Текст книги "Квант"
Автор книги: Джим Аль-Халили
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 19 (всего у книги 21 страниц)
Глава 10. В новое тысячелетие
Мы увидели, какую роль квантовая механика сыграла в столь многих областях физики и химии и какое влияние она оказала на них, а также узнали, насколько важной она стала для технологического прогресса прошедшего века, поспособствовав появлению таких технологий, как лазер, полупроводник и ядерный реактор. В последней главе нам пора вернуться к основным идеям, включая суперпозицию, запутанность и декогеренцию, и посмотреть, какую роль они могут сыграть в технологиях XXI века.
Умные эксперименты
Интересно, как бы Нильс Бор поступил с целым рядом невероятных экспериментальных прорывов в области атомной физики и квантовой оптики, произошедших за последнее десятилетие? Пионеры квантовой мысли настаивали, что предсказания квантовой механики имеют смысл только при ее применении к большому количеству (или скоплению) идентичных квантовых систем. Кроме того, они утверждали, что между микроскопическим миром, где действуют квантовые законы, и макроскопическим миром измерительных приборов, подчиняющихся законам классической физики, должна проходить четкая граница.
Оба этих ограничения теперь сняты, поскольку исследователи уже работают с отдельными атомами и фотонами.
Здесь и нашлось еще одно применение для невероятно точных лазеров – они стали устройством для манипулирования отдельными атомами. Когда атомы с помощью электромагнитных полей помещают в ультравысокий вакуум, точно настроенные и нацеленные лазеры могут использоваться на их охлаждения. Должен заметить, что наличие у атомов «температуры» просто означает, что атомы не стоят на месте: чем более возбужден атом, тем выше его температура. Свет лазера заставляет атом терять энергию и «остывать». Сегодня лазеры могут спокойно использоваться для охлаждения атомов до температуры, которая менее чем на одну тысячную градуса выше абсолютного нуля. Затем они могут функционировать в качестве оптических пинцетов, чтобы удерживать атомы на месте, а также толкать их при помощи точных импульсов энергии, тем самым отправляя их в квантовые суперпозиции и запутанные состояния.
Примечательно, что эти техники удалось успешно применить лишь в последнее десятилетие прошлого века, поэтому в последние несколько лет на страницах журнала Nature то и дело появлялись статьи об этой удаче. Мы наконец можем изучить границу квантового и классического миров.
Вот пример того, как быстро меняются идеи. Студентов-физиков долгое время учили, что «увидеть» можно только объект, размерами не меньше длины волны того света, который на него направляют. Это привело к изобретению электронного микроскопа, описанного в предыдущей главе. Длина волны видимого света составляет примерно половину микрона (одной тысячной миллиметра), а атомы более чем в тысячу раз меньше. Теперь учебники надо переписывать: сегодня исследователи без особого труда могут ловить отдельные атомы, рассматривать и отслеживать их и вообще манипулировать ими на свое усмотрение, используя лазерные пучки видимого света.
Прежде чем я расскажу, как некоторые из этих техник в будущем смогут быть использованы для создания устройства, называемого квантовым компьютером, давайте рассмотрим несколько экспериментов. Каким образом видимый свет может позволить нам разглядеть нечто столь малое, как атом? Длина его волны для этого явно слишком велика.
Как отследить атом
Сегодня физики могут обнаруживать образец размером несколько тысяч атомов, направляя на него свет, но происходит это не так, как вы думаете: они не просто отражают свет от образца, как при использовании микроскопа. Если частота света настроена таким образом, чтобы его фотоны обладали энергией, которая, согласно формуле Планка, соответствует энергии атомного перехода, то некоторые фотоны поглощаются атомами. Не забывайте, что под переходом подразумевается лишь то, что один из электронов атома перепрыгивает на более высокий энергетический уровень. Таким образом, используя свет этой «резонирующей» частоты, мы наблюдаем сокращение общего количества фотонов, поскольку несколько тысяч особенно смелых фотонов жертвуют собой ради атомов. Так мы и узнаем о наличии атомов.
Связанная с этим весьма хитроумная идея позволяет обнаружить единичный атом. Вместо того чтобы светить на него лазерным светом, настроенным на резонирующую частоту, мы смотрим, что происходит со светом, частота которого не позволяет ему быть поглощенным. Сначала отдельные атомы ловятся и охлаждаются, а затем по одному впускаются в крошечное устройство, называемое оптическим резонатором, длина которого составляет малую долю миллиметра, а стенки обладают высоким индексом отражения. Внутрь резонатора направляется свет очень слабого лазера, в результате чего в любой момент времени вместе с атомом от стенок отражается в среднем всего один фотон! Каждый раз, когда этот фотон встречается с атомом, он чуть замедляется при движении «сквозь» атом[73]73
Технически мы говорим, что происходит сдвиг протона по фазе. Понятие фазы связано с волнообразным поведением – как в терминах «в фазе» и «не в фазе» – и все же может применяться к отдельному фотону света, который описывается при помощи волновой функции, то есть величины, содержащей в себе информацию о фазе.
[Закрыть] (точно так же, как свет замедляется при движении сквозь воду или стекло). Это вызывает небольшое изменение волновой функции протона, которое постепенно нарастает, пока он тысячи раз проходит сквозь атом, и в конце концов эффект становится измеримым.
Физики Института квантовой оптики общества Макса Планка в Германии использовали эту технику, чтобы отследить траекторию атома, движущегося внутри резонатора. Само собой, происходящее в таком случае равносильно постоянному наблюдению за атомом, поэтому он всегда ведет себя, как классическая частица.
Наблюдая декогеренцию в действии
Ряд экспериментов в сфере квантовой оптики действительно привел к появлению громких заголовков в научных журналах последних лет. Три четверти века физики-теоретики и философы обсуждали такие фундаментальные идеи, как где проходит граница между квантовым и классическим мирами, используя мысленные эксперименты и аргументы, основанные на различных подходах к интерпретации квантовой механики. Теперь эти идеи наконец-то можно проверить в лабораторных условиях.
В Главе 5 я описал, как декогеренция решила один из фундаментальных вопросов, связанных с проблемой измерения, объяснив, почему мы никогда не видим котов живыми и мертвыми одновременно. Феномен декогеренции доказывает, как мы вполне справедливо ожидаем, что четкой границы между микро – и макромиром не существует – просто эффект интерференции суперпозиций исчезает тем быстрее, чем сложнее становится квантовая система. Интерференции чрезвычайно быстро пропадают, когда квантовая система вступает в контакт с макроскопической окружающей средой. Следовательно, хитрость в том, чтобы изучать «мезоскопические» системы, которые находятся где-то посередине между микро – и макромиром, и надеяться, что рано или поздно нам удастся увидеть декогеренцию в действии.
В 1996 году в Боулдере (Колорадо) был проведен эксперимент, воссоздавший первое «состояние кота Шрёдингера» на атоме, сначала поймав его в ловушку силового поля, а затем замедлив его движение посредством охлаждения лазером. Еще два лазера применялись для «вынужденного» ввода атома в суперпозицию пребывания в двух местах одновременно.
В мае 1996 года группа экспериментаторов Национального института стандартов и технологий (NIST) в Боулдере (Колорадо) создали, как они выразились, подобное «состоянию кота Шрёдингера» состояние, поместив на место кота отдельный атом. Сначала они поймали атом и лазером охладили его до температуры, настолько близкой к абсолютному нулю, насколько это возможно без нарушения принципа неопределенности[74]74
При абсолютном нуле атом должен быть стационарен (то есть обладать нулевым импульсом) и прикован к одному месту. Но тогда мы будем точно знать и его положение, и величину импульса, что нарушает принцип неопределенности. Следовательно, атомы всегда обладают небольшим запасом энергии, который называется нулевой энергией, и охладить их до абсолютного нуля невозможно.
[Закрыть], а затем подтолкнули его серией контролируемых лазерных импульсов, которые ввели атом в суперпозицию двух различных квантовых состояний, основанных на энергии его внешних электронов.
Само по себе это не представляет особенного интереса. Атомы часто пребывают в суперпозициях. Интересно, что лазеры сделали различные состояния атома квантово запутанными с состояниями его движения, поэтому он оказался и в суперпозиции движения одновременно в двух направлениях. Атом колеблется в своей ловушке, причем два состояния движутся совершенно не в фазу. Когда они расходятся дальше всего, между ними оказывается расстояние, почти в тысячу раз превышающее диаметр атома. Обратите внимание, что под «ними» я подразумеваю две части волновой функции одного атома.
Но я-то знаю, что волновые функции не локализованы в пространстве, так что в подобном поведении нет ничего необычного. И все же каждая колеблющаяся часть волновой функции распространяется всего на одну десятую максимального расхождения между двумя частями. Именно поэтому описываемая ситуация отличается от обычного эксперимента с двумя прорезями. В конце концов, атом, который проходит сквозь обе прорези, тоже пребывает в суперпозиции нахождения в двух местах одновременно. Но в этом случае две части волновой функции распространяются, как только прорези пройдены, и накладываются друг на друга, а следовательно, интерферируют. Здесь же каждая часть волновой функции остается локализованной и не распространяется в пространстве. Когда две части оказываются в точке максимального расхождения, наложения практически не происходит.
Как только ученые научились воссоздавать такие мезоскопические состояния кота Шрёдингера, следующим шагом стало их применение в изучении природы декогеренции. К декабрю 1996 года был проведен первый успешный эксперимент в этой сфере, который осуществила группа ученых под руководством Сержа Ароша, работавшая в Высшей нормальной школе (ENS) в Париже. Вместо того чтобы просто ввести атом в суперпозицию, они сумели запутать состояние атома с электромагнитным полем, состоящим всего из нескольких фотонов, заключенных внутри резонатора. Таким образом электромагнитное поле было тоже введено в суперпозицию колебания в двух разных фазах одновременно.
Парижский эксперимент 1996 года впервые доказал, что декогеренция представляет собой реальный физический процесс. Изучая состояния двух атомов (квантовой кошки и квантовой мышки), проходящих сквозь резонатор, содержащий электромагнитное поле в суперпозиции, можно измерить, насколько быстро произошла декогеренция поля.
Далее ученые измерили, как долго электромагнитное поле может пребывать в этой квантовой суперпозиции. Взаимодействие с окружающей средой происходило, как только из резонатора выходил хотя бы один фотон, который выдавал квантовое состояние внешнему миру. Чтобы измерить, насколько быстро это случалось, ученые отправляли второй атом, который называли квантовой мышкой[75]75
Потому что он проверял состояние квантовой кошки.
[Закрыть], который сам оказывался запутанным с квантовым состоянием поля. Это приводило к возникновению поддающейся измерению интерференции между различными частями волновой функции второго атома. Изменяя временной интервал перед запуском атома-мышки, ученые наблюдали декогеренцию в действии. Скорость потери суперпозиции электромагнитного поля зависит от того, насколько «не в фазе» пребывали два компонента. Обычно время декогеренции можно было растянуть до десятой доли миллисекунды. Наконец-то ученым удалось неопровержимо доказать, что декогеренция реальна.
В последние годы возник интерес к перспективам так называемого моделирования сред, которое предполагает сдерживание декогеренции путем как можно более долгого поддержания квантовых суперпозиций пойманных в ловушку атомов. Как же это делается? И снова с помощью лазеров. Но эта задача гораздо сложнее и требует совместной работы многих лазеров. Нужны лазеры, которые ловят атом, лазеры, которые его охлаждают, и лазеры, которые вводят его в суперпозицию. В общем, в лазерной промышленности не заскучаешь!
Рекордная запутанность
Наблюдение декогеренции в действии и контроль за нею с успехом применяются в развивающихся сферах квантовой криптографии, квантовых вычислений и квантовой телепортации, которые я опишу чуть дальше в этой главе. Но прежде мне стоит кратко упомянуть о недавнем прогрессе в укрощении еще одного фундаментального свойства волновой функции – квантовой запутанности.
Когда я перейду к описанию квантовых вычислений, мы увидим, что для максимально эффективного использования квантовых суперпозиций необходимо запутать как можно больше квантовых состояний. В 1990-е годы различные группы исследователей успешно запутывали по два-три атома или фотона, но это было нелегко. Взаимодействие с окружающей средой любой из запутанных частиц приравнивалось к измерению и приводило к коллапсу деликатных суперпозиций, которые рушились, подобно карточному домику. Затем в марте 2000 года группа ученых из NIST опубликовала на страницах журнала Nature[76]76
С. А. Sackett et al. Nature, vol. 404 (16 марта 2000). P. 256.
[Закрыть] отчет об успешном применении новой техники запутывания вереницы из четырех пойманных в ловушку атомов. Каждый атом вводился в суперпозицию, после чего все четыре запутывались вместе. Этот метод, как утверждали ученые, был вполне применим и к гораздо большему количеству частиц.
О другом прорыве в сентябре 2001 года сообщила группа из датского города Орхус, которой удалось запутать квантовые состояния двух макроскопических объектов – образцов газа цезия, в каждом из которых содержались триллионы атомов! Запутанность продолжалась почти целую миллисекунду. Так, не смейтесь. Я понимаю, что миллисекунда довольно коротка, но это все же очень впечатляющий результат. Видите ли, если каждый из образцов пребывал в суперпозиции двух состояний, в каждом из которых атомы вели себя одинаково – все занимали одно энергетическое состояние или вращались в одну сторону, – то выход всего одного атома выдавал состояние всего образца, приводя к коллапсу суперпозиции. Это предполагает, что время декогеренции составляло менее одной фемтосекунды[77]77
Выберите одно из следующих определений: фемтосекунда равна 10-15 с, или одной миллиардной микросекунды, или одной миллионной одной миллиардной секунды, или… В общем, она в любом случае очень коротка.
[Закрыть]. Однако ученые смогли поддержать запутанное состояние в триллион раз дольше!
Чтобы достичь такого результата, они не стали вызывать так называемую максимальную запутанность, в которой все атомы в каждом из образцов ведут себя одинаково. Вместо этого они ввели оба образца атомов в суперпозицию двух состояний, в каждом из которых чуть более половины атомов вращалось в одну сторону, а остальные вращались в другую.
Таким образом, если атом просачивался наружу и выдавал направление своего спина, этого было недостаточно для коллапса волновой функции всего образца до одного из состояний, так как состояние спина этого атома могло оказаться любым из состояний всего образца. Следовательно, потеря когерентности в состоянии отдельного атома, который вырывается наружу, приводит лишь к незначительному нарушению общей суперпозиции. Значит, выяснение состояния одного атома не приравнивается к измерению состояния всего образца.
Квантовая криптография
Вышеописанные техники представляют собой не просто удачное описание самых странных аспектов квантовой механики. Они имеют и практическое применение: с их помощью, возможно, однажды претворится в жизнь мечта о создании квантового компьютера. Но запутанность уже удалось применить на практике. Сфера ее использования называется квантовой криптографией.
Сначала я опишу, чем занимается классическая криптография. Если вы хоть раз задумывались, насколько безопасно давать номер своей кредитной карты при совершении покупок онлайн, поверьте, беспокоиться не стоит. Пока что это чрезвычайно безопасно. Математики годами искали способы позволить двум сторонам обмениваться информацией в атмосфере полной секретности. Стандартом этого стала отправка закодированного сообщения в надежде, что шпион не сумеет взломать код. Есть целый ряд хитрых фокусов для обеспечения безопасности зашифрованных сообщений, например схемы «открытых ключей». Простейшая форма этой идеи основана на следующем примере. Если я хочу получить от вас тайное сообщение, я посылаю вам пустую, открытую, непробиваемую коробку и открытый висячий замок, ключ к которому есть только у меня. Вы кладете сообщение в коробку и навешиваете замок, после чего отправляете ее обратно мне. Замок таков, что открыть его можно только моим ключом.
На практике системы вроде этой основываются на идее, что определенные математические операции легче совершить в одном направлении, чем в другом, например умножение и разложение на множители. Если я скажу вам, что х умножить на у равняется 37523, сколько времени вам понадобится, чтобы разложить произведение на множители и сообщить мне значения х и у? Но если я задам вам обратную задачу, скажу, что 239 умножить на 157 равняется z и попрошу вычислить z, уверен, вы дадите ответ гораздо быстрее. Самый популярный метод шифрования с открытым ключом основан на сложности факторизации очень больших чисел. Это занимает много времени даже у мощнейших компьютеров. К примеру, на факторизацию тысячезначного числа уходит больше времени, чем возраст Вселенной, даже при использовании мощнейшего в мире компьютера!
Однако, если когда-нибудь мы сумеем создать квантовый компьютер, у нас может появиться способ гораздо более быстрой факторизации чисел. Если это произойдет, безопасность современных систем шифрования очень быстро окажется под угрозой. Впрочем, даже в отсутствие квантовых компьютеров нельзя забывать о прогрессе в математике, который может привести к открытию алгоритма для факторизации больших чисел. К счастью, есть и другой тип криптографии, который гарантирует полную безопасность и основывается на квантовой механике.
Главная идея квантовой криптографии заключается в разрешении передачи криптографического «ключа» между удаленными друг от друга сторонами – которые в литературе называют Алиса (отправитель) и Боб (получатель) – в условиях абсолютной безопасности, обеспечиваемой законами физики. Этот ключ позволяет отправителю зашифровать, а получателю расшифровать текст послания. Так что квантовую криптографию корректнее называть квантовым распределением ключей.
В настоящее время разработаны две техники. Обе основаны на том, что, согласно квантовой механике, любая попытка шпиона перехватить ключ предполагает некоторое измерение, а это неизбежно нарушает состояние системы и предупреждает отправителя и получателя. Первая техника, протокол Беннета – Брассара, названный в честь ученых, которые изобрели его в 1984 году, полагается на идею о том, что Алиса и Боб проводят измерения и обмениваются фотонами. Определенные свойства этих фотонов, в частности их поляризацию, затем можно преобразовать в бинарную последовательность нулей и единиц, чтобы создать ключ. Не вдаваясь в технические детали, скажу, что в основе этого метода лежат квантовая суперпозиция и принцип неопределенности.
В начале 1990-х годов Артур Экерт открыл второй протокол, который основывается на феноменах нелокальности и запутанности. Здесь Боб посылает Алисе один из пары запутанных фотонов, который она каким-то образом измеряет и отправляет обратно. Затем Боб проводит измерение комбинированного состояния, с помощью которого выясняет, какое именно измерение произвела Алиса. Его знание о серии измерений Алисы и составляет ключ. Любая попытка шпиона перехватить фотон окажет влияние на его партнера и предупредит Боба.
Закон Мура
Не знаю, хранится ли он до сих пор в одном из темных углов моей квартиры, но более двадцати лет назад я купил свой первый программируемый компьютер. Это был Sinclair ZX81[78]78
В Северной Америке его продавали под брендом Timex, модель TS-1000. В Великобритании он стал первым компьютером ценой менее ста фунтов.
[Закрыть] с процессором частотой 3 МГц и одним килобайтом памяти. Я добавил дополнительную память, подсоединив к нему плату ОЗУ на 16 килобайт, которая хотя бы дала мне возможность набирать более одного экрана кода, прежде чем память заполнялась до отказа. Но любой незначительный толчок – и физическое соединение, обеспечиваемое неисчерпаемым запасом клея-пластилина, разрывалось, стирая все, что я успел напечатать. В общем, использовать этот компьютер мне удавалось только для создания коротких программ для расчета данных для моих лабораторных отчетов, что занимало бы существенно больше времени при применении карманного калькулятора. Ноутбук, на котором я работаю сегодня, по размеру сравним с тем компьютером, но снабжен процессором частотой 1000 МГц (в триста раз быстрее) и 15 гигабайтами дискового пространства (в миллион раз больше). При этом ему уже больше года, так что его нельзя назвать последним словом техники.
В 1965 году один из основателей компании Intel Гордон Мур предсказал, что в обозримом будущем мощность компьютеров будет удваиваться каждые восемнадцать месяцев. Его предсказание, теперь называемое законом Мура, оказалось на удивление точным, и теперь нам всем известно, что наши компьютеры необходимо регулярно обновлять, чтобы они поддерживали все более и более сложные программы. Но сколько еще так может продолжаться? Знаем ли мы, когда произойдет нарушение закона Мура?
Оказывается, мы действительно знаем, когда это случится, при условии что нынешний вектор развития технологий останется неизменным. В предыдущей главе я упомянул, что лазеры используются для вырезания крошечных узоров интегральных микросхем на поверхности кремниевых чипов. Повышение компьютерной мощности зависит от постоянной миниатюризации этого процесса. Учитывая современное развитие технологий, это будет без проблем продолжаться еще около двадцати лет, по мере того как длина волны лазера будет становиться все короче и короче. Однако было высказано предположение, что закон Мура резко перестанет действовать через пять-десять лет из-за неизбежной проблемы повышения миниатюризации, которая называется тепловым шумом. Но даже без нее мы в конце концов наткнемся на так называемый «первый» барьер. Это произойдет, когда длина волны лазерного пучка станет такова, что ширина каждого транзистора микрочипа будет составлять всего 0,1 микрона. Это означает, что около одной тысячи транзисторов, расположенных вплотную друг к другу на чипе, можно будет разметить на срезе человеческого волоса. К этому моменту длина волны лазеров будет находиться глубоко в ультрафиолетовом диапазоне и нам придется искать другую технику создания еще более тонких пучков с гораздо более короткими длинами волн. Альтернативой дальнейшей миниатюризации чипов может стать замена кремния арсенидом галлия. Атомное строение этого полупроводящего материала позволит размещенным на его поверхности микросхемам гораздо быстрее проводить электричество.
В итоге мы достигнем другого барьера, называемого критерием Рэлея, который гласит, что минимально разрешимые элементы чипа должны быть не меньше, чем половина длины волны пучка. По достижении этой стадии нам следует начать учитывать квантово-механические эффекты. К примеру, сейчас изучается возможность использования квантовой запутанности фотонов лазерного пучка, чтобы отодвинуть этот барьер, но, скорее всего, ненамного.
Как только мы дойдем до молекулярных масштабов, что произойдет примерно к 2020 году, век полупроводниковых чипов закончится. Исследователи уже ищут альтернативы, и две области кажутся довольно перспективными. Первая связана с использованием биомолекулярных компьютеров, которые основываются на способности молекул ДНК хранить невероятное количество информации, благодаря чему однажды они могут быть применены для создания молекулярных логических схем. Другая заключается в возможности использования квантовых транзисторов, которые полагаются на свойства отдельных электронов, искусственно помещенных в «квантовые колодцы» немногим больше атома. Немного изменяя напряжение в этих колодцах, мы можем контролировать поведение электронов подобным действию транзистора способом.
Все вышеописанные достижения представляют собой не просто спекуляцию и помогут росту компьютерной мощности еще при нашей жизни. Однако все большее число квантовых физиков работает над настоящей проверкой квантовой странности. Они не сомневаются, что в этом веке им удастся создать величайшую квантовую машину – квантовый компьютер.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.