Электронная библиотека » Сергей Ёлкин » » онлайн чтение - страница 16


  • Текст добавлен: 14 января 2014, 00:07


Автор книги: Сергей Ёлкин


Жанр: Личностный рост, Книги по психологии


Возрастные ограничения: +18

сообщить о неприемлемом содержимом

Текущая страница: 16 (всего у книги 24 страниц)

Шрифт:
- 100% +
Какие бывают противоречия?

Наверное, многих не устроит такая упрощённая классификация противоречий: в понятии или в суждении. Тогда можно предложить парадоксальную классификацию! Нет такой области, где нет противоречий, поэтому можно классифицировать, называя противоречие по имени области из которой оно взято. Например, административное противоречие, организационное противоречие, физическое противоречие, математическое противоречие, химическое противоречие, техническое, экономическое, биологическое, эстетическое и т. д.

И каждое противоречие ждет, что кто-то его разрешит. Что значит «разрешит»? Это значит, найдётся такое решение проблемы, в котором противоречивые стороны как бы исчезнут, «скроются с глаз долой», вроде как в случае с утюгом.

Но, можно биться об заклад, найдется немало читателей, которые захотят поспорить. А как же непротиворечивость арифметики или математического анализа? Увы, и в них есть противоречия.

Конечно, на сегодня эти дисциплины сформулированы с такой тщательностью, что нам остается довольствоваться лишь противоречием в понятиях!

Так понятие числа внутренне противоречиво, поскольку всякое число одновременно является обозначением, как количества, так и номера единицы в ряду чисел. Например, число «пять»: это и пять единиц и пятая единица в ряду целых чисел, то есть и одно, и многое. А в математическом анализе главное противоречие упрятано в понятии бесконечно малой величины, которая всё время стремится к нулю, но никогда его не достигает, причем это стремление происходит вне времени, что само по себе совершенно непонятно.

Здесь, по опыту фактического автора этого раздела С.В. Ёлкина, «…читатели должны разделиться на примерно две равные группы. Одни могут принять такую позицию, а другие нет. С этим противоречием, противоречием во взглядах на противоречие, пока поделать ничего нельзя. Честно признаюсь, несмотря на весь мой опыт, я его разрешить не могу, и никто не может, вот уже несколько тысяч лет».

Но есть одно предложение – набраться терпения! Даже тот, кто с нами не согласен, всё равно приобретёт ценный опыт.

ВОПРОС № 88

Иван Грозный во время подготовки взятия Казани принял решение построить вблизи города опорную крепость. Он купил на берегу Волги в месте впадения в неё Свияги участок земли «не больше, чем можно охватить воловьей шкурой». Физическое противоречие: участок маленький, так как шкура мала, участок должен быть большим, чтобы можно было построить крепость. Как бы Вы решили эту задачу?

ВОПРОС № 89

В 1867 году был выдан патент на железобетон. Какое физическое противоречие разрешило данное изобретение?


Теперь снова обратимся к классику отечественного изобретательства Г.С. Альтшуллеру: «Техническое противоречие: “Одно свойство системы противоречит другому её свойству”. Или: “Улучшение одной части системы приводит к ухудшению другой её части”. Иногда, как мы видели, конфликтуют не части системы, а система и подсистема или система и надсистема. Но суть во всех случаях едина: выигрыш в чем-то одном приводит к проигрышу в другом. Например, повышение надежности приводит к увеличению веса. Сформулировать техническое противоречие – значит перейти от ситуации к задаче. Поэтому правильный переход от административного противоречия к техническому – это существенный сдвиг в решении задачи» (Альтшуллер, Селюцкий, 1980, С. 47).

ВОПРОС № 90

Если без изменения сельскохозяйственных орудий увеличить скорость обработки почвы в 1,5–2 раза, например, увеличив мощность двигателя трактора, то резко увеличится производительность труда. Что ухудшится?


Естественный язык не только средство формулировки парадоксов и противоречий, оказывается, он сам наполнен парадоксами и противоречиями. Да и как может быть иначе, если корень противоречия гнездится в понятии?

Изящный логический парадокс сформулирован в 1908 году немецким математиком Куртом Греллингом. Разберём определение автологичного (самоприменимого) имени прилагательного. Большинство прилагательных не обладает качеством, которое оно обозначает. Скажем, слово «красный» само по себе не имеет красного цвета, слово «ароматный» не пахнет. Зато прилагательное «русский» – действительно русского языкового корня, «трёхсложный» – трёхсложно, «абстрактный» – абстрактно и т. д.

Каждое из этих прилагательных, по терминологии Греллинга, автологично, то есть имеет силу применительно к самому себе, обладая тем же качеством, которым оно наделяет другие понятия. Иное дело – гетерологичные, то есть несамоприменимые прилагательные. Скажем слово «бесконечный» имеет конечные размеры, «конкретный» – по смыслу абстрактно. Парадокс Греллинга возникает из вопроса: к какому классу отнести прилагательное «несамоприменимый»?

Самоприменимо оно или же нет? Допустим, что прилагательное «несамоприменимый» несамоприменимо. Тогда оно (согласно приведенному определению Греллинга) самоприменимо! А раз оно самоприменимо, то на каком же основании оно названо нами «несамоприменимым»?! (Ивин, 1998).

На этом, пожалуй, завершим поверхностное знакомство с парадоксами и противоречиями, ибо даже при всей поверхностности оно может занять целую книгу. А у нас другие цели – активизация инженерно-технического мышления по всем фронтам.

Истина где-то рядом, но копать надо глубже!

Копай глубже! Именно так принуждала Интуиция в одном бородатом анекдоте незадачливого ковбоя к действию. Напомним, что наш герой, как и положено ему, скакал по степи. Вдруг лошадь остановилась, и внутренний голос сказал ему: «Копай!» Ковбой начал копать, а внутренний голос добавляет: «Копай глубже!» Ковбой копает, голос: «Глубже!» И вдруг лопата ударила о какой-то предмет. Ковбой выкопал сундук с сокровищами. А голос: «Вот это я пошутила…»

В нашем случае шутки в сторону, теперь будем анализировать парадоксы. Кто-нибудь спросит: «А зачем их анализировать?» Ну как же!

Ну как же понять, откуда они берутся, куда деваются, что полезного из этого можно для себя получить? Ведь не ради только одного любопытства читаете вы в наш прагматичный век эту книгу!

Вернёмся к «парадоксу лжеца». Если вы, уважаемый читатель, сформулируете некое утверждение, докажете его истинность, а затем из этого выведете его же ложность, то получите противоречие[84]84
  Немало парадоксов имеет такой вид, ибо разница между парадоксом и противоречием в понимании публики весьма размыта.


[Закрыть]
. Чтобы получился парадокс, в данном случае необходимо организовать замкнутый круг. Конечно это не обязательное условие, но очень желательное. Ибо хождение по замкнутому кругу кого угодно может свести с ума! Именно поэтому, приняв некоторое утверждение истинным и исходя из его истинности, приходят к тому, что оно ложно, а затем, приняв его ложность, доказывают из этой посылки его истинность. (Не верите, что можете сами придумать парадокс? А зря!)

Но как же бороться с парадоксами? Может быть, запретить такой ход действий – выводить из истинности ложность, и дело с концом, нет парадокса – нет проблемы? Как бы ни так! Это дорого обойдется не только математике, физике, технике, но и всей цивилизации!

Действие высказывания на само высказывание, называемое в математике самоприменимостью, играет важную роль в очень многих случаях. И если лишить математику, этот универсальный, как мы говорили, язык науки такого важного приема, то её здание может начать рассыпаться на глазах, а потом и здание всех естественнонаучных дисциплин. Ведь свойство самоприменимости[85]85
  Выше мы называли его «рекурсией» или «рекурсивностью».


[Закрыть]
используется не только для логического вывода. Например, умножение числа самого на себя это тоже самоприменимость. Как же нам остаться без «дважды два»? Тем не менее, введение некоторых ограничений в определения или действия, является распространенным приёмом борьбы с противоречиями. И иногда это бывает вполне оправдано.

В Средние века схоласты потратили немало сил в попытках разрешить «Парадокс лжеца», пока, в конце концов, не признали его «неразрешимым предложением». После это парадокс был на время забыт[86]86
  Для более подробного знакомства с «королем логических парадоксов» рекомендуем книги А.А. Ивина в частности, «Современная логика» (Фрязино: Век 2, 2009).


[Закрыть]
. Как нам кажется, в наше время логика, наконец, достигла такого уровня развития, чтобы снова попытаться вскрыть проблемы, лежащие в основании парадокса. А может, и нет!?

Давайте рассмотрим, что думали о «лжеце» выдающиеся мыслители прошлого. Самая простая мысль, восходящая к греку Хрисиппу, отказаться в анализе высказываний от пары «истина» и «ложь» и добавить к ним «осмысленно» и «бессмысленно». Таким образом, все высказывания можно отнести к одному из этих четырёх типов. Однако такая классификация не является удовлетворительной, потому что среди осмысленных высказываний могут быть как истинные, так и ложные. Отсюда следует, что высказывания надо сначала делить на осмысленные и бессмысленные, а уже затем все осмысленные делить на истинные и ложные.

В Средние века уже не раз нами упомянутый Уильям Оккам считал, что утверждение «всякое высказывание ложно» бессмысленно. Но на каком основании? Бессмысленными мы привыкли считать утверждения, не имеющие содержания, например, «если идёт дождь, то паровоз», или, иначе, не имеющие отношения к реальности.

Выражение «я лгу» (или «всякое высказывание ложно») имеет отношение к реальности и имеет содержание. Может быть, проблемой является способность выражения говорить о самом себе? Но и таких выражений предостаточно! Например, «это предложение написано по-русски» или «в этом предложении шесть слов». Первое является самоприменимым истинным, а второе самоприменимым ложным высказыванием. К тому же они оба вполне осмысленны.

И, наконец, вопрос, который ставит точку в наших сомнениях относительно позиции Оккама: «Если высказывание может говорить о самом себе (самоприменимо), то, что может запретить ему говорить об одном из своих свойств, например, о его истинности?»

С Оккамом (1280–1347) спорил его собственный ученик, другой из вестный философ и логик Жан Буридан (1300–1358)[87]87
  Буридан известен парадоксом, который именуется его честь «Буридановым ослом». Суть его в том, что осёл, поставленный между двумя одинаковыми охапками сена, не в состоянии выбрать одну из них и должен умереть от голода в двух шагах от пищи.


[Закрыть]
. Он считал высказывание «всякое высказывание ложно» ложным, так как оно является сокращенной формой выражения утверждающего как свою истинность, так и ложность, а такие выражения, по его мнению, ложны. Некоторые до сих пор с ним согласны.

ВОПРОС № 91

Придумайте в качестве тренировки три высказывания: бессмысленное предложение, самоприменимое ложное и самоприменимое истинное.

ВОПРОС № 92

Докажите противоречивость отрицания «Парадокса лжеца»: «Всякое высказывание истинно».


В прошлом веке выдающийся польский логик Альфред Тарский отметил, что язык, на котором мы говорим (естественный язык), применяется как для описания окружающего мира, так и для описания самого языка. Такие языки А. Тарский назвал «семантически замкнутыми». В семантически замкнутых языках, по его мнению, неизбежно возникают противоречия. Это, так сказать, плата за мощь и выразительность. Чтобы избежать парадокса, необходимо разделить языки. На первом – следует говорить о материальном мире, на втором – нужно говорить о первом языке и его свойствах, на третьем – говорить о втором языке, ну и так далее. Возникает бесконечная иерархия языков. Подобная ситуация имеет место в искусственных языках, например, предназначенных для программирования, которые описывают свою заданную предметную область, но о них самих и их свойствах высказывания строятся на естественном языке.

С одной стороны это восхитительное открытие, ставящее А.Тарского в один ряд с Великими, а с другой стороны ситуация с построением бесконечной иерархии непротиворечивых языков чем-то очень напоминает нам Ахилла и черепаху…

Долгое время считалось, что предложение А. Тарского – единственный путь разрешения «Парадокса лжеца», но сейчас мнение изменилось.

В 1920 году ещё один польский математик Ян Лукасевич предложил многозначные логики, то есть такие, в которых кроме значений «истинно» и «ложно» появляются и другие значения высказываний. Так, первой версией многозначной логики была трёхзначная логика, в которой появились значения «ошибочно» или «неизвестно». Вслед за этим появилось множество различных логик: бесконечнозначные, конечнозначные (чёткие и нечёткие), вероятностные. В них пришлось отказаться от закона «исключения третьего» и даже от «закона противоречия».

Здесь нам самое время познакомиться с этими законами. Их три. Совсем недавно, лет эдак шестьдесят назад, каждый школьник знал эти законы, а сейчас и не всякий выпускник ВУЗа с ними знаком!

Дело в том, что раньше логику преподавали в школе, а теперь только в ВУЗах, в лучшем случае, в инженерно-технических (в рамках курса дискретной математики) да в некоторых юридических. И у кого не было «дискретки», тот понятия не имеет о трёх законах логики. Проверено!

Первый закон тождества, согласно которому в процессе рассуждения каждое осмысленное выражение (понятие, суждение) должно употребляться в одном и том же смысле. Предпосылкой его выполнимости является возможность различения и отождествления тех объектов, о которых идёт речь в данном рассуждении, то есть «мысль о предмете должна иметь определённое, устойчивое содержание, сколько бы раз она ни повторялась. Важнейшее свойство мышления – его определённость – выражается данным логическим законом» (Кириллов, Старченко, 1982).

Второй закон противоречия (он же закон непротиворечия) гласит, что два несовместимых (противоречащих или же противоположных) суждения не могут быть одновременно истинными. По крайней мере одно из них необходимо ложно. Закон противоречия является фундаментальным логическим законом, на котором построена вся современная математика. Здесь очень важную роль имеет слово «одновременно», так как любой предмет может изменяться и в разные моменты времени, так же, как и в разных местах пространства и в разных отношениях, он может не совпадать сам с собой. Так, если сказать, что «река мелкая» и «река глубокая», то это будет противоречием, до тех пор, пока не дано отношение. То, по отношению к кому или чему она мелкая или глубокая: для взрослого она мелкая, а для маленького ребёнка глубокая.

Третий закон исключённого третьего («tertium non datur», то есть «третьего не дано») – закон классической логики: из двух высказываний – «А» или «не А» – одно обязательно является истинным, то есть два суждения, одно из которых является отрицанием другого, не могут быть одновременно ложными (либо истинными), одно из них необходимо истинно, а другое ложно.

ВОПРОС № 93

В одном учебнике «Концепции современного естествознания» из главы, посвящённой Общей теории относительности Альберта Эйнштейна, следует, что, по современным научным представлениям, пространство, время и материя не существуют друг без друга: без одного нет другого. А в главе, рассказывающей о происхождении Вселенной, говорится о том, что она появилась примерно 20 млрд. лет назад в результате Большого взрыва, во время которого родилась материя, заполнившая собой всё пространство. Нет ли здесь противоречия?

ВОПРОС № 94

Докажите, что известное высказывание Антона Павловича Чехова: «В детстве у меня не было детства» не содержит противоречия.


Вернемся к трёхзначной логике. Предложим логику, имеющую три значения: истинно, ложно, неистинно-неложно (или истинно-и-ложно). Есть ли примеры утверждений, которым можно приписать значение «неистинно-неложно»? Элементарно! Производители растительного масла часто пишут на бутылках, что «продукт не содержит холестерина». Что является то ли лживой истиной, то ли истинной ложью, то ли ещё чем-то. Комментируем. Холестерин является продуктом жизнедеятельности животного организма (печени) и представляет собою соединение в одной молекуле жироподобного и белковоподобного фрагментов. То есть в растительном масле никогда не было и не могло быть холестерина. Но на потребителей надпись действует магически!

ВОПРОС № 95

Придумайте утверждение не истинное и не ложное.


А вот что сам Г.В.Ф. Гегель пишет об этом пресловутом «Парадоксе лжеца»: «Одно опровержение носит название лжеца; в этом опровержении ставится вопрос: “если какой-нибудь человек говорит, что он лжет, то лжет ли он, или говорит правду?” Требуется простой ответ, ибо простое, которым исключается другое, считается истинным. Если ответят: он говорит правду, то это противоречит содержанию его речи, ибо он ведь сознается, что он лжет. Если же будут утверждать, что он лжет, то на это утверждение нужно возразить, что его признание является, наоборот, правдой. Он, следовательно, лжет и вместе с тем и не лжет, простого же ответа на заданный вопрос никак нельзя дать, ибо здесь положено соединение двух противоположностей – истины и лжи, – и их непосредственное противоречие; это и выступало снова и снова в различных формах и занимало умы людей во все эпохи. Хризипп, знаменитый стоик, написал об этом вопросе шесть книг. Другой – Филет Косский – умер от чахотки, которую от нажил благодаря чрезмерным трудам, положенным им на разрешение этой двусмысленности. Нечто совершенно похожее мы видим в наши дни у людей, истощающихся в усилиях найти квадратуру круга, вопрос, который почти стал бессмертным. Они ищут простого отношения между тем, что несоизмеримо друг с другом, то есть они также впадают в ошибку требовать простого ответа, тогда как содержание, с которым они имеют дело, противоречиво».

Мы вечно забываем, что нет на самом деле простых и однозначных отношений – ни между людьми, ни между техническими системами, также и между истиной и ложью их нет. В любой правде есть ложь и наоборот. Помните, как в детском фильме «Отроки во Вселенной» робот-исполнитель сгорел, пытаясь ответить на вопрос ребят «Кто остался на трубе?» Логика машинная и человеческая – это «две большие разницы»[88]88
  Высказывание принадлежит диалектику и диасофу Виталию Ковалёву.


[Закрыть]
.

«Лжец» уже одним только фактом своего существования поднял множество сложнейших вопросов и тем самым явился катализатором для генерации нового знания. Однако приходится признать, что разрешение его без каких-либо усовершенствований логики или языка не представляется возможным и, вероятно, ещё не все открытия на этом пути сделаны.

Поспорим? Решения парадокса «Еватл и Протагор»

Конспективно повторим разбор, данный А.А. Ивиным в книге «Логика», который будет особо полезен для работников юридического профиля:

«Протагор посвятил спору с Еватлом сочинение “Тяжба о плате”, которое, к сожалению, не дошло до нашего времени. Готфрид Вильгельм Лейбниц (1646–1716), будучи юристом по образованию, посвятил этому спору свою докторскую диссертацию “Исследование о запутанных казусах в праве”. Великий ученый пытался доказать, на примере тяжбы Протагора и Еватла, что все реальные случаи, даже самые запутанные, должны находить правильное разрешение на основе здравого смысла. По мнению Лейбница, суд должен отказать Протагору в возбуждении дела за несвоевременностью предъявления иска, но оставить, однако, за ним право потребовать уплаты денег позже, а именно после первого выигранного Еватлом процесса.

Рассмотрим некоторые другие решения данного парадокса.

Решение суда должно иметь большую силу, чем частная договоренность двух лиц. На это можно ответить, что не будь этой договоренности, какой бы незначительной она ни казалась, не было бы ни суда, ни его решения. Ведь суд должен вынести свое решение именно по её поводу и на её основе.

Обращались также к общему принципу, что всякий труд, а значит, и труд Протагора, должен быть оплачен. Но ведь известно, что этот принцип всегда имел исключения, тем более в рабовладельческом обществе. К тому же он просто неприложим к конкретной ситуации спора: ведь Протагор, гарантируя высокий уровень обучения, сам отказывался принимать плату в случае неудачи своего ученика в первом процессе.

И Протагор, и Еватл – оба правы частично, и ни один из них в целом. Каждый из них учитывает только половину возможностей, выгодную для себя. Полное или всестороннее рассмотрение открывает четыре возможности, из которых только половина выгодна для одного из спорящих. Какая из этих возможностей реализуется, это решит не логика, а жизнь. Если приговор судей будет иметь большую силу, чем договор, Еватл должен будет платить, только если проиграет процесс, т. е. в силу решения суда. Если же частная договоренность будет ставится выше, чем решение судей, то Протагор получит плату только в случае проигрыша процесса Еватлу, то есть в силу договора с Протагором.

Эта апелляция к жизни окончательно всё запутывает. Чем, если не логикой, могут руководствоваться судьи в условиях, когда все относящиеся к делу обстоятельства совершенно ясны? И что это будет за руководство, если Протагор, претендующий на оплату через суд, добьется её, лишь проиграв процесс?

Впрочем, и решение Лейбница, кажущееся вначале убедительным, не на много лучше, чем неясное противопоставление логики и жизни. В сущности, Лейбниц предлагает задним числом заменить формулировку договора и оговорить, что первым с участием Еватла судебным процессом, исход которого решит вопрос об оплате, не должен быть суд по иску Протагора. Мысль эта глубокая, но не имеющая отношения к конкретному суду. Если бы в исходной договоренности была такая оговорка, нужды в судебном разбирательстве вообще не возникло бы.

Если под решением данного затруднения понимать ответ на вопрос, должен Еватл уплатить Протагору или нет, то все эти, как и все другие мыслимые решения, являются, конечно, несостоятельными. Они представляют собой не более чем уход от существа спора, являются, так сказать, софистическими уловками и хитростями в безвыходной и неразрешимой ситуации. Ибо ни здравый смысл, ни какие-то общие принципы, касающиеся социальных отношений, не способны разрешить спор.

Невозможно выполнить вместе договор в его первоначальной форме и решение суда, каким бы последнее ни было. Для доказательства этого достаточно простых средств логики. С помощью этих же средств можно также показать, что договор, несмотря на его вполне невинный внешний вид, внутренне противоречив. Он требует реализации логически невозможного положения: Еватл должен одновременно и уплатить за обучение, и вместе с тем не платить» (Ивин, 1998, С. 202–204).

Таким образом, в парадоксе мы сталкиваемся с так называемым дистантным противоречием, которое неочевидно в начале рассуждения и поэтому такого рода проблемы часто можно встретить в жизни. Ведь никому и в голову не приходит в самом начале текста, что участники договора могут встретиться в суде! То есть и здесь имеет место самоприменимость!

Явное же противоречие называется контактным и редко встречается в мышлении и языке.

Природа же противоречия «Протагор и Еватл» лежит в том, что с самого начала разрешено рассуждение при абсолютном равенстве двух независимых оснований, одно из которых первоначально скрыто (плата по суду), хотя и является совершенно очевидной возможностью.

И всё-таки приятно, что, в отличие от парадокса «лжеца», в этом случае можно исключить подобные парадоксы в будущем, ничего не меняя ни в судебной практике, ни в языке, ни в мышлении. Достаточно грамотно написать договор.

ВОПРОС № 96

Миссионер очутился у людоедов и попал как раз к обеду. Дикари разрешают ему выбрать, в каком виде его съедят. Для этого миссионер должен произнести какое-либо высказывание, с условием, что, если оно окажется истинным, его сварят, а если оно окажется ложным, его зажарят. Что следует сказать миссионеру?


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации