Электронная библиотека » Джим Аль-Халили » » онлайн чтение - страница 8

Текст книги "Квант"


  • Текст добавлен: 21 апреля 2022, 17:34


Автор книги: Джим Аль-Халили


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 21 страниц)

Шрифт:
- 100% +
ЭПР-парадокс и теорема Белла

В своей оригинальной форме эксперимент Эйнштейна – Подольского – Розена должен был показать, что квантовая механика дает неполное описание реальности, а все ее странности объясняются тем, что мы не до конца понимаем устройство субатомного мира. Если поставить это в исторический контекст, аргументы, представленные в статье ЭПР, были частью длительного спора, развернувшегося в 1920 – 1930-е годы между двумя гигантами физики XX века Эйнштейном и Бором. В то время, конечно, их разногласия носили лишь философский характер, так как никто не знал, как осуществить подобный эксперимент на практике.

Затем в 1964 году ирландский физик Джон Белл предложил способ раз и навсегда выяснить, кто был прав. Теорема Белла, или неравенство Белла, как его иногда называют, стала важным шагом в медленном продвижении к полному пониманию квантовой механики. Многие действительно считают ее самым важным научным открытием XX века. Целый ряд научно-популярных книг о квантовой механике подробно описывает ее в простых, нематематических терминах. Но правда в том, что теорему Белла не описать парой слов – читателю-неспециалисту все равно придется поломать над ней голову.

Однако я все же очерчу основные принципы. Эйнштейн утверждал, что причину, по которой две частицы в ЭПР-эксперименте обладают взаимосвязанными характеристиками, сложно назвать удивительной. В конце концов, в прошлом они пребывали в контакте (так как были испущены из одного источника). Если их характеристики заданы изначально, им нет никакой нужды передавать друг другу сигналы на скорости выше скорости света. Эти заранее заданные характеристики, которые квантовая механика не описывает в отсутствие измерений, называются «скрытыми параметрами» и не требуют никакой нелокальности, вполне объяснимо тревожившей Эйнштейна. Но был ли Эйнштейн прав? Могут ли эти скрытые параметры объяснить квантовую странность?

Теорема Белла перенесла спор о природе квантовой реальности из области философии в сферу экспериментальной физики[32]32
  За более подробным, хотя и нетехническим, описанием теоремы Белла я рекомендую обратиться к книге Дэна Стайера The Strange World of Quantum Mechanics (Cambridge University Press, 2000). На самом деле существует и вторая теорема Белла (сегодня ее называют теоремой Белла – Коэна – Шпекера), которую еще сложнее объяснить без применения формальной математики. Самые смелые читатели могут узнать о ней больше в обзорной статье Дэвида Мермина (Reviews of Modern Physics, Vol. 65, 1993, с. 803).


[Закрыть]
. Белл вывел формулу, которая показала, что если Эйнштейн прав, то корреляция двух частиц должна быть максимальной. Иными словами, раз частицы не могут заранее знать, какие именно измерения будут проводиться в отношении каждой из них, возможности их тайной подготовки ограничены. Следовательно, даже при условии существования скрытых параметров, которые зада ют характеристики обеих частиц, синхронизация результатов измерений этих частиц не безгранична. Однако если квантовая механика и идея об одной волновой функции, описывающей запутанное состояние пары, верны, то корреляция, или взаимодействие, будет более сильной, чем этот максимум – в нарушение неравенства Белла.

Не буду вдаваться в подробности и описывать, какой именно эксперимент нужно провести, чтобы проверить неравенство Белла, – не потому, что это слишком сложно, а потому, что анализ полученных данных и вывод поразительных следствий займет не одну страницу. Тем не менее опыт довольно очевиден и уже не раз был описан в подробностях в других источниках.

В 1982 году в Париже команда физиков под руководством Алена Аспе наконец сумела провести ЭПР-эксперимент и проверить теорему Белла. Они использовали два фотона, испускаемые атомом кальция, которые находились во взаимосвязи по направлению поляризации (под прямым углом друг к другу). Их результаты убедили большинство физиков, что неравенство Белла нарушается, а следовательно, квантовая механика при всей своей странности на самом деле представляет собой принцип поведения природы. Будь Эйнштейн еще жив, он бы, без сомнения, наконец признал поражение. Квантовая механика действительно нелокальна или, как говорил Эйнштейн, задействует «причудливое действие на расстоянии».

Многие физики, конечно, предпочли бы не говорить об этой нелокальности. Они сказали бы, что она необходима, если мы хотим найти физический механизм, объясняющий экспериментальные результаты. По их мнению, мы можем лишь утверждать, что измерения, проводимые в отношении каждой частицы, открывают некоторый аспект природы этой частицы, который прежде был неизвестен. На основании этих измерений мы не можем выяснить, какими характеристиками частица обладала до проведения измерений, более того, этим характеристикам даже не были присущи определенные величины, поскольку они пребывали в суперпозиции всех возможных вариантов, ожидая, пока измерение заставит частицу определиться, а следовательно, посредством запутанности, определится и ее далекий партнер! Однако, несмотря на столь прагматичные заявления, нелокальность никуда не пропадает – многие просто предпочитают низводить ее до уровня абстрактной математики, отрицая существование физической мгновенной связи между частицами. Этот взгляд лучше всего изложил работающий в Корнеллском университете физик Дэвид Мермин:

«Полагаю, справедливо сказать, что большинство физиков не беспокоится по поводу [экспериментального подтверждения нарушения неравенства Белла]. Меньшинство же считает, что это происходит, поскольку большинство просто отказывается думать об этой проблеме, однако, учитывая, что за полвека, которые прошли с момента опубликования статьи Эйнштейна, Подольского и Розена, из этой головоломки так ничего и не выросло, винить их довольно сложно. Загадка [ЭПР-эксперимента] заключается в том, что он дает нам набор корреляций, для которых нет никакого объяснения. Большинство, скорее всего, будет отрицать даже это, утверждая, что квантовая теория дает необходимое объяснение. Это объяснение, однако, есть не что иное, как рецепт вычисления корреляций. Этот вычислительный алгоритм так красив и так действенен, что он может сам по себе приобрести убедительный характер полного объяснения».

Квантовая хаология

Сэр Майкл Берри, Профессор Королевского общества, Бристольский университет


Казалось бы, квантовый мир существенно отличается от мира классической физики, который он отвергает. Квантовые энергетические уровни, волновые функции и вероятности кажутся несовместимыми с ньютонианскими частицами, движущимися по определенным орбитам. И все же две теории должны быть тесно связаны. Даже Луну можно считать квантовой частицей, так что должны быть обстоятельства – грубо говоря, большие, тяжелые объекты, – для которых квантовые и классические предсказания совпадают. Но «границы применимости классической теории» размыты, и существенное число современных исследований нацелено на то, чтобы их понять.

Сложности с границами применимости классической теории становятся особенно большими, когда ньютонианские орбиты хаотичны. Хаос – это длительная нестабильность, в которой движение, хотя и является четко определенным, столь чувствительно, что его предсказание на практике невозможно. В хаосе нет регулярных повторений. Знакомый всем пример – погода. Еще один – беспорядочное вращение одного из спутников Сатурна, Гипериона, огромной каменной картофелины размером с Нью-Йорк.

Хаос представляет собой проблему, так как развертывание квантовой волны во времени определяется соответствующими уровнями энергии. Математическим следствием существования энергетических уровней является тот факт, что квантовое развитие времени включает в себя лишь периодическое движение на определенной частоте – то есть противоположность хаосу. Следовательно, в квантовой механике нет хаоса, одна регулярность. Как же тогда может существовать хаос в нашем мире?

На этот вопрос два ответа. Первый заключается в том, что по достижении границ применимости классической теории – когда тела становятся больше и тяжелее – время, необходимое на подавление хаоса квантовой механикой, тоже становится больше и, строго говоря, стремится к бесконечности. Однако это объяснение не годится, так как «время подавления хаоса» часто бывает на удивление кратким – даже для Гипериона оно составляет всего несколько десятилетий, что в астрономических масштабах весьма немного.

Истинная причина существования хаоса заключается в том, что большие квантовые системы сложно изолировать от окружения. Даже «поток фотонов» с Солнца (вторичное излучение которого дает свет, благодаря чему мы видим Гиперион) разрушает деликатную интерференцию, лежащую в основе квантовой регулярности. Большие квантовые системы очень чувствительны к неконтролируемым внешним воздействиям – этот эффект называется декогеренцией. В границах применимости классической теории квантовое подавление хаоса само по себе подавляется декогенерцией, в результате чего хаос появляется снова в качестве знакомой черты крупномасштабного мира.

Квантовые системы меньшего размера, такие как атомы в сильных магнитных полях, сильно вибрирующие молекулы или заключенные в «квантовые точки» с несимметричными границами электроны, можно успешно изолировать от окружения. Следовательно, декогеренция в них не возникает, а потому не существует и квантового хаоса, хотя соответствующие им классические системы хаотичны. Тем не менее эти квантовые системы целым рядом способов отражают классический хаос, изучением чего и занимается квантовая хаология.

Энергетические уровни сильно возбужденных состояний формируют набор чисел, которые можно изучить статистически. Эта статистика (например, вероятность, определяющая расстояние между соседними уровнями) различна в условиях хаоса и в условиях регулярности. Точно так же различен и рисунок, описывающий состояния квантовых волн. Удивительным и даже загадочным открытием стало то, что расположение энергетических уровней в квантовой хаологии связано с одной из глубочайших проблем математики и свойствами простых чисел.

Глава 5. Наблюдатели и наблюдаемое

Основы квантовой механики, которые я уже описал, могли показаться вам непонятными, а порой и притянутыми за уши, но факт остается фактом: и с математической, и с логической точки зрения квантовые законы однозначны и четко определены. Хотя даже многие квантовые физики сталкиваются с неудобствами при переводе странных, абстрактных свойств волновой функции на язык реального мира, математический аппарат и формализм квантовой механики слишком успешны и слишком точны, чтобы сомневаться в том, что она отражает фундаментальные истины. Однако остается последняя загадка, которую квантовые физики не могут объяснить удовлетворительным образом. Многие скажут, что это самый важный и при этом самый загадочный аспект этой науки, а именно: почему, установив наблюдение, мы не можем увидеть волновую функцию – или ту физическую реальность, которую она описывает, – в действии? Или, иными словами, почему картина интерференции исчезает, когда мы пытаемся проверить, сквозь какую из прорезей прошел атом? Квантовая механика не дает ответа на эти вопросы, и они составляют основу так называемой проблемы измерения в квантовой механике. Мы повсюду видим эффекты влияния волновой функции – с ее вероятностной природой, нелокальностью и способностью к формированию суперпозиций и запутанных состояний. На самом деле эти свойства необходимы нам, чтобы объяснить плотность материи, сияние Солнца, даже возникновение атомов, из которых состоят наши тела. Но проблема никуда не пропадает: как мы понимаем, как именно распространенная волновая функция вдруг преобразуется в локализованную частицу, стоит нам попытаться установить за ней наблюдение?

Квантовые физики называют этот загадочный процесс «коллапсом волновой функции» – в предыдущей главе я и сам использовал эту фразу. Однако относительно недавнее открытие убедило многих физиков, что в такой терминологии нет необходимости. Впрочем, пока что никто не знает наверняка, решена ли проблема измерения или нет.

Я начну с описания того, что мы имеем в виду под «наблюдением».

Что видишь, то и получишь

В нашем обычном мире макроскопических объектов я принимаю на веру, что любой объект является именно тем, чем он мне кажется. Естественно, я подразумеваю при этом, что могу доверять собственным глазам и не нахожусь под действием галлюциногенных препаратов, а освещение вполне достаточно. Действительно, чтобы я увидел какой-либо объект, этот объект должен либо испускать свет, либо – что более вероятно – отражать его, чтобы он попал мне в глаза. Затем изображение, которое формируется у меня на сетчатке, интерпретируется моим мозгом.

Но вам не приходило в голову, что посредством отражения света от объекта мы возмущаем этот объект и тем самым едва заметно изменяем его, к примеру, нагревая его на крошечную долю градуса или заставляя его чуть отступить от своего изначального положения? Само собой, когда я смотрю на стол или на машину – или даже на клетку под микроскопом, – столкновение фотонов света не дает никакого эффекта, который мне под силу измерить. Однако, когда мы имеем дело с квантовыми объектами, которые сами сравнимы по размерам с фотонами, все совершенно иначе. Вспомните школьную физику и третий закон Ньютона: любому действию есть равное и противоположное противодействие. Чтобы «увидеть» электрон, нам нужно, чтобы от него отразился фотон. Но когда мы засечем этот фотон, электрон уже не будет в том месте, где он был бы, не случись столкновение.

Это неизбежное возмущение квантовой частицы при наблюдении часто используется для описания проблемы измерения в квантовой физике и даже легло в основу принципа неопределенности Гейзенберга. Здесь мы имеем дело не только с чрезмерным упрощением, но и с ошибочным суждением, так как перед нами тотчас возникает картина классических шариков, отталкивающихся друг от друга. Хотя эта картина очень важна для доказательства корпускулярной природы света, как мы видели в Главе 2, когда я описывал фотоэлектрический эффект и эксперименты Комптона с рассеянием, в которых он применял фотоны рентгеновских лучей и электроны, она ничего не сообщает нам об истинной квантовой природе фотонов и электронов.

Тем не менее возмущение объекта посредством измерения какого-либо его параметра понять несложно. Вот еще один простой пример. Я определяю температуру воды в ванной, используя термометр. Сначала некоторое количество тепла перейдет на термометр, чтобы он нагрелся до температуры воды, однако эта крошечная потеря тепла вряд ли повлияет на температуру воды (в конце концов, она теряет гораздо больше тепла, нагревая окружающий воздух, чем термометр). Но при измерении температуры воды в маленькой пробирке посредством погружения туда термометра произойдет относительно большой теплообмен, если только термометр заранее не нагрет до температуры воды. Следовательно, после погружения термометра в воду мы не сможем выяснить ее точную температуру до этого.

Таким образом, чтобы узнать что-либо о системе, нам необходимо провести измерения, но при измерении мы часто вносим в систему изменения, которых невозможно избежать, поэтому в итоге мы оказываемся не в силах постичь ее истинную природу. В макроскопическом мире эту проблему, как правило, можно обойти, но на квантовом уровне все иначе.

Гамма-микроскоп Гейзенберга

В рассеянии Комптона рентгеновское излучение направлено на твердую мишень – в оригинальном эксперименте использовалась пластина графита, – и анализу подвергаются отраженные рентгеновские лучи. Выясняется, что частота рентгеновского излучения немного падает после отражения. Артур Комптон успешно объяснил это (используя выявленную Планком взаимозависимость частоты и энергии), сказав, что частицы отталкиваются друг от друга, причем из мишени выбиваются электроны, которые уносят с собой часть энергии достигающих мишени фотонов рентгеновского излучения.

Эта ситуация противоположна тому, что наблюдается в эксперименте с двумя прорезями с атомами. В этом случае атом начинает как частица, ведет себя, как волна, проходя через прорези, и снова оказывается частицей на заднем экране. В комптоновском рассеянии фотон начинает как волна (с некоторой частотой), ведет себя, как частица, при столкновении с электроном и наконец снова регистрируется как волна при измерении его частоты. В обоих экспериментах мы используем понятие корпускулярно-волнового дуализма атомов и света.

Но упоминание о корпускулярно-волновом дуализме не помогает нам понять, как происходят все процессы. Сама фраза представляет собой отголосок ранней квантовой теории – печально, что она до сих пор всплывает при изучении этого предмета.


В зависимости от проводимого эксперимента мы видим фотон, который ведет себя либо как волна, либо как частица. В эксперименте с двумя прорезями (вверху) фотон начинает движение в качестве локализованной частицы, ведет себя подобно волне, проходя через обе прорези и интерферируя по другую сторону первого экрана, и в конце концов снова обнаруживается в качестве локализованной частицы. В рассеянии Комптона (внизу) он начинает движение как волна с определенной длиной волны, ведет себя, подобно частице, при столкновении с электроном и в конце концов снова обнаруживается в качестве волны с чуть более длинной длиной волны в связи с потерей импульса при столкновении.


Я снова описал комптоновское рассеяние, потому что оно невероятно похоже на мысленный эксперимент, предложенный в середине 1920-х годов Вернером Гейзенбергом. Посредством этого эксперимента он сумел вывести свою знаменитую формулу принципа неопределенности, подчеркнув, как факт наблюдения за квантовой частицей сбивает ее с изначального пути. К несчастью для такого гения, как Гейзенберг, здесь он не попал в точку. Нильс Бор сразу прямо заявил ему об этом и даже однажды довел его до слез – эти ребята очень серьезно относились к своей работе. И все же пример Гейзенберга и по сей день остается запутанным и бесполезным.

Идея задействовала прибор, который Гейзенберг назвал гамма-микроскопом. Чтобы рассмотреть что-то под обычным микроскопом, мы светим на объект видимым светом, который затем отражается в линзы микроскопа. Но это бесполезно при изучении объектов, размер которых меньше длины волны самого света (нескольких десятитысячных миллиметра), так как такой объект будет не в силах отразить свет. Но рентгеновские лучи и гамма-лучи представляют собой типы электромагнитного излучения с гораздо более короткими волнами, а следовательно, могут быть использованы для наблюдения за более мелкими объектами.

Гамма-микроскоп Гейзенберга представлял собой гипотетическое устройство, которое, как он полагал, может быть использовано, чтобы «увидеть» электрон, руководствуясь идеей комптоновского рассеяния. Гейзенберг утверждал – и был прав, – что для определения положения электрона гамма-фотон должен ударить по нему и отскочить обратно сквозь линзу микроскопа. Но при этом электрон получит «толчок», который изменит его импульс. С учетом разрешающей способности микроскопа и длины волны фотона Гейзенберг сумел вывести свое уравнение неопределенности. Оно гласит, что произведение двух величин, одна из которых дает неопределенность положения электрона, а другая – неопределенность его импульса, всегда будет больше постоянной Планка. Хотя постоянная Планка невероятно мала, она – что важно – не равняется нулю. А это значит, что неопределенность будет всегда – либо в положении частицы, либо в ее импульсе (либо и в том, и в другом). Любой из этих параметров можно точно измерить, но только за счет потери знания о другом.

Проблема с гамма-фотонами заключается в том, что, имея очень короткие волны, они – по формуле де Бройля – обладают очень высоким импульсом. Так что, чем точнее мы определяем положение электрона, тем сильнее мы его толкаем в процессе. Если мы попытаемся «разглядеть» электрон, используя менее энергетический, а следовательно, более мягкий свет, нам понадобится свет с более длинными волнами. Но теперь мы не сможем столь точно определить положение электрона.

Впрочем, мы видели, что уравнение неопределенности является следствием взаимосвязи положения и импульса волновых функций частицы. Хотя пример Гейзенберга может показаться гораздо более простым и понятным, чем описание волновых функций, он забыл о важном моменте. Его выводы основывались на корпускулярно-волновом дуализме фотонов, в то время как электрон он все время считал точечной частицей! На самом деле и к электрону, и к фотону нужно относиться на равных условиях.

И что нам это дает? Скажу так: пытаясь пронаблюдать за чем-то вроде электрона, мы неизбежно возмущаем его, однако это не основа принципа неопределенности, а лишь дополнение к нему. Принцип неопределенности представляет собой гораздо более фундаментальный аспект квантового мира и может быть понят лишь настолько, насколько мы понимаем природу волновой функции. Таким образом, принцип неопределенности нельзя считать результатом нашей неуклюжести в попытке обнаружить электрон, установив за ним наблюдение. В конце концов, не сомневаюсь, даже сам Исаак Ньютон признал бы, что мы точно нарушим покой такого крошечного тела, как электрон, столкнув его с частицей света[33]33
  Не забывайте, Ньютон тоже полагал, что свет состоит из частиц.


[Закрыть]
.

Что ж, теперь, когда я объяснил, что проблема измерения не сводится к тому, что можно объяснить при помощи классической механики, мы можем внимательнее ознакомиться с настоящей проблемой. Как выясняется, она гораздо фундаментальнее идеи о корпускулярно-волновом дуализме и не требует применения принципа неопределенности.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации