Электронная библиотека » Джон Дрейер » » онлайн чтение - страница 23


  • Текст добавлен: 30 марта 2018, 20:00


Автор книги: Джон Дрейер


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 23 (всего у книги 25 страниц)

Шрифт:
- 100% +

Глава 15
Кеплер

В январе 1599 года Местлин, услышав от своего бывшего ученика Иоганна Кеплера о трудностях, с которыми столкнулся Тихо Браге при определении эксцентриситетов планет, написал в ответ, что Браге оставил только тень от того, что раньше считалось астрономической наукой, и что теперь известно лишь одно: человечество ничего не знает об астрономии.

Великий астроном-практик действительно во всей полноте показал недостатки предыдущих теорий, но в то же время настолько увеличил точность наблюдений за положениями небесных тел, что создал возможность для создания удовлетворительной теории и, что еще лучше, для определения фактических орбит в пространстве, по которым движутся все планеты, чего до той поры не удавалось достигнуть никому. Благодаря Тихо Браге материал для изучения был готов, был готов и математик, который смог им воспользоваться; и это был тот самый человек, которому Местлин адресовал те отчаянные слова и который уже выступил с весьма многообещающим дебютом в научном мире.

Кеплер родился 27 декабря 1571 года в Вюртемберге и с 1589 года учился в Тюбингенском университете, где через Местлина познакомился с учением Коперника и убедился, что оно представляет собой истинную систему мироздания. Первоначально он собирался стать священником, но, так как лютеранская церковь или, скорее, чрезвычайная узость мышления, преобладавшая среди ее служителей, не пришлась ему по вкусу, в 1594 году он поступил на должность «математика провинции» в Штирии и с тех пор посвятил жизнь науке. Уже в 1596 году свет увидела его первая крупная работа, которую он, чувствуя, что это всего лишь предтеча других, еще более великих трудов, озаглавил Prodromus dissertationum cosmogra-phicarum continens mysterium cosmographicum, «Предвестник космологических сочинений, содержащий тайны мироздания». Хотя книга не раскрывает тайн устройства планетных орбит, как от души надеялся ее автор, она тем не менее содержит первое великое открытие Кеплера. Причины отказа от птолемеевской системы в пользу коперниковской излагаются в первой главе с изумительной ясностью. На двух весьма наглядных чертежах он показывает, что птолемеевские эпициклы внешних планет с Земли видны точно под тем же самым углом, что и орбита Земли с точки на орбите каждой внешней планеты, а далее он демонстрирует, что это объясняет, почему у Марса такой огромный эпицикл, хотя у Юпитера эпицикл намного меньше, а у Сатурна и того меньше, притом что их эксцентры гораздо больше, чем у Марса. Птолемеевская система не могла объяснить причин ни такого причудливого устройства, ни того странного факта, что три планеты во время противостояния с Солнцем должны находиться на перигеях своих эпициклов. Также она не могла ни показать, почему периоды внутренних планет на их эксцентрах обязательно должны быть равны периоду Солнца, ни привести причин, почему Солнце и Луна никогда не совершают попятного движения. Все эти факты изумительно просто объясняются учением о годовом движении Земли, причем Коперник к тому же смог объяснить прецессию, не привлекая «той чудовищно громадной беззвездной девятой сферы альфонсинцев». Поистине невозможно понять, как можно было после прочтения этой главы оставаться приверженцем системы Птолемея.

Чего добивался Кеплер всю свою жизнь, так это найти тот закон, который связывает воедино тела Солнечной системы, применительно к расположению их орбит в пространстве и их движений, и он надеялся, что овладение этим законом позволит рассчитать все детали для любой планеты при условии, что известны элементы одной орбиты. Первая порция фактов содержится в Mysterium cosmographicum, «Тайне мироздания», которая рассматривает проблему нахождения закона, связывающего относительные расстояния планет. В предисловии он говорит читателю, как пришел к этому открытию, которое он полагает великим. Кеплер был убежден, что должна существовать какая-то причина, почему количество, расстояния и скорости движущихся небесных тел имеют именно те значения, которые следуют из наблюдений; и надежда найти ее основывалась на том, что неподвижные тела – Солнце, звезды и промежуточное пространство – соответствуют Богу Отцу, Богу Сыну и Святому Духу. Он пробовал установить, не может ли быть так, что одна сфера в два, три, четыре раза больше, чем другая; он пробовал поместить планету между Марсом и Юпитером и еще одну между Меркурием и Венерой (допустим, если она слишком мала, чтобы ее можно было увидеть), а когда ему даже не удалось найти простого отношения между расстояниями от Солнца, он попытался найти какую-нибудь тригонометрическую функцию, определяющую это отношение. Случайность в конце концов позволила ему найти закон расстояний в геометрии. Во время лекции (9/19 июля 1595 года) Кеплер описывал циклы великих соединений планет и то, как соединения переходят из одного «тритона» зодиака в другой, и схема, которую он начертил для иллюстрации, напомнила ему о пяти правильных геометрических телах, и его осенило, что именно им, а не плоским фигурам подобает описывать отношения между космическими сферами (inter solidos orbes). Между шестью планетными сферами есть пять интервалов, и, приняв приведенные Коперником значения полудиаметров сфер, Кеплер обнаружил, что между сферами в следующем порядке помещаются пять геометрических тел:


Сатурн,

куб,

Юпитер,

тетраэдр,

Марс,

додекаэдр,

Земля,

икосаэдр,

Венера,

октаэдр,

Меркурий.


Сфера Сатурна описывает куб, в который вписана сфера Юпитера; та, в свою очередь, описывает тетраэдр, и так далее. Но так как орбиты планет являются не концентрическими, а эксцентрическими кругами, возникла необходимость (у арабов и Пурбаха) придать каждой сфере толщину, достаточную для вмещения эксцентрической орбиты между внутренней и внешней поверхностью. В Средние века, как мы уже видели, существовала гипотеза, что внешняя поверхность одной сферы касается внутренней поверхности другой, ближайшей к ней, потому что система Птолемея не давала ни малейшего представления об относительных расстояниях планет. Однако система Коперника не позволяет произвольно выбрать размеры сфер, это заданные величины, оставляющие достаточно места между сферами. Поэтому встал вопрос: насколько размеры сфер, производные из расстояний и эксцентриситетов по Копернику, укладываются в вычисленные таким образом размеры пяти правильных тел, так чтобы внутренняя поверхность сферы совпадала со сферой, описанной вокруг следующего ниже тела, а внешняя поверхность – со сферой, вписанной в тело, следующее выше? В нижеследующей таблице показаны результаты вычислений Кеплера[335]335
  Надо помнить, что для Кеплера эти сферы были всего лишь математическими понятиями, а не реально существующими телами.


[Закрыть]
:



Второе значение для Меркурия – это полудиаметр окружности, вписанной в квадрат, образованный четырьмя средними сторонами октаэдра. Если толщину земной сферы увеличить за счет включения лунной орбиты, цифры в последнем столбце становятся: 847 для Венеры и 801 для Земли. Совпадение между вычисленными значениями и значениями по Копернику вполне удовлетворительное, за исключением Юпитера, «чему не следует удивляться, учитывая огромное расстояние». Кеплер добавляет, что легко понять, насколько велика была бы разница, если бы схема противоречила природе небес, то есть если бы Бог в момент творения не имел в виду эти пропорции, ведь такое не может быть случайным. У всего должна быть причина, и Кеплер готов объяснить, почему пять правильных тел расположены именно в таком порядке. Они относятся к двум видам: первичному (куб, тетраэдр, додекаэдр) и вторичному (икосаэдр и октаэдр), которые во многом отличаются друг от друга. Земля, будучи жилищем человека, созданного по образу Божьему, достойна быть помещенной между двумя этими видами тел; куб является внешним, потому что он самый важный, так как единственный образован собственным основанием и своими углами указывает на три пространственных измерения. Для порядка других тел он приводит множество причин, одну фантастичнее другой. Но нам придется пропустить все эти любопытные детали, как и девятую главу, в которой из природы пяти геометрических тел выводятся астрологические свойства пяти планет.

Хотя кеплеровская разгадка «тайны мироздания» оказалась неверной, для него было вполне естественно начать эту работу с поисков каких-либо отношений между расстояниями планет от Солнца, и довольно странно, что он не наткнулся на последовательность, ошибочно называемую правилом Тициуса—Боде. Быть может, он смог бы ее найти, если бы сразу же не увлекся пятью телами и всю свою жизнь оставался верен своей первой небесной любви[336]336
  В 1621 году он опубликовал второе издание книги без исправлений, но с примечаниями к каждой главе.


[Закрыть]
.

Совпадение между теорией и числовыми данными Коперника было неидеальным, и тогда перед Кеплером встал вопрос, как его улучшить. Он напоминает читателю, что труд Коперника не космографический, а астрономический, то есть для него не имело особого значения, если он слегка заблуждался относительно истинного соотношения сфер, при условии что с помощью одних только наблюдений он мог найти цифры, подходящие для вычисления движений и расположения планет. Поэтому ничто не мешает кому-то исправить его цифры, если только он не станет вносить больших или вообще любых изменений в уравнения времени. Что главным образом интересовало Кеплера в предпринятом им исследовании, это эксцентриситеты, от которых зависела толщина сфер. Тогда его озарило, что, хотя Коперник, вне всякого сомнения, поместил Солнце в центре Вселенной, все же «в качестве вспомогательного средства для расчета и чтобы не запутывать читателя слишком далеким отходом от Птолемея» он относил все не к центру Солнца, а к центру орбиты Земли. Следовательно, через эту точку в теории Коперника проходят не только линии узлов каждой планеты, но и линии апсид, так что эксцентриситеты отсчитываются от точки, расстояние которой от Солнца определяет размер эксцентриситета Земли. То есть следовать Копернику в этом вопросе означает не придавать Земле эксцентриситета и ее сфере – толщины, так что центры граней додекаэдра и вершины икосаэдра падают на ту же сферическую поверхность, уменьшая размеры системы более, чем позволяют наблюдения. Кеплер связался с Местлином, который охотно взялся за расчет изменений, которые повлечет за собой установление Солнца в качестве центра в данных Коперника. Естественно, что изменения оказались весьма значительными; так, было установлено, что долгота афелия Венеры отличается примерно на три знака зодиака (90°) от апогея, в то время как новое расстояние Сатурна отличается от старого на всю величину эксцентриситета Земли.

Затем Кеплер приводит таблицу годовых параллаксов планет в афелии, сначала (1) рассчитанных по его теории, исключая лунную орбиту из земной сферы, затем (2) согласно расстояниям от Солнца (Коперник) и, наконец, (3) рассчитанных по его теории с увеличением сферы Земли за счет лунной орбиты. Различия оказались весьма существенными[337]337
  Например, для Марса 40°9′, 37°22′, 37″52′ и для Венеры 49°36′, 47°51′, 45°33′. В своей книге о Марсе Кеплер упоминает, что цифры в третьем предположении, если вдвое уменьшить эксцентриситет Земли, весьма близко соответствуют действительности.


[Закрыть]
, и положения планет, рассчитанные по новой теории, значительно отличаются от рассчитанных по «Прусским таблицам». Но это не заставляет Кеплера усомниться в истинности его теории. В мастерски написанной второй главе он рассматривает недостатки теории Коперника и «Прусских таблиц», которые часто на несколько градусов отличались от наблюдаемых положений планет, и, в частности, показывает, что эксцентриситеты, указанные Коперником, не имеют ценности. Коперник полагал, что эксцентриситеты Марса и Венеры изменились, тогда как, если отнести их к Солнцу, оказалось, что они не меняются. Местлин обратил внимание Кеплера на слова Коперника, о которых сообщил Ретик, которые показывали, насколько глубоко великий мастер осознавал недостаточность данных, на которых ему приходилось основывать свои построения, и он объяснял ее тремя причинами: во-первых, некоторые наблюдения древних приведены недобросовестно и изменены так, чтобы укладываться в их теории; во-вторых, ошибки в расположении звезд у древних могут достигать 10′; и, в-третьих, не сохранилось сравнительно недавних наблюдений, подобных тем, которыми располагал Птолемей. Поэтому Кеплер спокойно ждал, когда астрономы вынесут свое суждение.

Наконец, Кеплер отважился на попытку найти «пропорции движений относительно орбит». Так как периоды обращения непропорциональны расстояниям до Солнца, мы должны либо предположить, что «animae motrices»[338]338
  Души-двигатели; силы, движущие планетами. (Примеч. пер.)


[Закрыть]
, более удаленные от Солнца, слабее, либо что есть только одна anima motrix в центре всех орбит, а именно Солнце, которое более сильно действует на тела, расположенные ближе, нежели на расположенные дальше. Он отдает предпочтение второму допущению. Он полагает вероятным, что эта сила обратно пропорциональна кругу, по которому должна распределяться, и уменьшается по мере увеличения расстояния. В то же время период увеличивается с длиной окружности, «следовательно, большее расстояние от Солнца действует дважды на увеличение периода и, наоборот, половина увеличения периода пропорциональна увеличению расстояния». Например, период Меркурия составляет 88 дней, а Венеры – 224⅔ дня, так что половина увеличения периода равна 68⅓; следовательно, 88 : 156⅓ : : расстояние Меркурия : расстояние Венеры. Начиная от Сатурна, Кеплер находит следующие отношения расстояний:



«Мы приблизились к истине», – говорит Кеплер. Но пройдет еще двадцать два года, прежде чем он найдет истинный закон. Интересно отметить, что еще в 1596 году он распознал, что движением планет должна управлять или вызывать его сила, исходящая от Солнца, и что уже тогда он сделал ошибочное предположение, от которого так и не отказался, что действие этой силы обратно пропорционально расстоянию от Солнца.

Хотя главная идея «Тайны мироздания» была ошибочной, невозможно передать, насколько мы обязаны этому труду, так как он представляет собой первый шаг к очищению системы Коперника от пережитков птолемеевской теории, за которую она по-прежнему цеплялась. Величайшим желанием Кеплера теперь стало получить более точные значения средних расстояний и эксцентриситетов, чтобы доказать абсолютную истинность его теории, и единственным местом в мире, где он мог получить такую информацию, была обсерватория Тихо Браге. Большое расстояние, отделявшее Грац от Дании, могло помешать Кеплеру отправиться к Браге на его остров, но, к счастью для научного прогресса, Браге, поссорившись со многими влиятельными людьми в Дании и, может быть, боясь, что его великое сокровище наблюдений могут забрать у него под тем предлогом, что они были сделаны за государственный счет и потому принадлежат государству, уехал из Дании в 1597 году и два года спустя поселился в Богемии. Вынужденный покинуть Штирию из-за религиозных гонений, Кеплер приехал в Прагу в январе 1600 года и в следующем году был назначен сотрудником к Браге, а в октябре 1601 года стал его преемником на посту императорского математика. Хотя вплоть до августа 1601 года ему приходилось часто отвлекаться от работу из-за поездок в Штирию по личным делам и болезни, вскоре он добился хорошего прогресса в изучении движений самой беспокойной планеты.

Когда Кеплер в феврале 1600 года присоединился к Браге в замке Бенатки, Марс недавно вышел из противостояния с Солнцем, была подготовлена таблица противостояний, наблюдавшихся с 1580 года, и разработана теория, которая очень хорошо отображала долготы в противостоянии, а остальные ошибки составили не более 2′[339]339
  Полудиаметр большего эпицикла был 0,1638, меньшего – 0,0378, или в птолемеевской теории эксцентриситет экванта равна 0,2016.


[Закрыть]
. Но теория не могла отобразить широты и годовые параллаксы, и Кеплер стал задумываться, не оказалась ли она в конце концов ошибочной, даже если и представляла долготу в противостоянии с такой точностью. Несколько частностей в теории вызывали возражения у Кеплера. В первую очередь Браге, как и Коперник, определял движение планет относительно среднего положения Солнца. Кеплер отверг этот принцип в своей книге, так как он предполагает движение вокруг математической точки, а не вокруг огромного тела Солнца. Но этот принцип вызывает возражение и с практической точки зрения. Из наблюдений во время противостояния было вычислено время, когда Марс на 180° отходит от средней долготы Солнца, и, значит, движение Солнца (или, вернее, Земли) следовало считать известной величиной. Поэтому в какой-то степени большое преимущество использования противостояний (что наблюдаемые долготы равны гелиоцентрическим долготам) сходило на нет, и «первое неравенство» не определялось независимо от «второго», вызванного движением Земли или, в системе Браге, Солнца. В случае Марса долгота в «среднем противостоянии» могла отличаться более чем на 5° от долготы в фактическом противостоянии – весьма серьезное расхождение. В конце концов Кеплеру удалось убедить Браге и Лонгомонтана принять видимое положение Солнца для теории Луны, тогда как его собственное длительное исследование Марса все больше и больше внушало ему необходимость определять движение планеты относительно истинного положения Солнца. Другое возражение Кеплера против теории Марса Браге состояло в том, что годовая орбита Солнца предполагалась простым эксцентрическим кругом (как в теории Птолемея и Коперника) с эксцентриситетом равным 0,035 84. В «Тайне мироздания» Кеплер высказался в том смысле, что когда-нибудь будет установлено, что все планеты, в том числе Земля, движутся совершенно одинаковым образом. Теперь же он указал Браге на то, что видимое попеременное сокращение и расширение годовой орбиты Земли (или Солнца), которое установил Браге в 1591 году, вызвано тем простым фактом, что движение на этой орбите неоднородно по отношению к центру, но по отношению к точке экванта – точно такое, как в планетных теориях Птолемея. В данном случае легко увидеть, что годовой параллакс, или разница между гелиоцентрической и геоцентрической долготой планеты, будет меняться в зависимости от ее положения относительно линии апсид Земли. Если Марс находится на продолжении этой линии и наблюдается с двух точек на равных расстояниях по обе стороны от линии, то параллаксы будут равны, независимо от того, где на этой линии расположена точка экванта. Но если Марс находится примерно в 90° от апсид Земли и наблюдается из апсид или с двух точек в средних аномалиях а и 180° – а, параллаксы не будут равны, если только точка экванта не находится в центре орбиты, но будут отличаться в большей или меньшей степени в зависимости от того, ближе или дальше Земля от апсид. Браге, видимо, подозревал, что это и есть истинное объяснение странного явления, но, так как он хотел, чтобы его книга (Progymnasmata) все-таки увидела свет без очередных задержек, он не ввел в нее бисекцию солнечного эксцентриситета, и Кеплер лишь упоминает об этом в приложении, которым закончил книгу уже после смерти Тихо Браге.

Тихо Браге умер 24 октября 1601 года и на смертном одре попросил Кеплера продолжить реформу теоретической астрономии, которую он обдумывал, на основе его геогелиоцентрической системы, а не коперниковской. Хотя реформаторские усилия Кеплера в конечном итоге привели лишь к окончательному утверждению системы Коперника, все же он добросовестно продемонстрировал теорию Марса в соответствии с тремя системами: Птолемея, Браге и Коперника, помня последнее желание великого астронома-практика, чье удивительное предвидение обеспечило неисчерпаемый кладезь наблюдений, сделанных во всех мыслимых условиях. Еще до смерти Браге Кеплер добился существенного прогресса в работе о Марсе[340]340
  В письме Маджини от 1 июля 1601 года он описал применение четырех противостояний для нахождения апсид.


[Закрыть]
, а четыре года спустя она была закончена. С этого момента мы будем следить за его исследованиями в том порядке, в котором он сам их зафиксировал.

Для начала показав, что из наблюдений Браге нельзя сделать никаких определенных выводов относительно горизонтального параллакса Марса, за исключением того, что он не превышает 4′, а вероятно, гораздо меньше, Кеплер далее находит те элементы орбиты, которые можно определить отдельно. Долготу восходящего узла он установил, перерыв бумаги Браге в поисках наблюдений планеты в моменты, когда у нее не было широты, и затем рассчитал ее гелиоцентрическую долготу по теории Браге. Шесть наблюдений такого рода дали ему долготу восходящего узла, равную 46⅓°. Далее он тремя методами определил наклон орбиты к плоскости эклиптики. Во-первых, выбрав наблюдения Марса в 90° от узлов, сделанные в момент, когда расстояние от Земли до Марса равно расстоянию от Марса до Солнца, в то время как наблюдаемая широта равна наклону. Во-вторых, взяв планету в тот момент, когда она находится в квадратуре к Солнцу, а Земля и Солнце находятся на линии узлов; наблюдаемая широта при этом опять-таки равна наклону. В-третьих, по методу Коперника, воспользовавшись широтами, наблюдаемыми в момент противостояния. Первый и третий способ предполагают, что отношение размеров орбит известно, тогда как второй метод совершенно не зависит от какой-либо прежней теории, и Кеплеру удалось найти четыре наблюдения, удовлетворяющие условиям второго способа. Этими способами он нашел наклон равным 1°50′ и доказал, что плоскость орбиты проходит через Солнце и что наклон является постоянным, так что колебания орбиты, до той поры считавшиеся необходимыми, в действительности не существуют. Именно тогда, провозгласив это важное открытие, он и сказал те слова, что Коперник сам не осознавал открытых им богатств.

Следующим и самым важным шагом было определение положения линии апсид (долготы афелия), эксцентриситета и средней аномалии в ту или иную дату. Для определения этих трех величин Птолемею требовались только три противостояния, так как он исходил из бисекции эксцентриситета (на рисунке CA = CS), но, так как Кеплер твердо решил, следуя за Коперником и Браге, не делать подобных допущений, ему пришлось использовать четыре противостояния. Из десяти противостояний, наблюдавшихся Браге (к которым он смог добавить еще два, которые наблюдал сам в 1602 и 1604 годах), он выбрал относящиеся к 1587, 1591, 1593 и 1595 годам и вывел из них время истинного противостояния.



На рисунке D, G, F, E – это четыре наблюдаемых положения Марса, S – Солнце, G – центр круговой орбиты, A – точка экванта, HI – линия апсид. Положение этой линии и средняя аномалия первого противостояния, то есть углы HSF и HAF, в первом примере заимствованы из теории Браге. Наблюдения дали непосредственно гелиоцентрические долготы, то есть углы при S между линиями SF, SE, SD и SG, тогда как углы при A, разности средней аномалии, были известны, так как период сидерического обращения давал среднее движение. Из треугольников ASF, ASE, ASD и ASG, в которых углы при AS известны, далее рассчитываются расстояния SF, SE, SD и SG, выраженные в частях AS. Из треугольников SFE и SFG находится угол F четырехугольника FEDG и аналогичным образом три других угла E, D, G. Если теперь четыре точки F, E, D, G лежат на окружности круга, у нас должно быть


F+ D = G + Е = 180°.


Когда это условие выполняется, нужно найти, находится ли центр круга на линии AS. В треугольнике SFG мы можем посчитать длину FG, так как мы знаем угол при S и другие две стороны; в равнобедренном треугольнике FCG мы теперь знаем FG и угол FCG, причем последний равен удвоенному FEG (или удвоенной сумме FES и SEG), значит, мы можем найти два радиуса в частях AS и угол CFG. Далее, угол SFO = SFG CFG, следовательно, мы в треугольнике CSF мы можем найти сторону CS и угол CSF, и у нас должно получиться


GSF = HSF.


Поэтому необходимо изменить предполагаемое направление Ш или углы HSF и HAF (истинная и средняя аномалия первого противостояния) так, чтобы выполнялись оба условия, то есть пока четыре точки не будут лежать на круге, центр которого находится на линии, соединяющей S и А.

Кеплер верно говорит, что, если читатель находит это описание метода утомительным, ему следует пожалеть автора, который проверил его не меньше семидесяти раз, и ему не следует удивляться, что Марс потребовал более пяти лет, хотя почти целый 1603 год был потрачен на оптические исследования. Результатом семидесяти этих попыток стала (радиус круга = 1)


Долгота афелия 28°48′55″ Льва[341]341
  Движение узлов и движение афелия были определены сравнением с Птолемеем при помощи звезды Регул, чтобы не полагаться на птолемеевскую прецессию.


[Закрыть]
(1587 г.)

АС = 0,072 32 CS= 0,113 32.


Эту теорию Кеплер впоследствии назвал «заместительной гипотезой». Она очень хорошо отображала долготы двенадцати противостояний, и наибольшая остаточная ошибка составляла 2′12″, которая, как полагал Кеплер, происходила в основном из-за ошибок наблюдений, так как видимый диаметр Марса в ближайшем к Земле положении казался весьма значительным. И все же теория оказалась ложной, и Кеплер полагал, что, когда Птолемей допустил бисекцию эксцентриситета (АС = CS), он должен был встретиться с аналогичной трудностью, которая, вероятно, заставила и Браге отложить в сторону теорию Марса и заняться вместо нее теорией Луны. Кеплер проверил теорию на широтах противостояний 1585 и 1593 годов, когда Марс находился вблизи пределов наибольшей северной и южной широты и в то же время вблизи афелия и перигелия. Применив солнечную теорию Браге без изменений, он обнаружил, что эксцентриситет получится = 0,080 00 или = 0,099 43, в зависимости от того, что использовалось – истинное или среднее противостояние, и результат очень отличается от 0,113 32, но не очень от ½ (АС + CS) = 0,092 82. Поэтому он попробовал, что будет, если принять АС = CS = 0,092 82, но это оказалось неудачным шагом, так как, хотя места примерно в 90° от апсид были хорошо представлены, места в аномалиях 45°, 135° и т. д. отличались примерно на 8′. Теперь понятно, говорит Кеплер, почему Птолемей закрыл глаза на бисекцию эксцентриситета, так как 8′ вполне укладывались в пределы точности его наблюдений (10′); но Божья благодать одарила нас самым добросовестным наблюдателем в лице Тихо Браге, и потому мы должны с благодарностью использовать этот дар, чтобы найти истинные движения небесных тел. Еще одно доказательство ошибочности «заместительной гипотезы» предоставило исследование долгот вне противостояний, но вблизи апсид. Они также дали эксцентриситет около 0,09. Таким образом, заместительная гипотеза, которая стоила такого огромного труда, окончилась полным провалом. И это показало, что либо орбита представляет собой не круг, либо, если это все же круг, внутри его нет неподвижной точки, при взгляде из которой планета перемещается равномерно, но что точка экванта должна колебаться взад-вперед по линии апсид, что не могло быть следствием какой-либо естественной причины.

Доказав таким образом невозможность создания правильной теории на одних противостояниях, Кеплер осознал, что проблему надо решать в более общем виде, а не разбираться с первым и вторым неравенствами по отдельности, как поступали его предшественники. Он решил взяться сначала за второе неравенство путем более строгого изучения годовой орбиты Земли. В «Тайне мироздания» он попытался объяснить, что планета движется быстрее всего в перигелии и медленнее всего в афелии, потому что в этих точках она ближе всего к Солнцу и наиболее удалена от него, и поэтому, соответственно, находится под наибольшим и наименьшим влиянием некой исходящей от Солнца силы. Но он признал, что если бы это объяснение было правильным, то Земля должна была бы двигаться точно таким же образом, как планеты, но все же никто не приписывал экванты годовой орбите и не представлял ее какой-либо иной формы, кроме простого эксцентрического круга. Поэтому Кеплер испытал настоящее счастье, когда его озарило (dictabat mihi genius, как он говорит), что видимое изменение диаметра годовой орбиты должно вызываться тем, что центр равных расстояний и центр равного углового движения совпадали у Земли не больше, чем у орбит планет. Но теперь это следовало строго доказать.

Доказав сначала реальность предполагаемого явления с помощью двух наблюдений Марса в той же гелиоцентрической долготе, сделанных в те моменты, когда разницы гелиоцентрических долгот планеты и Земли были равны, показав, что параллаксы вместо того, чтобы быть равными, отличаются на 1°14,5′, Кеплер определил эксцентриситет орбиты Земли с помощью наблюдений Марса в одной точке его орбиты, сделанных из нескольких точек орбиты Земли. В треугольнике между Солнцем (S), Землей (Е) и проекцией Марса на плоскости эклиптики (М) углы при S и Е известны, гелиоцентрическая долгота Марса взята либо у Браге, либо из заместительной теории; из них было найдено отношение сторон SE к SM. Аналогичным образом можно было установить отношение других радиус-векторов к SM, выбрав другие наблюдения Марса, сделанные по прошествии ровно одного или нескольких периодов сидерического обращения, и тогда нахождение радиуса круга, расстояния до S от центра и направления диаметра через S, то есть линии апсид, превращалось в простую геометрическую задачу. Из тех же наблюдений и таким же образом он определил расстояние от точки экванта до центра круга, и это расстояние, как и расстояние до Солнца от центра, было найдено равным приблизительно 0,018 00 (радиус = 1), или почти половине эксцентриситета Браге, так что уверенное подозрение Кеплера, что его следует разделить надвое и что Земля вращается точно по тем же принципам, что и планеты, полностью подтвердилось[342]342
  В главе 28 Кеплер проверяет результат, находя гелиоцентрическую долготу и расстояние от Солнца до Марса из различных сочетаний, приняв е = 0,018 для Земли.


[Закрыть]
. Меньшее значение эксцентриситета прекрасно согласовалось с очень малым изменением видимого диаметра Солнца в течение года, при этом обнаружилось, что разница между уравнением центра, вычисленного по старой и новой теории, оказалась незначительной и составила не более чем несколько секунд.

Подтверждение идеи Кеплера о сходстве движения Земли и планет естественно побудило его вернуться к гипотезе, высказанной в «Тайне мироздания», что это движение вызывает некая исходящая от Солнца сила; и так как действие подобной силы непременно должно так или иначе изменяться с изменением расстояния до Солнца, он пришел к мысли о переменной скорости планеты на протяжении всей ее орбиты. Таким образом, в конце концов Кеплеру удалось избавиться от птолемеевского экванта и заменить его законом, который впоследствии стал известен как второй закон Кеплера, хотя в действительности он был открыт первым. Поскольку орбиты планет расположены практически в одной плоскости, то есть плоскости эклиптики, Кеплер предположил, что сила (virtus) действует только в плоскости орбит и, следовательно, просто обратно пропорциональна расстоянию. То же самое имеет место с орбитальной скоростью, и, значит, небольшое время, за которое планета проходит по очень малой дуге орбиты, пропорционально радиус-вектору. Кеплер доказывает это для окрестности апсид в птолемеевском эксцентрическом круге и без дальнейших изысканий предполагает, что это верно для любой точки орбиты; и даже позже, признав, что орбиты имеют эллиптическую форму, он продолжал считать доказательство верным как нечто само собой разумеющееся. Сейчас нам известно, что в этом он был не прав, так как скорость в любой точке пропорциональна перпендикуляру из фокуса к касательной в рассматриваемой точке, так что теорема Кеплера верна только для апсид, где радиус-вектор перпендикулярен касательной. Но изъян в рассуждениях Кеплера любопытным образом компенсируется другим изъяном в выведении закона. Так как время, за которое планета проходит по очень малой дуге, пропорционально радиус-вектору, сумма отрезков времени, за которое планета проходит сумму малых дуг, образующих конечную дугу орбиты, будет пропорциональна сумме всех радиус-векторов, то есть (как он думает) площади сектора, описываемого радиус-вектором. Это второй недостаток, так как сумма бесконечного числа линий, находящихся бок о бок, не составляет площади, и это Кеплер должен был прекрасно понимать. Тем не менее теория всемирного тяготения доказала истинность знаменитого второго закона Кеплера, а именно что время, требующееся, чтобы описать дугу орбиты, пропорционально площади сектора, описываемого радиус-вектором. Однако способ, которым Кеплер вывел свой закон, был отнюдь не бесспорным. Он так и не узнал об ошибке в своем законе расстояний, но понимал, что сумма нескольких радиус-векторов неверно измеряет площадь сектора; но все-таки, обнаружив, что средние аномалии можно точно рассчитать по его второму закону, причем они будут согласоваться с наблюдениями, и не только для орбиты Земли, к которой он сначала применял его, но и для эллиптической орбиты Марса, он справедливо посчитал это твердо установленным фактом. Однако Марс по-прежнему причинял Кеплеру немало хлопот, поскольку, когда он из наблюдений вблизи перигелия и афелия вывел новые значения элементов, сравнение с наблюдаемыми местами в других частях орбиты вновь выявили вопиющие ошибки, которые в октантах достигали 8′.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации