Текст книги "Квант"
Автор книги: Джим Аль-Халили
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 17 (всего у книги 21 страниц)
Отличная идея ищет применение
Именно так физики отнеслись к лазеру, когда он был изобретен в 1958 году. Сегодня лазер применяется во множестве сфер, от строительства кораблей до глазной хирургии, работы CD-плееров и кассовых аппаратов. Но его действие не ограничивается испусканием мощного пучка света. Физика лазера представляет собой чистую квантовую механику. В отличие от микрочипа, который во многом основывается на свойствах электронов и их строгом подчинении принципу исключения, лазер полагается на товарищество и кооперацию фотонов.
Когда электрон получает энергию, поглощая фотон, он получает возможность перепрыгнуть на более высокую атомную орбиту. Разница в энергии между двумя орбитами равняется энергии поглощенного фотона, которая, в свою очередь, зависит от его частоты согласно формуле Планка. Вскоре после этого «возбужденный» электрон спонтанно опускается обратно, испуская фотон той же самой энергии. Этот процесс называется спонтанным излучением и лежит в основе работы электрической лампочки. Идущий по вольфрамовой нити ток нагревает ее, заставляя электроны атомов вольфрама набирать энергию и в возбужденном состоянии перескакивать на более высокие орбиты. Снова падая обратно, они испускают фотоны широкого диапазона частот, включая и те, что находятся в видимом световом спектре.
Лазер работает иначе. Если не позволять электрону самому упасть на изначальный уровень, а стимулировать его к этому путем столкновения с входящим фотоном, на выходе мы получим два фотона – оригинальный и новый, испущенный электроном. Два этих фотона затем могут подталкивать к падению и другие возбужденные электроны, которые будут выпускать все новые и новые фотоны, что в некотором роде будет напоминать цепную реакцию. Этот процесс называется вынужденным излучением и дает название лазеру (акроним от англ. light amplification by stimulated emission of radiation – усиление света посредством вынужденного излучения).
Будучи бозонами, вылетающие фотоны пребывают в том же квантовом состоянии, что и налетающие фотоны. У них одинаковая длина волны, они находятся в одной фазе и движутся в одном направлении. В связи с этим свет лазера считается когерентным[64]64
В отличие от света обычной лампочки, которая излучает некогерентный свет, так как волны выходят из нее не в фазе и даже характеризуются разной частотой.
[Закрыть]. Он может обладать очень высокой интенсивностью и фокусироваться в узкий пучок.
Первый лазер был создан в 1960 году, и с тех пор ему было найдено множество применений. Лазеры могут сваривать, разрезать и плавить. Их можно найти на автомобильных конвейерах и в текстильной промышленности. С их помощью можно проверять, ровно ли проложены каналы, и точно подгонять друг под друга крупные детали тяжелой промышленности. Их точные длины волн можно настроить и применять в областях вроде интерферометрии для сверхточного измерения длин. (К примеру, лазеры использовались для определения расстояния от Земли до Луны с точностью до нескольких сантиметров.) Они также используются для создания голограмм – трехмерных изображений с широким спектром применения, в том числе, возможно, даже в качестве невероятно эффективных устройств для хранения информации.
Лазеры также можно изготовить из полупроводниковых диодов способом, который напоминает производство светодиодов. Эти дешевые и сердитые твердотельные лазеры характеризуются стойкостью и надежностью, а по размерам сравнимы с песчинкой. Сегодня такие устройства используются в коммуникациях для передачи света по оптоволокну, а также в CD – и DVD-плеерах и кассовых аппаратах, где они сканируют штрихкоды.
В отличие от обычного света, излучаемого фонариком, который представляет собой путаницу электромагнитных волн множества различных длин, распространяющихся во всех направлениях, свет лазера очень упорядочен. Все волны имеют одинаковую длину, соответствующую характерной частоте испускающих их атомов. Свету лазера также свойственна высокая интенсивность из-за процесса амплификации. Кроме того, он не рассеивается после испускания, благодаря чему им можно светить на очень длинные расстояния.
Благодаря своей способности фокусировать энергетические фотоны с такой выдающейся точностью, лазеры также нашли широкое применение в компьютерной промышленности. Они используются в процессе, называемом фотолитографией, чтобы вытравливать бороздки интегральных микросхем на кремниевых чипах.
Лазерная фиброоптика скоро станет обычным способом передачи информации по миру – именно в ней и заключается будущее Интернета. Мы почти достигли того момента, когда наше интерактивное телевидение и компьютеры сольются воедино. Сейчас уже можно скачивать фильмы из Интернета и смотреть их на компьютере. Оптоволоконные кабели, передающие лазерный свет, скоро смогут менее чем за секунду переносить миллиарды бит информации, что эквивалентно объему всех произведений Уильяма Шекспира![65]65
Чтобы совершить захватывающую экскурсию по будущему микроэлектроники и телекоммуникаций, не говоря уже о других областях науки, которые в XXI веке ждет революция, рекомендую вам прочитать книгу Мичио Каку Visions (Oxford University Press, 1998).
[Закрыть]
Возможно, примечательнее всего здесь то, что лазеры сегодня можно использовать для контроля отдельных атомов различными способами, открывающими совершенно новую сферу квантовой технологии, которая будет описана в последней главе.
Магниты размером с дом
Хотя я неплохо справляюсь с работой по дому, мои лабораторные навыки вечно подвергаются незлобным насмешкам со стороны коллег-экспериментаторов – они не упускают случая подшутить над нами, теоретиками. Хотя я и правда сумел избежать любой экспериментальной работы, до недавнего времени я не понимал, насколько я отстал от технологий, используемых для получения экспериментальных результатов, которые я затем пытаюсь осмыслить. Однако суть истории, которую я собираюсь рассказать, не в этом – в ней описывается еще один способ применения квантовой физики, о котором вы, возможно, уже слышали.
В 1999 году я шесть недель провел в Циклотронной лаборатории Университета штата Мичиган, где работал над интерпретацией данных их последних экспериментов с «экзотическими» ядрами[66]66
В этом контексте под экзотическим ядром понимается такое ядро, для которого характерен сильный дисбаланс между числом входящих в него протонов и нейтронов. Из-за этого оно не только становится крайне нестабильным, но и часто получает странные новые свойства.
[Закрыть]. Национальная сверхпроводящая циклотронная лаборатория Университета штата Мичиган считается одной из ведущих мировых исследовательских лабораторий в сфере ядерной физики, где создаются и изучаются редкие и экзотические виды ядер. Наличие циклотрона означает, что сильное магнитное поле ускоряет ядра до высоких энергий, после чего они намеренно разбиваются о ядерную мишень, чтобы проверить, что произойдет. В циклотронах используются мощные электромагниты, которые заставляют заряженные частицы, или ионы, двигаться внутри них, перемещаясь по спирали наружу и набирая скорость в процессе.
Я знал все это до своей поездки в Университет штата Мичиган и, конечно же, более или менее представлял, что происходит с заряженными ионами, когда они покидают циклотрон и входят в систему анализа пучка по пути к цели. На самом деле для целей моего исследования мне вполне достаточно было поверхностных знаний обо всем остальном. Мне не нужно было ни знакомиться с сырыми данными, ни понимать хитроумные техники их получения (а этих техник, поверьте, немало) – я работал лишь с итоговыми, полностью обработанными данными[67]67
Я не горжусь таким отношением и с тех пор стал стараться лучше понять детали экспериментов.
[Закрыть].
Ускорительная установка находится в большом здании в центре кампуса, и по бокам от нее расположены офисные пространства. Во время своего пребывания в университете я входил в здание через одну из множества дверей и проходил в офис, где занимался разработкой математических моделей изучаемых ядерных реакций, писал компьютерный код или просто обсуждал физические проблемы с другими теоретиками. Конечно, в дополнение к этому я регулярно выходил за кофе, разговаривал в коридоре с коллегами-экспериментаторами и посещал семинары.
Однажды, ближе к концу моего пребывания в университете, я обсуждал кое-что со своим коллегой Грегерсом Хансеном у него в кабинете. Грегерс – один из ведущих ядерных физиков, он родился в Дании, но живет и работает в США. Он был одним из первооткрывателей нейтронного облака, которое я описал в Главе 3. Я заметил, как мерцает экран его монитора, и он объяснил, что ему пришлось «размагнитить» его, чтобы нейтрализовать лишние магнитные поля. Для удобства проведения этой процедуры на мониторе даже была специальная кнопка. Я спросил, зачем это необходимо, и он ответил, что всему виной проводящиеся на циклотроне испытания. Увидев, что это мне ни о чем не сказало, он пояснил, что проблема возникает из-за магнитного поля большего из двух сверхпроводящих магнитов, которые были включены в тот день. Когда я признался, что никогда его не видел, он не поверил своим ушам. «То есть ты шесть недель просидел в несчастных десяти метрах от самого мощного циклотронного магнита в мире[68]68
Больший из двух циклотронов, К1200, ускоряет атомные ядра до одной трети скорости света (100000 километров в секунду). Каждое ядро преодолевает расстояние порядка трех километров, около 800 раз проходя по кругу. На выходе ядра попадают под действие магнитного поля мощностью до пяти Тесла. Чтобы дать контекст, скажу, что мощность магнитного поля Земли составляет одну десятитысячную Тесла, а типичного стержневого магнита – около одной десятой Тесла на полюсах. Учитывая, насколько маленьким и легким является отдельное атомное ядро, мы понимаем, что магнитное поле мощностью в несколько Тесла может оказывать на него довольно серьезное воздействие. Для сведения, самые мощные магнитные поля (до 60 Тесла) создаются при помощи специальных «пульсирующих» магнитов.
[Закрыть] и даже не заметил этого?» На следующий день – в последний день моей командировки – он провел мне экскурсию по лаборатории. Само собой, за стеной моего офиса и несколькими метрами сдерживающего радиацию экрана, находился гигантский магнит – он был таким огромным, что нам пришлось подняться по проложенной вокруг него лестнице, чтобы попасть на вершину. После этого мне повезло провести некоторое время в лаборатории TRIUMF в Ванкувере, где находится крупнейший в мире циклотронный магнит, по мощности, однако, уступающий магниту Университета штата Мичиган.
Интересно, как именно работают такие магниты, поскольку они находят применение другому чисто квантовому эффекту – сверхпроводимости.
Непрерывное электричество
Причина, по которой все проводники демонстрируют электрическое сопротивление, заключается в том, что проводящие электроны постоянно натыкаются на вибрирующие атомы металла. Эти вибрации усиливаются при нагревании металла, тем самым увеличивая сопротивление. Конечно же, охлаждая металл, мы понижаем атомные вибрации, а следовательно, и сопротивление. Но в 1911 году был открыт очень неожиданный эффект.
При охлаждении ртути до температуры ниже 4,2 Кельвина[69]69
Абсолютный ноль равняется -273 °C. Он считается нулевой точкой шкалы Кельвина (0 К). Так что мы можем сказать, что вода замерзает при температуре 273 К. Достичь абсолютного ноля мы не можем, но можем достичь температуры, отличающейся от него на малую долю градуса.
[Закрыть] ее электрическое сопротивление вдруг падает до нуля, и она становится сверхпроводником. Теперь мы знаем, что это характерно для многих металлов и металлических сплавов при охлаждении ниже их критической температуры, которая обычно бывает на несколько градусов выше абсолютного ноля. Это означает, что идущий сквозь сверхпроводник ток никогда не уменьшается и не требует постоянного источника напряжения. Хотя мы не можем утверждать наверняка, что сопротивление сверхпроводника равняется именно нулю, оно настолько близко к нулю, что уже не представляет проблемы.
Истоки этого эффекта лежат в квантовой механике. В 1957 году трое ученых – Джон Бардин, уже становившийся лауреатом Нобелевской премии за свой вклад в изобретение транзистора, Леон Купер и Роберт Шриффер – объяснили механизм его работы и получили Нобелевскую премию за это открытие. При определенной температуре электроны со сходными волновыми функциями стремятся к объединению в названные в честь одного из их первооткрывателей «куперовские пары», что объясняется очень слабой силой притяжения. Чтобы понять это, нужно посмотреть, как присутствие каждого электрона влияет на окружающую среду. (Не буду перегружать вас техническими деталями.)
Каждая куперовская пара затем начинает вести себя как единичный бозон (два фермиона вместе всегда составляют бозон)[70]70
Это связано со спином фермионов, который всегда представляет собой нечетный множитель полуцелых значений, например 1/2, 3/2 и т. д. Два электрона со спином 1/2 при вращении в одну сторону объединятся, в результате чего их общий спин будет равняться 1, а при вращении в противоположные стороны – 0. В любом случае квантовая система с целым (0 или 1) спином будет демонстрировать поведение, свойственное для бозонов.
[Закрыть]. Само собой, вам простительно думать, что электроны в этих куперовских парах движутся исключительно вместе, как сиамские близнецы. В конце концов, если они формируют бозон, он явно должен представлять собой нечто вроде новой «частицы». Однако не стоит забывать уроки квантовой физики. Двум электронам необязательно находиться в непосредственной близости друг к другу. В действительности расстояние между членами такой пары в тысячу раз больше среднего расстояния между двумя любыми отдельными электронами в материале! Мы считаем куперовскую пару запутанным состоянием, описываемым одной волновой функцией. Ее поведение в качестве единого бозона объясняется нелокальной связью электронов. Два электрона куперовской пары находятся в постоянном взаимодействии, как подростки, которые стоят в разных концах школьной площадки и болтают друг с другом по мобильным телефонам, что не является квантовым эффектом, но точно весьма странно!
Наконец, электрического сопротивления нет, поскольку для его наличия одному из двух электронов нужно столкнуться с атомом и отскочить от него с достаточной силой, чтобы разбить пару. Следовательно, такое рассеяние должно быть весьма сильным. При очень низких температурах связь куперовских пар достаточно сильна, чтобы выдержать слабое атомное рассеяние, поэтому электроны пары просто не сталкиваются с атомами и электрического сопротивления не возникает.
Одним из многих применений сверхпроводимости, как в случае с циклотроном Университета штата Мичиган, является создание мощных магнитов. (Моя история, таким образом, представляет собой пример того, как квантовую странность применили для разработки аппарата для изучения еще большей квантовой странности, обнаруживаемой в экзотических атомных ядрах!) Обычный электромагнит предполагает прохождение тока по катушке, которая генерирует магнитное поле. Чем больше у катушки витков, тем мощнее поле. Однако тем сильнее и сопротивление, которое ослабляет ток, из-за чего для компенсации требуется более высокий вольтаж. Эта проблема исчезает при использовании катушки из сверхпроводимого материала. На практике большие классические электромагниты имеют железный сердечник, заключенный в электрическую катушку, поскольку без него количество необходимого тока делает такой магнит безнадежно дорогим. Однако с железным сердечником мощность магнитного поля достигает максимума, и единственным способом получить большую мощность остается создание большего магнита (с большим количеством железа). Чтобы такой магнит справлялся с задачей сверхпроводящего магнита Университета штата Мичиган, он должен быть размером со средний многоквартирный дом!
Сегодня сверхпроводящим магнитам нашлось множество применений. К примеру, они используются в качестве магнитных разделителей в добывающей промышленности и в качестве магнитных навигационных систем в медицине, где они позволяют хирургам проводить катетеры сквозь тело, вводить препараты и осуществлять биопсию.
Подобно тому как фотоны в лазере действуют в гармонии друг с другом, чтобы усилить квантовый эффект до макроскопических уровней, куперовские пары в сверхпроводниках тоже могут работать вместе как группа бозонов. Это немного напоминает большие косяки рыб, которые движутся, как единая сущность, – их часто показывают по телевидению в программах о живой природе. Такое поведение среди прочего нашло применение в устройстве под названием СКВИД (акроним от англ. Superconducting Quantum Interference Device – сверхпроводящий квантовый интерферометр). В СКВИДах используются компоненты, называемые джозефсоновскими контактами, которые немного напоминают туннельные диоды. Но вместо двух полупроводниковых полосок джозефсоновский контакт состоит из двух сверхпроводников, разделенных тонким изолирующим слоем. Куперовские пары могут с легкостью проходить сквозь этот слой, благодаря чему СКВИД становится невероятно чувствительным к мельчайшим изменениям магнитных полей. Это устройство используется в том числе в медицине, где при помощи него изучается активность мозга, для чего ведется наблюдение за магнитными полями, создаваемыми мельчайшими электротоками, соответствующими отдельным нейронам.
Наконец, одной из самых оживленных областей физических исследований в последние пятнадцать лет была сфера высокотемпературной сверхпроводимости. Иметь сверхпроводящий материал очень выгодно, однако его температуру нужно поддерживать на таком низком уровне, зачастую с использованием жидкого гелия[71]71
В жидкой форме гелий имеет температуру менее 4 К (-269 °C).
[Закрыть], что для практического применения он часто становится неудобен. В 1986 году был обнаружен определенный тип керамики, который обладает сверхпроводящими свойствами при температурах до 100 К. (Это все еще на 173° градуса ниже температуры замерзания воды!) Текущие исследования в этой области затрагивают три проблемы: существуют ли материалы, характеризующиеся сверхпроводимостью при комнатной температуре, являются ли эти материалы ковкими металлами, так как керамика слишком хрупкая, чтобы ее можно было растянуть в проводящие электричество провода, и, наконец, что именно заставляет эти материалы вести себя таким образом при таких (относительно) высоких температурах.
Если нам когда-либо удастся сделать электрические провода их сверхпроводящего при комнатной температуре материала, цена электричества резко упадет. В настоящее время электричество характеризуется достаточно низкой энергоэффективностью, что отчасти объясняется энергетическими потерями в форме тепла, отдаваемого при сопротивлении кабелями передачи, которые опутывают землю. Используя сверхпроводящие кабели, мы могли бы с гораздо большей эффективностью передавать в пять раз большее напряжение, а следовательно, могли бы позволить существенно сократить потребление ископаемых источников топлива.
Энергия из ядер
Раз уж я затронул тему энергоресурсов, теперь самое время описать еще одно применение квантовой механики. Ядерная энергетика в настоящее время производит одну шестую мирового электричества (а во Франции этот показатель составляет почти две трети). В основе ядерной энергетики лежит идея о реакции распада, в ходе которой тяжелые ядра поглощают нейтроны, в результате чего распадаются надвое и высвобождают энергию. В процессе они производят новые нейтроны, которые поглощаются соседними ядрами, после чего те тоже распадаются, поддерживая цепную реакцию. Получаемое в результате этих реакций тепло используется для превращения воды в пар, который толкает турбины, вырабатывающие электричество.
Более чистым способом извлечения энергии, заключенной в ядре атома, является обратный процесс. В реакции синтеза два легких ядра сталкиваются и образуют более крупное и более стабильное ядро. Это достигается посредством высвобождения огромного количества энергии, которую можно использовать. Эта энергия «термоядерного синтеза» служит источником тепла и света от Солнца и представляет собой причину сияния звезд.
Начинающаяся с двух ядер водорода (отдельных протонов) последовательность шагов приводит к формированию ядра гелия (два протона и два нейтрона – альфа-частица). Проблема заключается в том, что два протона отталкиваются, если их не столкнуть – то есть если не обеспечить квантовое туннелирование сквозь энергетический барьер между ними. Для этого нам необходимо создать крайне экстремальные условия высокой температуры и плотности – внутри Солнца проблем с этим не возникает, но в лаборатории на Земле поддерживать их очень сложно.
Интересно отметить, что первый шаг в процессе синтеза внутри Солнца предполагает совместное участие всех четырех сил природы. Гравитационная сила притяжения между всей материей обеспечивает достаточно плотное расположение водорода для увеличения шансов на синтез двух протонов, в то время как притягивающее сильное взаимодействие побеждает отталкивающую электромагнитную силу и сводит их еще ближе. Но так как два протона не могут навсегда связаться друг с другом, а протон и нейтрон – могут, одному из протонов приходится подвергнуться бета-распаду и превратиться в нейтрон, для чего в дело и вступает слабое взаимодействие. Как только это произошло, мы получаем связанные протон и нейтрон.
Ядро, состоящее только из протона и нейтрона, называется дейтроном и представляет собой ядро тяжелого изотопа водорода – дейтерия. Дейтрон сыграл важную роль в развитии ядерной физики. Это простейшее составное ядро – меньше него лишь одиночный протон или нейтрон, – а потому оно служит опытным образцом для изучения свойств ядерной силы, которая удерживает нуклоны вместе внутри ядра. С помощью него также можно изучать взаимодействие с другими ядрами, чтобы исследовать их свойства. При подготовке докторской мне повезло иметь своим научным руководителем Рона Джонсона, одного из ведущих мировых экспертов по строению и реакционным характеристикам дейтрона, из-за чего в студенческой среде за ним закрепилось прозвище Дейтрон Джонсон.
Как только дейтроны формируются внутри Солнца, они могут вступать в реакцию синтеза с другими протонами и образовывать ядра гелия. Для этого дейтронам и протонам необходимо туннелировать сквозь их обоюдный кулоновский барьер.
Исследование синтеза с участием дейтерия и трития (еще более тяжелого изотопа водорода, ядра которого состоят из одного протона и двух нейтронов) проводятся во многих странах. В настоящее время «порог самоокупаемости» уже пройден, то есть в результате процесса синтеза производится больше энергии, чем необходимо для создания начальных условий, требуемых для синтеза ядер. Следующим шагом станет поддержание условий синтеза в течение более чем краткой доли секунды!
Реакторы синтеза не только обладают бесконечным запасом топлива (воды), но и производят гораздо менее опасные отходы, чем реакторы ядерного распада. Именно поэтому большинство самых богатых стран инвестировало и продолжает инвестировать огромные средства в эти исследования, несмотря на медленный прогресс.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.