Электронная библиотека » Джим Аль-Халили » » онлайн чтение - страница 3

Текст книги "Квант"


  • Текст добавлен: 21 апреля 2022, 17:34


Автор книги: Джим Аль-Халили


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 21 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
Эйнштейн

Даже если бы Эйнштейн не открыл теорию относительности, его имя все равно было бы известно каждому, отчасти благодаря той роли, которую он сыграл в развитии квантовой теории. Однако, раз уж он стоит на голову выше любого другого физика (за исключением Исаака Ньютона), по отношению к остальным кажется нечестным, что его считают ответственным за обе великие революции в науке XX века (открытие теории относительности и квантовой теории).

В 1905 году, когда Эйнштейну было всего 26 лет и он работал в Швейцарском патентном бюро, он опубликовал в физических журналах целых пять теоретических работ. Три из них были настолько важны, что любая в одиночку могла бы обеспечить ему место в истории.

Самой знаменитой – и самой важной – стала последняя из пяти. Это была статья о специальной теории относительности, в которой Эйнштейн показал, что еще один фундаментальный принцип ньютоновской физики, положение об абсолютности пространства и времени, на самом деле является лишь иллюзией. Он оттолкнулся от двух простых постулатов. Первый заключался в том, что законы природы не изменяются вне зависимости от того, насколько быстро мы двигаемся, так что никто не может утверждать, что находится в состоянии полного покоя, а все движение относительно. Второй гласил, что скорость света в пустом пространстве представляет собой фундаментальную константу природы, значение которой не меняется, на какой бы скорости ни двигался наблюдатель. Две этих идеи приводят нас к выводу, что и пространство, и время являются аспектами большого четырехмерного пространства-времени. Эйнштейн также доказал, что скорость света – это максимально возможная во Вселенной скорость. Специальная теория относительности вынуждает нас принять странные идеи – например, о том, что время замедляется, когда мы двигаемся очень быстро. Она также приводит нас к самому знаменитому уравнению Эйнштейна, связывающему массу и энергию: Е=mc2.

До этой статьи Эйнштейн опубликовал другую, в которой представил подробные расчеты описания броуновского движения. Этот феномен в 1827 году впервые наблюдал шотландский ботаник Роберт Броун, который под микроскопом изучил помещенные в воду частицы пыльцы и заметил, что они двигаются беспорядочно. Эйнштейн математически доказал, что это происходит из-за постоянного и произвольного движения молекул воды. Это и стало первым настоящим доказательством существования атомов. Сторонники идеи о том, что материя состоит из крошечных неделимых частиц, прекрасно понимали, что броуновское движение может объясняться движением атомов, но именно Эйнштейну удалось это подтвердить. Основанные на его работе эксперименты убедили последних сомневающихся в существовании атомов.


Старая волновая теория света гласила, что чем выше частота излучения черного тела, тем больше его мощность. На ультрафиолетовых частотах эта мощность становилась бесконечной. С теорией явно что-то было не так.


Квантовая теория Планка предсказала кривую, которая совпадала с кривой старой волновой теории на частотах в пределах видимого диапазона, но по мере увеличения частоты не продолжала подниматься вверх. Вместо этого теория предсказывала, что мощность должна снова снижаться до нуля – в полном соответствии с экспериментальными данными.


До Планка считалось, что испускаемая черным телом энергия непрерывна и может принимать любое значение – как мяч, катящийся по гладкому склону. Планк предположил, что энергия состоит из квантов, а потому может принимать только определенные значения.


Однако в первой из трех главных работ Эйнштейна, опубликованных в 1905 году, он объяснил происхождение феномена, известного как «фотоэлектрический эффект», и именно эта работа наиболее интересна для нашей истории. Пять лет на формулу Планка почти не обращали внимания. Эйнштейн подарил ей вторую жизнь и вывел ее следствия на новый уровень.

Частицы света

Фотоэлектрический эффект представлял собой еще один феномен, который не могла объяснить физика XIX века. Он заключался в том, что при направлении света на электрически заряженную металлическую пластину с ее поверхности начинали вылетать электроны. Внимательно изучив этот процесс, ученые пришли к выводу, что он еще сильнее противоречит господствующей волновой теории света, чем проблема излучения черного тела.

Этот эффект обладает тремя необычными характеристиками. Во-первых, можно решить, что раз уж свет способен выбивать частицы материи, то их энергия будет зависеть от яркости, или интенсивности, света. Как ни странно, было обнаружено, что на самом деле способность света выбивать электроны зависит от длины его волны. Если считать свет волной, этот результат становится довольно неожиданным, поскольку повышение его интенсивности, а следовательно, и энергии, предполагает и увеличение размеров его осцилляторов. Представьте волны, которые бьются о берег: энергии в них тем больше, чем они выше, а не чем быстрее они накатывают на землю. В фотоэлектрическом эффекте свет высокой интенсивности не выбивает более энергетически заряженные электроны, он просто выбивает больше электронов!

Во-вторых, согласно волновой теории, фотоэлектрический эффект должен наблюдаться при любой частоте света, при условии что он достаточно интенсивен, чтобы наделить электроны достаточным количеством энергии для отрыва. Однако при наблюдении выяснилось, что существует минимальная частота света, ниже которой электроны не испускаются, какой бы высокой ни была его интенсивность.

Наконец, волновая теория предполагает, что, находясь под действием энергии световой волны, электроны будут нуждаться в конечном времени для поглощения достаточного количества энергии, чтобы оторваться от поверхности, особенно если свет слаб. Но временной задержки не наблюдалось. Электроны выбивались, как только свет попадал на поверхность.


Яркий, более интенсивный свет является результатом большего количества фотонов, чем тусклый свет. Но средняя энергия отдельного фотона в обоих случаях одинакова.


Эйнштейн успешно объяснил этот эффект, применив идею Планка к сгусткам энергии света. Не забывайте, Планк не дошел до того, чтобы сказать, что все излучение делится на кванты. Вместо этого он предположил, что черное тело излучает энергию пакетами, поскольку это обусловлено свойствами материи. При этом он полагал, что в общем случае электромагнетическое излучение непрерывно. Эйнштейн предположил, что весь свет состоит из квантов энергии[12]12
  Представьте их сгустками энергии, локализованными в пространстве. Однако, для того чтобы идея о «частицах» света прижилась, понадобилось некоторое время.


[Закрыть]
, которые теперь называют фотонами. Принять такое Планк был не готов.

Двойственная природа света

Вклад Планка и Эйнштейна в квантовую революцию стал лишь первым шагом на пути к ней. Оглядываясь сегодня назад и учитывая все, что мы знаем о богатстве квантовой механики и феноменах, которые она может объяснить, мы видим, что в идее о частицах света нет ничего удивительного. В конце концов, даже сам Исаак Ньютон полагал, что свет состоит из частиц, которые он называл «корпускулами». Современник Ньютона, голландский астроном Христиан Гюйгенс, разработал конкурирующую волновую теорию света. Но только в начале XIX века англичанин по имени Томас Юнг смог доказать, что свет совершенно точно представляет собой волну.

Юнг провел эксперимент с двумя прорезями[13]13
  Само собой, в первой главе я называл его «фокусом», только чтобы добавить драматизма.


[Закрыть]
со светом – этот эксперимент даже иногда называют экспериментом Юнга с прорезями, – а как мы увидели в первой главе, в его результатах нет ничего загадочного, если нам позволено думать, что волны проникают одновременно сквозь обе прорези. Мы понимаем, как волны делают это, и в результате на втором экране возникает картина интерференции. Нечего и удивляться, что после наблюдений Юнга ученые на сотню лет и думать забыли о том, что свет может состоять из частиц. В течение XIX века физики отдавали Ньютону должное за его великие достижения – его до сих пор по праву считают одним из величайших физиков всех времен, – однако о его идее корпускул света всегда забывали. Если бы свет действительно состоял из частиц, на экране не могла бы проявляться картина интерференции.

Но затем, спустя сто лет после экспериментов Юнга, Эйнштейн доказал, что ради объяснения фотоэлектрического эффекта свет следует считать потоком частиц!

Так что же происходит? Такое впечатление, что мы не можем считать свет исключительно волновым феноменом, но не можем и сказать, что он состоит только из частиц. В одних обстоятельствах (прорези Юнга) он словно бы ведет себя, как волна, в то время как в других (фотоэлектрический эффект) – как набор локализованных частиц. Все рассмотренные нами на настоящий момент явления подсказывают, что эту двойственную природу света следует воспринимать серьезно, хотя нам и становится не по себе, когда мы сталкиваемся с ней впервые. И правда, сегодня так называемый корпускулярно-волновой дуализм уже ни у кого не вызывает сомнений.

Но подождите, разве не может существовать два типа света – волновой и корпускулярный? Может ли свет изменять свое состояние в зависимости от того, как мы его используем или наблюдаем? Концепция фотона кажется физикам достаточно сложной. Не забывайте, каждый отдельный фотон (частица) ассоциируется с конкретной частотой и длиной волны (свойствами волн). Так что же мы имеем в виду, говоря, что частица обладает длиной волны? Распространенные волны действительно обладают длинами, а частицы – хм, частицы не распространяются вообще!

Нобелевская премия Эйнштейна

В 1921 году Альберту Эйнштейну вручили Нобелевскую премию за объяснение фотоэлектрического эффекта, что в то время считалось гораздо более значительным открытием, чем его знаменитая работа над теорией относительности.

Согласно Эйнштейну, каждый электрон испускается с поверхности вещества, когда его выбивает один фотон света, энергия которого зависит от его частоты. Эйнштейн утверждал, что обычно мы не видим, что свет состоит из частиц, поскольку фотонов очень много: точно так же мы не видим отдельные капли чернил на напечатанном изображении. Давайте рассмотрим, как эта картина справляется с тремя загадочными характеристиками фотоэлектрического эффекта.

С первой все просто. Зависимость энергии испускаемого электрона от частоты света, а не от его интенсивности является прямым следствием уравнения Планка, которое связывает энергию света с его частотой.

Вторая характеристика возникает потому, что порог для испускания электронов появляется только тогда, когда энергии фотона достаточно, чтобы освободить электрон. При повышении интенсивности света количество фотонов возрастает. Отдельные фотоны так малы и локализованы в пространстве, что вероятность того, что любой одиночный электрон может аккумулировать достаточно энергии, чтобы вылететь после столкновения с более чем одним фотоном, крайне мала.

Наконец, процесс происходит мгновенно, поскольку электронам не приходится накапливать энергию из волны, рассеянной в пространстве. Вместо этого каждый фотон передает свою энергию электрону посредством одного столкновения. Если эта энергия больше необходимого порога, электрон будет испущен.


Фотоэлектрический эффект представляет собой испускание электронов с поверхности металла под воздействием света. Однако представление о свете как о волне не объясняет результатов наблюдений. Объяснить их можно, только допустив, что свет состоит из отдельных частиц (фотонов).


Бор: физик, философ, футболист

Следующий шаг в квантовой революции был сделан молодым датским физиком по имени Нильс Бор, который в 1911 году приехал в Англию, только что получив докторскую степень и прихватив с собой полное собрание сочинений Чарльза Диккенса (по которому он изучал английский язык). Само собой, Бор еще не был известным физиком, но считал научную карьеру более надежной, чем футбольную, хотя на любительском уровне он преуспел и в спорте. Однако до уровня своего младшего брата Гарольда, который играл в защите за датскую команду на Олимпиаде 1908 года и проиграл матч за золото Великобритании, он не дотягивал. Гарольд впоследствии стал очень уважаемым математиком.

Жизни Нильса Бора и автора этой книги пересеклись всего на два месяца, так что мне, к сожалению, не довелось повстречаться с ним. А если бы мне все же довелось с ним познакомиться, наша беседа вряд ли вышла бы особенно продуктивной. Но я много лет сотрудничал с человеком, который знал его очень хорошо. Физик-теоретик Йенс Банг был последним научным ассистентом Бора, а потому он может многое рассказать об этом великом человеке и глубоко понимает его философские воззрения. Да, Бор-философ был едва ли не менее знаменит, чем Бор-ученый.

Он начал свое квантовое путешествие, когда в 1912 году устроился в Манчестере на работу к выходцу из Новой Зеландии Эрнесту Резерфорду. В то время Резерфорд был одним из ведущих ученых и в 1908 году получил Нобелевскую премию по химии, хотя и занимался физикой. Бор появился у него в лаборатории примерно тогда, когда Резерфорд разработал свою модель атома. Он только что выяснил, что атомы состоят из крошечного плотного ядра, которое окружено еще более крошечными электронами.

Бор попытался понять структуру модели атома Резерфорда и тем самым начал полувековую работу по объяснению сути квантовых феноменов. Именно его сегодня по праву и считают истинным отцом-основателем квантовой механики. Может, Планк и Эйнштейн и сделали первые шаги в эту область, но вклад Бора оказался гораздо существеннее.

Первый успех пришел к нему, когда он решил две проблемы, связанные со структурой атомов: установил происхождение линейчатого спектра и нашел объяснение стабильности атома.

Модель атома Резерфорда предполагала, что электроны находятся за пределами ядра на расстоянии, в тысячи раз превышающем радиус этого ядра. Такая картина сразу же ставила вопрос о стабильности атома. Прежде всего, физики были уверены, что электроны не могут находиться в покое внутри атомов, так как электрическая сила, источаемая положительно заряженным ядром, должна притягивать электроны внутрь. Так что проще всего было представить себе планетарную модель, в которой электроны постоянно вращались вокруг ядра, как Земля вращается вокруг Солнца, чтобы ее не притянуло к нему под действием гравитационных сил.

Однако Бора озадачило одно важное отличие атома от Солнечной системы (не считая их размеров, конечно). В соответствии с классической теорией электромагнетизма, вращающийся вокруг ядра электрон должен излучать свет. Следовательно, по мере потери энергии он будет по спирали приближаться к ядру. Этот процесс будет происходить очень быстро – примерно за одну тысячемиллионную долю секунды – и атомы будут схлопываться.

В ретроспективе идея Бора кажется очевидной, но в то время она произвела настоящий переворот. Он предположил, что если материя испускает излучение сгустками (как в случае с черными телами) и поглощает его тоже сгустками (фотоэлектрический эффект), то атомы, из которых состоит материя, возможно, просто не способны обладать энергией, значение которой равняется нецелому числу этих сгустков.

С этой идеей Бор зашел дальше Планка, который полагал, что квантование излучения происходит исключительно из-за колебаний атомов в теплых черных телах и не является чертой, характерной для всех атомов вследствие их внутренней структуры.

Бор допустил, что энергия электронов в атомах тоже состоит из квантов. В таком случае электроны не могут выбирать любую орбиту, как было бы возможно в соответствии с законами движения Ньютона, а вынуждены следовать по определенным «отдельным» орбитам, подобным концентрическим кругам. Электрон может перескочить на более низкую орбиту, только испустив квант электромагнитной энергии (фотон). Точно так же перепрыгнуть на более высокую орбиту он может, только поглотив фотон. Впоследствии стабильность атомов более подробно изучил молодой немецкий гений Вольфганг Паули, который доказал, что каждая электронная орбита может вместить только определенное количество электронов. В связи с этим электроны могут перепрыгивать на более низкую орбиту, только если там для них есть место. Позже мы увидим, что электроны нельзя считать крошечными частицами, вращающимися вокруг ядра, поскольку каждый из них является распространенной волной, а каждая из этих «электронных волн» замыкается в кольцо вокруг ядра.


Предложенная Бором модель атома водорода состояла из электрона на фиксированной орбите вокруг атомного ядра. Если электрон поглощал фотон верной частоты (средняя диаграмма), он получал достаточное количество энергии, чтобы «перепрыгнуть» на более высокую (более отдаленную от ядра) орбиту. В таком случае атом оказывался в возбужденном состоянии. Эта ситуация в целом нестабильна, поэтому вскоре атом терял свое возбуждение (нижняя диаграмма). Электрон испускал фотон с такой же точно энергией, что и первый, благодаря этому сам терял энергию и падал обратно в свое «основное состояние».


Бор также сумел объяснить значение атомных спектров – того факта, что элементы отдают свет на точно определенном наборе частот (называемых спектральными линиями), причем каждый спектр уникален для конкретного элемента. Характерные частоты, на которых каждый конкретный тип атома испускает свет, соответствуют определенным энергиям (по уравнению Планка). Энергии испущенных фотонов соответствуют энергии, потерянной электронами атома при опускании на более низкие орбиты.

Следует подчеркнуть, что, хотя Бор и применил идею квантования Планка к атомной структуре, объяснить, как именно электроны перепрыгивают с орбиты на орбиту, он не смог. Прямо как несчастный Планк, Бор представил свою формулу для решения конкретной задачи. Несмотря на мнение многих физиков-теоретиков, он не вывел ее на основании глубоких фундаментальных принципов. Хотя его атомная модель миниатюрной Солнечной системы работала как будто очень хорошо, в ней все еще учитывались аспекты ньютоновской физики, которые оказались неверными. Хуже всего, его модель фактически работала только для водорода, атом которого содержит лишь один электрон! Более сложные конструкции в модель не вписывались. Более полное понимание структуры атома требовало серьезного развития квантовой механики, которое произошло лишь десять лет спустя.

Сегодня физики не зря возмущаются, что детям в школах до сих пор показывают разработанную Бором модель атома. Атомы выглядят совсем не так[14]14
  Вам придется подождать до седьмой главы, чтобы увидеть лучшее описание атомов. Впрочем, дальше мы узнаем, что «выглядят» атомы не так.


[Закрыть]
. Предложенная Бором модель атома водорода поставила точку в первой фазе квантовой революции, которую сегодня называют квантовой теорией.

В дело вступает французский герцог

Давайте теперь обратимся к началу 1920-х годов и молодому французскому герцогу Луи де Бройлю, который в то время как раз работал над своей докторской. Ладно, на самом деле он не был герцогом (по принципу старшинства), но все же был аристократом из благородной семьи, и его предки служили французским королям еще со времен знаменитого Людовика XIV.

В 1924 году де Бройль представил свою диссертацию, в которой сделал смелое предположение: если свет, который нам проще считать волной, может, согласно Планку и Эйнштейну, иногда вести себя, как поток частиц, то было бы довольно красиво, если бы движущиеся частицы тоже иногда могли вести себя, как волны.

Может, сначала это утверждение и кажется странным, но подумайте о нем следующим образом. К 1920-м физики уже вполне освоились с идеей Эйнштейна о том, что материя и энергия взаимозаменяемы согласно его формуле Е=mc2. Это предполагает, что материю можно считать некой замершей энергией, а материю и энергию можно превращать друг в друга. Следовательно, раз уж свет, а точнее электромагнитное излучение, которое представляет собой одну из форм энергии, может иметь двойственную природу, то почему подобным образом не может вести себя и материя?

Де Бройль предположил, что каждый материальный объект можно ассоциировать с «волной материи», длина которой зависит от массы объекта. Чем более тяжела частица, тем короче длина связанной с ней волны. Обратите внимание, что я использовал здесь слово «связанной», поскольку де Бройль все еще считал материальные объекты твердыми «сгустками», к которым каким-то образом добавляются волны. Однако в случае со светом мы видели, что «материал» всегда одинаков, вот только ведет он себя то как волна, то как частица.

Де Бройля вдохновила работа американского физика Артура Комптона, который привел новое неопровержимое доказательство корпускулярной природы света. В 1923 году, за год до завершения диссертации де Бройля, Комптон провел эксперимент, который подтвердил существование фотонов. Он направил рентгеновские лучи (которые по сути являются высокочастотным светом) на блок графита и обнаружил, что частота отраженных лучей становится немного ниже изначальной. Это шло вразрез с предсказанием старой волновой теории, которая гласила, что частота света должна оставаться неизменной. Но если рентгеновские лучи представляли собой поток высокоэнергетических фотонов, сталкивающихся с отдельными электронами графита, то часть их энергии должна была теряться, а это, согласно формуле Планка, вело к понижению частоты.


Градация волн материи де Бройля, связанных с разными объектами.

Вверху: Длина волны де Бройля для коровы будет в несколько триллионов раз меньше атомных измерений – столь короткую волну невозможно будет даже обнаружить. Ее размеры будут находиться в таком масштабе, где значение теряет сама идея пространства. Так что нам не стоит беспокоиться о волновых коровах.

В середине: Длина волны де Бройля для молекулы С60 (фуллерена), движущейся на скорости несколько метров в секунду, примерно равна размеру самой молекулы (около одного нанометра). Внизу: Длина волны де Бройля для электрона, движущегося на скорости несколько метров в секунду, равна толщине человеческого волоса (доля миллиметра). Это значение достаточно велико, чтобы его квантовая волновая природа с легкостью проявляла себя в экспериментах и даже в повседневной жизни.


Не заметить здесь очевидную симметрию де Бройль не смог. Почему фотоны могут обладать одновременно волновыми и корпускулярными свойствами, а электроны не могут? В конце концов, комптоновское рассеяние, как этот процесс называют сегодня, предлагало картину сталкивающихся твердых частиц. Так если фотон можно поставить на одну доску с электроном, может быть, верно и обратное? Экспериментальное подтверждение волновой природы электронов появилось лишь в 1927 году, когда было впервые продемонстрировано, что пучки электронов также дают картину интерференции, – и это стало первым успешным подтверждением фокуса с двумя прорезями в отношении частиц материи.

Но как именно рассуждал де Бройль? Волновая природа материи всегда несколько сбивает с толку. Сам де Бройль не выдвинул предположения, что электрон представляет собой распространенную волну (хотя это предположение вскоре было выдвинуто другими учеными), а сказал, что он является твердой локализованной частицей, переносимой так называемым волновым пакетом. Это изолированный участок волны, подобный пульсу, который можно создать путем наложения многих волн с разной амплитудой и длиной волны таким образом, чтобы они интерферировали и нейтрализовали друг друга везде, кроме крошечной локализованной области, где находится частица.

Де Бройль вывел формулу, которая связала импульс частицы, будь это фотон или электрон, с длиной связанной с ней волны: чем больше импульс, тем короче длина волны. Потому мы и не можем засечь волновое поведение окружающих нас объектов – людей, футбольных мячей, песчинок. Эти объекты на много порядков тяжелее электронов, а длина их волн на много порядков короче, чем длины на субатомном уровне, поэтому ее невозможно обнаружить. Но можно ли измерить волны материи, связанные с электронами и даже целыми атомами? Более того, если они действительно существуют, может, это и объясняет фокус с двумя прорезями? Может, именно связанная с атомом волна проходит сквозь обе прорези одновременно, в то время как сам атом проходит лишь через одну из них?

В то время революционное предложение Луи де Бройля показалось его коллегам-физикам слишком радикальным. Возникли даже сомнения, присуждать ли ему докторскую степень, но в последний момент в научный спор вмешался сам Эйнштейн, который ознакомился с работой де Бройля и убедил экзаменаторов в справедливости его выводов.

Вскоре после того как изыскания де Бройля получили известность, все начало происходить очень быстро. Физики по всей Европе принялись сводить воедино фрагменты нового математического аппарата и спорить о получаемых результатах. На место становились не только кусочки математической мозаики – ученые одновременно и независимо друг от друга совершали открытия, связь между которыми удалось установить лишь значительно позже.

В связи с этим я закончу эту историческую главу и перейду к описанию того, что квантовая механика сообщает нам о поведении природы, вместо того чтобы рассказывать, как физики пришли к тому или иному выводу. Квантовую механику можно объяснить несколькими способами, и следовать тому, как отцы-основатели этой области развивали свои идеи, вряд ли удобнее всего. Например, многие научно-популярные книги о квантовой механике построены на объяснении феноменов вроде «корпускулярно-волнового дуализма», которые называются фундаментальными идеями, лежащими в основе всей теории. Это часто путает читателей и сбивает их с толку. Избежать этого нелегко, но я все же попытаюсь.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации