, помимо догматических, исследованы пока еще так недостаточно. Под лежащим на поверхности намерением придерживаться Евклидова хода мыслей у Диофанта появляется новое чувство границы (я называю его магическим), вовсе не сознававшее своей противоположности тому античному представлению, к которому оно стремилось. Идея числа как величины оказывается не просто расширенной, но незаметно снятой. Что такое неопределенное число а и неименованное число 3 (оба они не являются ни величиной, ни мерой, ни отрезком) – на этот вопрос ни за что не мог бы ответить грек. Во всяком случае, в основании диофантовых наблюдений лежит новое, ставшее зримым в этих видах чисел ощущение границы. Само же применяемое у нас буквенное исчисление, в обличье которого сегодня предстает еще раз полностью переосмысленная алгебра, было введено Виета в 1591 г. вначале как ощутимая, но бессознательная оппозиция падкому на все античное счислению Возрождения.
Диофант жил ок. 250 г. по Р. X., т. е. в третьем столетии арабской культуры, чей исторический организм лежал до сих пор погребенным под поверхностными формами римской императорской эпохи и «Средневековья»[52]52
Ср. т. 2, гл. 3.
[Закрыть], между тем как к ней относится все то, что возникло посреди ландшафта будущего ислама. Именно тогда перед лицом нового пространственного ощущения купольных строений, мозаик и рельефов саркофагов в древнехристианско-сирийском стиле изгладились последние следы пластики античной статуи. Тогда снова появились архаическое искусство и строго геометрический орнамент. Именно тогда Диоклетиан довел до конца создание халифата теперь уже только по наружности Римской империи. 500 лет отделяют Диофанта от Евклида, Плотина – от Платона, первого схоластика только пробудившейся тогда культуры Дунса Скота – от последнего, замыкающего мыслителя культуры завершенной, Канта.
Здесь мы впервые сталкиваемся с неведомым прежде существованием тех великих индивидуумов, чье становление, рост и увядание образуют подлинную субстанцию всемирной истории, протекающей под тысячеликой, приводящей в замешательство поверхностью. Пришедшая к своему завершению в римской интеллигенции античная душевность, чье «тело» образует античная культура с ее произведениями, идеями, деяниями и развалинами, появилась на свет ок. 1100 г. до Р. X. среди ландшафта Эгейского моря. Зарождающаяся на Востоке начиная с Августа под покровом античной цивилизации арабская культура берет свое начало всецело из недр ландшафта между Арменией и Южной Аравией, Александрией и Ктесифоном. В качестве выражения этой новой души следует рассматривать почти все «позднеантичное» искусство императорского времени, все пронизанные юным жаром восточные культы, мандаитскую и манихейскую религии, христианство и неоплатонизм, императорские форумы в Риме и возведенный там Пантеон, эту самую раннюю из всех мечетей.
То, что в Александрии и Антиохии писали все еще по-гречески и полагали также, что по-гречески мыслят, имеет не большее значение, чем то обстоятельство, что наука Запада вплоть до Канта предпочитала латинский язык или что Карл Великий «возродил» Римскую империю.
У Диофанта число больше не есть мера и сущность скульптурных вещей. На мозаиках Равенны человек более не тело. Греческие обозначения незаметно утратили свое первоначальное содержание. Мы покидаем область аттической καλοκἀγαθία [физического и нравственного совершенства (греч.)], стоических ἀθαραξία и γαλήνη [невозмутимости и безмятежности (греч.)]. Правда, Диофанту еще неизвестны нуль и отрицательные числа, однако скульптурные единицы пифагорейских чисел ему уже неизвестны. С другой стороны, неопределенность неименованных арабских чисел представляет собой все же нечто совершенно иное, нежели закономерная изменчивость позднего западного числа, функции.
Магическая математика вполне последовательно и мощно развивалась (хотя подробности этого нам неизвестны) и после Диофанта (который уже сам предполагает определенное развитие) вплоть до своего завершения в эпоху Аббасидов в IX в., как это доказывается уровнем знаний у Аль-Хорезми и Аль-Зиджи. Что означает рядом с евклидовой геометрией аттическая скульптура (тот же самый язык форм в ином обличье), что означает рядом с пространственным анализом полифонический стиль в инструментальной музыке, то же самое означает рядом с этой алгеброй магическое искусство мозаики, все с большим богатством развивавшиеся в империи Сасанидов, а позже в Византии арабески с их чувственно-бесплотным улетучиванием (Verschweben) органических формальных мотивов и горельефы константиновского стиля с неопределенной глубокой темнотой фона, оставленного между свободно изваянными фигурами. Как алгебра соотносится с античной арифметикой и западным анализом, так и купольная церковь соотносится с дорическим храмом и готическим собором.
Не то чтобы Диофант был великим математиком. То, из-за чего чаще всего вспоминают его имя, содержится не в его трактатах, а то, что в них содержится, вне всякого сомнения, не является всецело его собственностью. Его обязанное случаю значение заключается в том, что – насколько нам известно – у него первого с совершенной несомненностью заявило о себе новое ощущение числа. Сравнивая его с мастерами, завершавшими математику, такими как Аполлоний и Архимед в античной математике и соответствующие им Гаусс, Коши и Риман – в математике западной, мы находим у Диофанта, прежде всего в его формульном языке, нечто примитивное, что до сих пор охотно приписывалось позднеантичному упадку. Впоследствии мы это поймем и научимся ценить – по образцу той переоценки до сих пор прямо-таки презиравшегося якобы позднеантичного искусства в продвигающееся пока на ощупь самовыражение только еще пробуждающегося раннеарабского мироощущения. Такое же архаическое, примитивное и гадательное впечатление производит и математика Николая Оресма, епископа Лизье (1323–1382), впервые на Западе введшего свободную разновидность координат и даже степени с дробными показателями, которые предполагают – еще неясное, но несомненно наличное – ощущение числа, которое всецело неантично, но в то же время не походит и на арабское. Рядом с Диофантом вспоминаются раннехристианские саркофаги из римских собраний, а рядом с Оресмом – готические задрапированные статуи из немецких соборов, и нечто родственное можно заметить также и в ходе математических рассуждений, которые представляют у того и другого одну и ту же раннюю ступень абстрактного понимания. Стереометрическое ощущение границы в последней отточенности и изяществе какого-нибудь Архимеда, что предполагает интеллигенцию мировой столицы, уже давно исчезло без следа. Повсюду в раннеарабском мире господствует смутный, тоскливый, мистический настрой, аттических ясности и свободы нет и в помине. Здесь живут земнородные люди раннего ландшафта, а не такие обитатели крупных городов, как Евклид и Д’Аламбер[53]53
Во II в. по Р. X. Александрия уже не была мировой столицей, а превратилась в оставшуюся от эпохи античной цивилизации массу домов, в которых обитало наделенное примитивными ощущениями, иное в душевном плане население. Ср. т. 2, с. 143–144.
[Закрыть]. Глубокие и усложненные построения античного мышления здесь больше не понимали, но располагали спутанными и новыми, отчетливая духовно-городская формулировка которых будет получена еще не скоро. Вот готическое состояние всякой юной культуры, через которое сама античность прошла еще в раннедорическую эпоху, от которой не сохранилось ничего, за исключением керамики дипилонского стиля. Лишь в Багдаде в IX и X вв. зрелые мастера, не уступавшие Платону и Гауссу, провели до конца и завершили концепции ранней эпохи Диофанта.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.