Электронная библиотека » Надежда Ефремова » » онлайн чтение - страница 12


  • Текст добавлен: 25 февраля 2014, 20:19


Автор книги: Надежда Ефремова


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 12 (всего у книги 28 страниц)

Шрифт:
- 100% +

Таким образом, использование IRT приводит к созданию тестов, обладающих несколькими достоинствами:

• моделирование структуры теста по задачам тестирования;

• объективные оценки параметра, характеризующего подготовленности испытуемых;

• устойчивость, обусловленная относительной инвариантностью оценок независимо от трудности заданий теста при достаточном количестве испытуемых;

• объективность значений параметров трудности заданий, не зависящих от свойств выборки испытуемых, выполнявших тест;

• измерение значений оценок испытуемых и трудности заданий теста на единой шкале логитов, имеющей свойства интервальной шкалы;

• возможность с достаточной точностью предсказать вероятность правильного выполнения заданий теста испытуемыми любой выборки до предъявления теста;

• возможность оценить эффективность различных по трудности заданий для измерения данного значения латентного параметра знаний испытуемых;

• наличие дифференцированной ошибки измерений;

• сохранение сопоставимости результатов при проведении тестирования многих групп испытуемых различными вариантами одного и того же теста.

На рис. 10 представлены параметры и некоторые характеристики отдельных заданий тестов по математике.

Задания взяты из банка тестовых заданий Центра тестирования, используемых при критериально–ориентированной интерпретации результатов аттестационного тестирования. Данный рисунок является примером того, как можно визуализировать параметры самих тестовых заданий для последующего отбора и включения их в банк тестовых заданий, а затем в конструируемый или совершенствуемый тест. Результаты параметризации приведенных двух заданий указывают на их разные уровни трудности и значения дифференцирующих способностей.

По характеристической кривой задания 1 половина учащихся, выполнивших задание, приходится на –1,1 логита, а выполнивших задание 2 – на –1,7 логита. Этим же значениям логитов соответ



Рис. 10. Характеристики тестовых заданий

ствуют максимумы кривых эффективности заданий. Вид характеристической кривой (крутизна) указывает на дифференцирующую способность задания, т.е. большая крутизна характеристической кривой соответствует большей дифференцирующей способности задания. Задание 1 перекрывает на логистической шкале диапазон примерно от–2,5 до +0,5 логитов с дифференцирующей способностью ?= 1,3, а задание 2 – от–2,5 до–0,5 логитов с 0 =2. Работая с банком таким образом калиброванных заданий, можно их подбором перекрыть любой заранее запланированный интервал на шкале логитов.

В последнее время в обиход входит такой показатель, как информативность теста, связанный с использованием моделей IRT. Здесь обращается внимание на два ключевых понятия: число заданий теста и уровень подготовленности испытуемого. В данном случае информативность сопрягается с оптимальностью, если по трудности заданий тест соответствует уровню подготовленности учащегося или студента.

Поэтому для эффективности измерений уровня подготовленности испытуемых и повышения информативности контроля требуется набор тестов различной сложности, оцененных по шкале логитов. Показатель информативности впервые введен А. Бирн–баумом [231]. Считается, что чем больше трудность теста соответствует подготовленности испытуемого, тем больше информации можно получить, соответственно, выше эффективность такого тестирования. Согласно В.С. Аванесову, эффективное тестирование – это обязательно индивидуализированное измерение уровня подготовки каждого испытуемого с помощью теста, оптимального по трудности и минимального по количеству заданий [4].

В теории и практике тестирования качество тестов, так же как и тестовых заданий, оценивается по таким критериям, как надежность, валидность, дифференцирующая способность и др.

Оценка параметров трудности заданий и направления улучшения теста показаны на примере параметризации одного из абитуриентских тестов по математике, использованного при централизованном тестировании, и демонстрируют способ визуализации метрических возможностей исследуемого теста. Приведенный ниже пример указывает на возможности визуализации характеристик самого теста, пределы и возможности его использования, оценки недостатков и информацию о том, как на основе имеющегося банка калиброванных тестовых заданий поэтапно провести совершенствовать такой тест как педагогическое измерительное средство.

Параметризация теста выполняется с помощью современных математических моделей. Характеристические кривые трудности тестовых заданий, полученных таким образом, представлены на шкале логитов (рис. 11). Эмпирические данные тестирования большого числа учащихся (выборка составляла более 200 человек), выполнявших один и тот же вариант теста, обработаны с помощью программных средств [71], в основу которых положена однопараметрическая модель Г. Раша. Это позволило визуализировать структуру трудности теста. Вверху сетки рисунка обозначены номера тестовых заданий, по вертикали – доля выполненных заданий, по горизонтали – уровни трудности заданий теста на шкале логитов в диапазоне от–7 до +7. Видно, что характеристические кривые всех 20 заданий исследуемого нами теста достаточно равномерно распределены вдоль логистической шкалы. Неравномерность видна только на небольших участках в интервалах от–0,78 до–0,5 и от–0,27 до 0,07 логита. Для его совершенствования два промежутка неравномерности на логистической шкале можно заполнить либо корректировкой заданий под номерами 2, 15 и 3, 11, либо заменой их из банка тестовых заданий на другие, более соответствующие диапазону требуемой трудности.



Рис. 11. Характеристические кривые заданий абитуриентского теста по матем

Проверка теста на содержательную валидность показывает, что тест достаточно хорошо отображает учебную программу, но его можно еще улучшить, если произвести замену двух заданий 3 и 16 или 4 и 17 на задания из других тем. Коэффициент корреляции заданий с индивидуальной суммой баллов находился в пределах от 0,37 до 0,64, что позволяет считать такой тест и его задания достаточно валидными, хорошо дифференцирующими уровни знаний разных испытуемых. Информационная кривая этого теста симметрична относительно 0 и позволяет использовать тест для проверки испытуемых с уровнем знаний в диапазоне от–2,5 до +2,5 логита, соответствующем требованиям нормативно–ориентированной интерпретации результатов. В соответствии с требованиями абитуриентского тестирования такой тест можно считать качественным.

Распределение индивидуальных тестовых баллов испытуемых на 100–балльной шкале оказалось близким к нормальному с максимумом в середине оси сертификационных баллов, стандартное отклонение соответствовало значению 4,9. Трудность заданий теста находилась в пределах от–0,78 до 1 логита, среднее значение трудности всего теста составило 0,1 логита.

В случае использования готового теста с известными параметрами трудности его заданий задача сводится только к оцениванию параметра подготовленности тестируемого. Поскольку у всех обучающихся уровень подготовленности и темп обучения разные, то для развития мотивационно–побудительных стимулов следует подбирать уровень трудности заданий, соответствующий зоне актуального развития обучающегося, а сами задания – посильные для самостоятельного выполнения. В тесте необходимо предусматривать также наличие заданий более трудных, соответствующих зоне потенциального развития учащихся, выполнение которых возможно в сотрудничестве с педагогом. Включение легких заданий и заведомо трудных в процесс обучения неэффективно. Использование в учебном процессе тестов с заданиями известной трудности позволяет активизировать работу всех обучающихся на основе дифференцированного подхода к обучению.

Основываясь на рассмотренных выше основных положениях теории IRT, можно отметить, что современные технологии тестирования способствуют развитию технологий индивидуализированного обучения. Однако если при традиционных способах обучения учитель самостоятельно определяет зоны развития обучающихся интуитивно во взаимодействии с каждым отдельным учащимся путем опроса или контрольной работы, то технология использования тестов в учебном процессе позволяет с заданной точностью не только учителю, но и каждому обучающемуся определять зону своего развития и работать на грани своих возможностей. Это открывает новые перспективы в организации образовательного процесса на принципах дифференцированного обучения, перестройки взаимоотношений между обучающимися и обучаемыми на основе сотрудничества, доверия и творческой самостоятельности обучающихся. При таком подходе контроль из средства оценки и принуждения к обучению становится средством активизации познавательной деятельности и учебной активности, технологией самообучения и саморазвития. В этой связи возникает проблема методологического характера, связанная с обоснованием оптимальности использования тестов в учебном процессе не только при подготовке к итоговой аттестации выпускников, но и на ранних стадиях обучения. В этой связи в центре внимания находится вопрос об использовании тестовых заданий известной трудности для самообучения школьников, при аттестации и самоаттестации образовательных учреждений.

3.4. Этапы и алгоритмы создания контрольных измерительных материалов

Создание качественного теста – процесс длительный, трудоемкий, дорогостоящий. На подготовку качественного итогового теста профессиональные разработчики тратят 1,5—2 года. Как правило, такие тесты создаются творческими коллективами преподавателей вузов и учителей школ под руководством ведущих научно–исследовательских центров, профессионально занимающихся вопросами оценки качества образования и подготовки специалистов, имеющих определенный опыт в этом направлении, а также финансовую поддержку. Высокое мастерство разработчиков современных тестов базируется на наличии у разработчиков достаточно глубоких специальных знаний по теории конструирования тестовых материалов, наличии технического и программного обеспечения, опыте практической деятельности, навыках апробации и параметризации тестов, использовании итерационных этапов совершенствования теста.

Использование именно таких тестов в образовательной практике особенно эффективно. Однако имеющиеся в методических сборниках тесты не всегда позволяют педагогам решать многообразные, быстро меняющиеся целевые установки проверки качества подготовленности обучающихся в ходе учебного процесса. Кроме того, требуется решение ряда сопутствующих вопросов, связанных с подготовкой заданий в тестовой форме, для активизации учебно–познавательной деятельности обучающихся. Для системного использования тестового контроля в учебном процессе одних лишь тестов, построенных на моделях IRT, недостаточно, поэтому педагоги вынуждены разрабатывать и использовать так называемые авторские тесты. Несмотря на значительные трудовые затраты, необходимые на этапе подготовки тестовых материалов, грамотно составленные контрольно–оценочные средства обеспечат педагогам эффективность работы в последующем. Именно поэтому тестовая культура педагогов должна выстраиваться в русле алгоритмических подходов к созданию контрольно–оценочных средств.

Как создать педагогический измеритель, обеспечивающий научно обоснованный контроль, какие знания и умения следует формировать, развивать и оценивать у обучаемых, какую систему показателей и критериев оценки качества учебных достижений можно использовать при тестовом контроле, как проводить шкалирование результатов? Эти и другие вопросы сегодня волнуют педагогов, особенно в условиях изменения контрольно–оценочной системы в отечественном образовании.

Следует отметить, что для создания теста требуется многократное повторение ряда процедур для совершенствования структуры и содержания педагогического измерителя (рис. 12).

Алгоритм разработки теста (рис. 13) следует рассматривать «как предписание обязательной последовательности определенных действий, направленных на достижение поставленной цели» [145].

В процессе моделирования теста выделяют несколько последовательных шагов.

1. Определение цели конструирования теста и выбор подходов к его разработке (нормативно–ориентированный или критериально–ориентированный), планирование содержания теста.

2. Получение первоначальных представлений об ожидаемом положении на оси измеряемой переменной результатов уровня подготовки данной выборки испытуемых (из анализа предварительной экспресс–диагностики приблизительно задаются наиболее вероятные пределы переменной измерения на шкале логитов для данной выборки).

3. Выбор планируемой точности измерений. При этом желательно задать стандартную ошибку для всех значений измеряемой переменной в выделенной области на шкале логитов.

4. Задание формы целевой информационной функции теста на выделенном интервале шкалы логитов с использованием методов математического моделирования теста. Для нормативно–ориентированных тестов она может иметь вид кривой нормаль



Рис. 12. Последовательность этапов создания теста

ного распределения. Для критериально–ориентированнь ж тестов целевая информационная функция на оси логитов будет иметь вид треугольника с вершиной в точке, соответствующей пороговому баллу, что позволит отделять испытуемых, не прошедших критерий выполнения теста, от прошедших его.

5. Выбор планируемого вида распределения уровней трудности заданий теста: прямоугольное (когда все значения параметра трудности распределены равномерно, а каждое значение встречается только один раз), нормальное (значения параметра трудности распределены по нормальному закону) и др.

6. Отбор заданий, параметры трудности которых равномерно заполняют область под целевой информационной функцией теста. При этом предполагается наличие банка тестовых заданий с устойчивыми оценками параметров, уже полученных методами



Рис. 13. Алгоритм разработки педагогического теста

IRT. На практике предпочтение применению математических моделей IRT отдается тогда, когда имеется ряд жестких требований к качеству выборки аттестуемых (итоговая аттестация, вступительные испытания, отбор специалистов и др.). Однако эта задача требует применения программных средств и организации компьютерного процесса оценки трудности тестовых заданий. Необходимо также умения анализировать и интерпретировать полученные данные на основе IRT. В настоящее время для этих целей используются готовые программные продукты.

7. Добавление заданий при вычислении количества информации в различных точках оси измеряемой переменной для каждого из вновь создаваемых вариантов теста.

8. Отбор заданий из банка ведется до тех пор, пока информационная функция теста не приблизится в приемлемой степени к теоретически заданной информационной функции модели теста. Отбор тестовых заданий должен быть ориентирован не только на трудность, но и на содержательные элементы, проверка которых планируется в спецификации теста.

Процедура совершенствования тестов такова, что обеспечивает постоянное обновление состава тестовых заданий путем их выбраковки и замены по результатам очередных тестовых испытаний. Это обусловлено тем, что одной из целей тестирования является объективизация оценки уровня подготовленности выпускников на основе единых требований к средствам и методам контроля. Выполнение этой последовательности шагов предполагает, что предварительно имеются банк параметризированных (калиброванных) заданий и разработанная спецификация, обеспечивающая содержательную валидность теста, согласно требованиям которой содержание тестов должно полностью соответствовать целям проверки: вступительные экзамены, олимпиада, текущий или рубежный контроль, аттестация образовательного учреждения и др. В первом случае задания должны быть достаточно трудными, в последнем – легкими. Однако при одинаковой трудности заданий теряется понятие теста как педагогического измерителя – задания должны быть нарастающей сложности и достаточной дифференцирующей способности.

Методика разработки педагогических измерителей в зависимости от поставленных целей должна обеспечивать достижение ряда качественных характеристик теста: содержательной валидно–сти, высокой надежности, требуемой трудности, максимальной дифференцирующей способности в широкой области на оси измеряемой переменной уровня подготовки тестируемых.

Сообразно выстроенному подходу планируется структура теста. При этом заданную структуру соблюдают во всех вариантах.

Успех создания теста во многом зависит от правильности выделения укрупненных единиц знаний по учебной дисциплине, этим же определяется и длина теста, так как число заданий должно ограничиваться разумными пределами, но в то же время желательно максимально отобразить содержание контролируемого учебного материала.

Для тестов нормативно–ориентированной интерпретации соблюдается несколько важных условий, учитываемых при проведении апробации:

• нормативная (апробационная) группа должна адекватно отображать генеральную совокупность учащихся;

• статистические показатели тестовых заданий (уровень трудности, дифференцирующая способность, коэффициент корреляции) обязательны при отборе заданий для включения их в тест;

• тестовые баллы должны иметь значительную дисперсию по значениям трудности;

• распределение тестовых баллов должно иметь вид, близкий к нормальному;

• индивидуальные результаты испытуемых должны сопоставляться со статистической нормой, полученной в процессе параметризации теста.

К числу необходимый условий подготовки критериально–ориентированных тестов относятся:

• четкое, детализированное определение области контролируемого содержания для более репрезентативного подбора заданий;

• отличие от нормального распределения тестовых баллов и их низкая вариативность;

• заранее установленные критериальные баллы, отражающие требования стандартов к освоению содержания предметных областей;

• достаточно слабая дифференцирующая способность тестов вблизи критериального балла.

После уточнения целей тестирования проводится уточнение спецификации на разработку теста, которая позволяет задать структуру теста в виде таблицы, отражающей номера тем, изучаемое содержание, число заданий по вопросам темы, сквозную нумерацию заданий по вопросам. Спецификация позволяет установить, охватывает ли тест (субтест) репрезентативную выборку конкретных умений, навыков и знаний и свободно ли его выполнение от влияния посторонних факторов.

Насколько спецификация может быть информативна и важна, видно из примера требований к спецификации на разработку нормативно–ориентированных тестов абитуриентского тестирования ( www.ege.ru ):

1. Цель создания теста, абитуриентское тестирование для итоговой аттестации и отбора абитуриентов в вузы, аттестационное тестирование для засчитывания результатов в общеобразовательных учреждениях.

2. Исходные документы – временные требования к обязательному минимуму содержания (с указанием года и места издания), программы вступительных испытаний (с указанием года и места издания), перечень используемых разработчиком базовых и вариативных учебников (с анализом их на соответствие базовым программам).

3. Число заданий в каждом варианте теста.

4. Число вариантов теста.

5. Тип заданий с указанием количества и процентного содержания заданий каждой формы.

6. Число ответов к заданиям закрытой формы (с выбором одного правильного ответа либо нескольких правильных ответов).

7. Рекомендуемый автором вес заданий каждой формы при подсчете баллов тестирования, рекомендации по засчитыванию вариативных заданий.

8. Рекомендуемое время выполнения теста и среднее время выполнения заданий разных форм.

9. Структура теста по разделам (содержательным линиям) и видам деятельности испытуемых (знаниям, умениям и навыкам) с подробной расшифровкой. Анализ значимости тем (большим количеством заданий должны быть представлены темы, изучение которых завершено или наиболее важно для дальнейшего обучения).

10. Методика формирования параллельных вариантов тестов.

11. Рекомендации автора по срокам апробации.

12. Общая характеристика охвата тестом требований программы и рекомендации по дополнительным формам проверки в случае необходимости.

13. Степень стандартизации теста и возможность его компьютерной обработки, требования к программным продуктам, используемым для обработки результатов тестирования, выведения тестового балла участникам тестирования, составления статистического отчета и визуализации его содержания.

Именно последнее качество теста определяет эффективность воздействия результатов тестирования на различные звенья системы образования. Важным моментом также является подготовка валидного теста, для чего по содержанию учебной дисциплины проводится отбор тем, разделов и вопросов, значимых для проверки усвоения знаний, который, по существу, является отбором основных укрупненных единиц учебного материала. На основе этого составляется спецификация будущего теста (приложение), где отражается, какие знания, умения и навыки должен проверить и измерить тест, задается его структура (табл. 1).

Содержание теста должно однозначно отвечать требованию определенности содержания данной дисциплины и логичности процедуры измерения. Анализ содержания дисциплины необходим также для выделения предметной принадлежности (предметной чистоты) при построении тестовых заданий, которые бы по возможности не включали знания из других дисциплин (кроме интегративных тестов). Так как содержание теста зависит от целей тестирования и от объема контролируемого учебного материала, то соответственно этому меняется тип теста (гомогенный, гетерогенный, интегративный, адаптивный и др.). Таким образом, тест создается для решения вполне определенных задач, а потому и валиден (пригоден) только при использовании для решения именно этих, а не каких–либо других задач. Необходимо также иметь в виду, что на результаты тестирования существенное влияние оказывает срок проведения тестирования, он должен соответствовать этапу обучения.

Таблица 1


Основные принципы отбора содержания: значимость и научная достоверность учебного материала; соответствие содержания уровню современного состояния науки по изучаемой дисциплине; репрезентативность элементов содержания контролируемого материала; вариативность; системность; комплексность и сбалансированность элементов знания; взаимосвязь содержания и формы тестовых заданий. В работах С.И.Архангельского обращается внимание на два начала в содержании теста: научное и учебное [12]. Научное отображает процесс развития науки и ее применимости, а учебное – принципы формирования системы знаний. При этом следует помнить, что форма тестовых заданий выступает как способ организации, упорядочения и отражения содержания дисциплины в содержании теста [2]. Как уже отмечалось ранее, в условиях быстро изменяющегося мира и глобализации знаний зачастую используются обобщенные понятия, модели и представления, поэтому проблемы семантики в образовании и контроле выходят на одно из первых мест, а выделение укрупненных и обобщенных единиц контролируемого содержания является при этом одной из важнейших задач.

Сформулируем принципы анализа содержания дисциплины и выделения контролируемых единиц для включения их в содержание теста:

• взаимосвязь тестового контроля и обучения необходима, так как обучение без последующего тестирования неэффективно, потому что только систематический контроль показывает, в каком направлении нужно корректировать дальнейшее обучение и развитие обучающегося;

• научность и эффективность создания педагогических измерителей на основе требований современной тестологии: включения в содержание тестовых заданий только истинных знаний и исключения спорных (важно при контроле, при обучении спорные знания являются основанием для проблемного построения занятий), сопоставления содержания дисциплины с современным состоянием науки, проверки результатов тестирования на надежность и валидность, использования стандартизированных тестовых материалов для проверки уровня учебных достижений на тех стадиях обучения, для которых эти материалы подготовлены разработчиками;

• систематичность и всесторонность, обусловленные научно обоснованной периодичностью контроля, согласованием целей и результатов его различных видов – текущего, рубежного, тематического и итогового;

• значимость предполагает отбор наиболее важных, ключевых знаний по содержательным элементам и базовым основаниям, необходимым для изучения других дисциплин;

• репрезентативность предписывает необходимость включения в содержание теста научно достоверных сведений с учетом полноты и достаточности объема контролируемого материала;

• вариативность содержания предполагает постоянное изменение, переконструирование и совершенствование содержания тестов в соответствии с развитием науки и изменением образовательных стандартов;

• комплексность и сбалансированность содержания теста – отображение основных тем учебного курса, сочетание теоретических, исторических, фактологических и практических знаний;

• взаимосвязь содержания и формы как органическое соединение содержания заданий с наиболее приемлемой формой их представления (закрытая, открытая, со свободным конструированием ответа, эссе или другая), вне тестовых форм его заданий о тесте вообще говорить нельзя;

• возрастающая трудность контролируемых знаний в пределах тематической завершенности отдельных частей теста или субтеста;

• оптимальность числа заданий теста диктует необходимость жесткого отбора их содержания (так как в один тест невозможно вложить для контроля все содержание учебной дисциплины, то отбирается только то основное, что учащиеся или студенты должны четко усвоить к моменту контроля);

• объективность нацеливает на необходимость подготовки тестов, одинаковых по уровню трудности для всех испытуемых, устранения субъективизма и предвзятости;

• справедливость и гласность означают одинаково благожелательное отношение ко всем испытуемым, открытость всех этапов тестирования, своевременность ознакомления с результатами испытания.

К перечисленным выше принципам следует добавить принцип логической определенности содержания задания, согласно которому задание является логически определенным, если большинство знающих учащихся находят правильный ответ, а незнающие не могут выбрать (угадать) правильный ответ на задание.

Для задач педагогического измерения, отбора содержания учебной дисциплины и формирования оптимального числа единиц знания имеются классификации контролируемых знаний и способностей, разработанные Б. Блумом [232] и Р. Гагне (R. Gagne) [236]:

1) знание названий и имен;

2) знание смысла названий и имен;

3) фактуальные знания;

4) знание определений;

5) сравнительные и сопоставительные знания;

6) классификационные знания;

7) знание противоположностей, противоречий, синонимичных и антонимичных объектов;

8) ассоциативные знания;

9) причинные знания и знания причинно–следственных отношений, оснований и принципов классификации;

10) процессуальные, алгоритмические, процедурные знания;

11) технологические знания;

12) обобщенные, системные знания;

13) оценочные знания;

14) вероятностные знания;

15) абстрактные знания;

16) структурные знания;

17) методологические знания.

Следующим шагом при создании теста является выбор на основе использования математического аппарата IRT модели теста, обеспечивающей планируемую точность определения уровня учебных достижений испытуемых и корректные оценки параметров тестовых заданий. Под моделированием теста понимают наполнение созданной модели тестовыми заданиями согласно предварительно заданной информационной функции, отражающей цели тестирования.

Важным фактором, влияющим на надежность, следует считать длину теста, которая должна, по оценкам отечественных и зарубежных исследователей, составлять не менее 40—50 заданий. Приходится учитывать, что по мере роста длины теста увеличивается утомляемость испытуемых и снижается их мотивация к выполнению заданий теста, что в совокупности вместо ожидаемого уменьшения ошибки измерения приводит к ее росту. Поэтому при выборе оптимальной длины теста обычно учитывают группу факторов, способствующих успешному выполнению теста, высокой дисперсии тестовых баллов и нормальности их распределения: форму тестовых заданий, время тестирования в соответствии с физиологическими возможностями испытуемых и другими ограничениями организационного характера.

Согласно данным международных сравнительных исследований (IAEP, TIMSS) [101], принято следующее распределение времени на выполнение заданий различного типа: выполнение задания с выбором ответа в среднем требует до минуты, выполнение задания с кратким ответом – в среднем до 2 минут, а задания с полным ответом – до 5 минут. По международным нормам письменная работа на два урока может включать до 50 заданий с выбором ответа, что позволит при прочих условиях обеспечить приемлемую надежность теста. Нахождение длины теста является одним из методов повышения его надежности.

При создании теста вначале идет отбор контролируемого содержания и подбор заданий требуемой трудности и логической правильности содержания, проверяется их эффективность, оценивается возможность приведения их к технологичному виду для автоматизированной обработки. После отбора дидактических единиц контролируемого материала, вариативных по элементам содержания и трудности, задания формулируют в утвердительной форме, требующей в конце предложения поставить неизвестное.

По мнению большинства тестологов, именно тип представления контролируемого содержания учебного материала в тестовом задании определяет степень педагогического воздействия на испытуемого в процессе контроля, раскрывает требования к ответу, задает внутреннюю логику и педагогический замысел контроля [126, 195]. В этой связи для подготовки тестовых заданий используется ряд логических и методических оснований: противоречие; противоположность ответов; однородность формулировок, когда требуется отбирать варианты ответов, относящиеся к одному роду, виду или явлению; способы кумуляции, относящихся к одному роду, виду или явлению; способы кумуляции, когда каждый последующий ответ вбирает в себя содержание предыдущего; фасетность, позволяющая создавать сразу несколько вариантов на базе одного и того же задания; импликация, способствующая выяснению понимания причинно–следственных отношений в процессах и явлениях; сочетание этих и других приемов в одном и том же задании.

В соответствии с современными требованиями для более эффективного измерения знаний в одном тесте одновременно используются несколько различных форм тестовых заданий: с выбором ответа, со свободным ответом, экспериментальные задания, задания–эссе и др. Считается, что в тестовом задании данной формы должно быть 4—5 вариантов ответов, тогда вероятность угадывания правильного ответа может быть ничтожно малой. Ее можно рассчитать по биноминальному закону:


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации