Электронная библиотека » Джим Аль-Халили » » онлайн чтение - страница 4

Текст книги "Квант"


  • Текст добавлен: 21 апреля 2022, 17:34


Автор книги: Джим Аль-Халили


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 21 страниц)

Шрифт:
- 100% +

Глава 3. Вероятность и случай

Вы верите в судьбу?

Для большинства из нас смысл этого вопроса вполне очевиден: подразумевается, что некоторым событиям суждено произойти, а двум людям предначертано встретиться. Но есть ли в этой идее хоть толика правды?

Может, вам по душе читать гороскопы – довольно неправдоподобная идея, что положение планет может влиять на то, как сложится для вас грядущая неделя, кажется вполне безобидной. Само собой, большинство из нас не воспринимает гороскопы всерьез, однако мысль, что будущее можно предсказать, весьма интересна. На самом деле до квантовой революции ученые почти не сомневались, что в принципе это возможно, предполагая, что, пусть мы и не можем их предсказать, все события будущего тем не менее предопределены и предначертаны.

Исаак Ньютон полагал, что каждая частица во Вселенной должна подчиняться простым законам движения в результате действия четко определенных сил. Это механистическое представление о мире – которое ученые повсеместно разделяют и сегодня, почти три века спустя, – утверждает, что, какими бы сложными ни были природные явления, все в итоге всегда можно свести к взаимодействию фундаментальных кирпичиков материи. Естественный процесс, такой как шторм на море или перемена погоды, может казаться случайным и непредсказуемым, но это просто следствие его сложности и огромного количества задействованных в нем атомов.

Но в принципе, если бы мы знали точное положение и характер движения каждой частицы в заданной системе, сколько бы их ни было задействовано, с помощью законов Ньютона мы могли бы предсказать, как эти частицы будут двигаться и взаимодействовать друг с другом, а следовательно, и как эта система будет выглядеть в любой конкретный момент будущего. Иными словами, точное знание настоящего должно позволять нам предсказывать будущее. Это привело к ньютонианской идее «механической» вселенной – такой вселенной, где вообще нет никаких сюрпризов, поскольку все, что может случиться, является результатом фундаментальных взаимодействий ее частей. Это учение получило название «детерминизм» (от лат. determinare – ограничивать, определять), поскольку будущее может быть полностью предопределено, если мы полностью знаем настоящее.

Само собой, на практике такой детерминизм возможен лишь в простейших системах. Мы прекрасно понимаем, что метеорологи не могут с полной уверенностью предсказать погоду на завтра. Мы даже не можем заранее узнать, выпадет орел или решка или куда закатится шарик рулетки. В современной физике есть отдельная область под названием теория хаоса, которая утверждает, что для определения будущей эволюции системы ее изначальное состояние необходимо знать с бесконечной точностью. Теория хаоса усложняет практическое применение детерминизма.

И правда, простые механические примеры вроде упомянутых выше меркнут в сравнении с тем, как нам необходимо разобраться в бесконечно сложном устройстве человеческого мозга, чтобы понять концепцию свободы воли. Но принцип всегда один: так как люди состоят из атомов, законы Ньютона должны быть применимы и к их мозгу. В связи с этим, когда мы делаем то, что считаем свободным выбором в отношении чего-то, на самом деле это лишь результат механических процессов и атомных взаимодействий в нашем сером веществе, которое подчиняется детерминистским законам, как и все остальное.

Хотя такой взгляд на вещи довольно печален, вам он может показаться вполне нормальным, поскольку мысль о том, чтобы обладать достаточной информацией, чтобы предсказывать будущее, и вовсе не укладывается в голове. Однако здесь возникает гипотеза: если бы у нас был достаточно мощный компьютер, снабженный достаточным объемом памяти, чтобы сохранить в нем сведения о положении и скорости каждой частицы во Вселенной, то он, вероятно, смог бы рассчитать, как Вселенная будет развиваться.

Одним из самых серьезных сдвигов в человеческом мышлении, произведенных квантовой революцией, стала идея индетерминизма – то есть исчезновения детерминизма вместе с концепцией механической вселенной. Поэтому, как ни жаль мне вам это сообщать, но еще три четверти века назад было доказано, что в качестве научной идеи «судьба» оказалась ложной.

Результат игры в пул

Представьте, как мы с помощью мощного компьютера пытаемся предсказать, что случится в игре в пул, делая предсказание в ту секунду, когда биток ударяется о пирамиду. Каждый шар на столе в этот момент начинает катиться в своем направлении, причем большая часть шаров претерпевает более одного столкновения и отталкивается от бортов. Само собой, компьютер должен знать точную силу первого удара битка и точный угол, под которым он сталкивается с первым шаром пирамиды. Но достаточно ли этого? Когда все шары наконец остановятся – а некоторые из них, возможно, даже закатятся в лузы, – насколько близким к реальности окажется предсказание компьютера? В то время как предсказать результат столкновения двух шаров вполне вероятно, учесть все сложные траектории движения множества шаров практически невозможно. Если хотя бы один шар покатится под немного иным углом, то другой шар, который он мог миновать в изначальной картине, теперь сможет коснуться его, в результате чего обе траектории существенным образом изменятся. И итоговый результат вдруг окажется совсем другим.

Похоже, нам необходимо сообщить компьютеру не только сведения о начальном состоянии битка, но и точное расположение остальных шаров на столе: касаются ли они друг друга, каковы точные расстояния между ними и бортами и так далее. Но даже этого недостаточно. Крошечной пылинки на любом из шаров хватит, чтобы изменить его траекторию на некоторую долю миллиметра или чуть снизить его скорость. И снова это приведет к эффекту домино, который изменит итоговую расстановку. В теории хаоса это называется «эффектом бабочки» – идея заключается в том, что бабочка машет крыльями и тем самым едва заметно изменяет атмосферное давление, что в результате постепенно приводит к серьезному отклонению от того сценария, который развернулся бы, если бы бабочка не взмахнула крыльями, к примеру, вызывая несколько позже грозу на другом конце света, хотя в ином случае этой грозы не случилось бы.

Следовательно, нам нужно предоставить компьютеру точные данные о состоянии поверхности стола. Возможно, в некоторых местах сукно протерто сильнее. Минимальное влияние окажут даже температура и влажность воздуха.

И все же вам может показаться, что в этом нет ничего невозможного. Что в принципе это выполнимо. Само собой, если бы между шарами и столом не было трения, они бы продолжили сталкиваться и расходиться в разные стороны гораздо дольше, а следовательно, нам нужно было бы еще более точно знать изначальное положение шаров, чтобы определить, где они окажутся, наконец остановившись[15]15
  Они будут постепенно замедляться вследствие сопротивления воздуха и потери энергии из-за отдачи тепла и звука при столкновениях.


[Закрыть]
.

«И что?» – скажете вы. В конце концов, раз уж мы никогда не сможем узнать все о конкретной системе, нам приходится высчитывать вероятности различных результатов. Чем больше мы знаем, тем с большей уверенностью мы можем сказать, что именно произойдет.

Иногда мы не можем сделать верное предсказание не только из-за собственной неосведомленности, но и из-за неспособности контролировать изначальные условия. Мы не можем даже дважды одинаково подбросить монетку, чтобы повторить полученный в первый раз результат. Пускай мы подбросили монетку и получили решку. Подбросить ее второй раз точно так же, чтобы она перевернулась то же самое количество раз и снова легла решкой вверх, очень и очень сложно.

И снова мы приходим к выводу, что у нас недостаточно информации о системе. В примере с игрой в пул я ни за что не смогу повторить удар и толкнуть биток точно таким же образом, чтобы добиться идентичного итогового результата, при котором все шары окажутся точно на тех же позициях, что и в первый раз. Тем не менее такая повторяемость является сутью ньютонианского мира. Такое детерминистское поведение представляет собой черту ньютоновой, или классической, механики. В квантовой механике все совершенно иначе.

Квантовая непредсказуемость

В квантовом мире царит серьезная непредсказуемость, которую мы не можем списать на свою неосведомленность о точном состоянии изучаемой системы или на практическую неспособность задать изначальные условия. На этом уровне она представляет собой фундаментальную характеристику самой природы. Мы не можем с уверенностью предсказать, что именно случится в квантовом мире не потому, что наши теории недостаточно хороши, и не потому, что нам недостает информации, а потому, что сама Природа функционирует «неопределенным» образом.

Часто выясняется, что в мире атомов мы можем лишь рассчитать вероятности различных результатов. Такие вероятности, однако, определяются не по тому же принципу, которым мы руководствуемся, когда определяем вероятность при броске монеты или игральных костей. Квантовые вероятности вплетены в саму теорию, и мы даже в принципе не можем определить их более точно.

Хороший пример представляет собой радиоактивный распад атомных ядер, при котором идентичные изначальные условия могут привести к разным результатам. Представьте миллион идентичных радиоактивных атомных ядер, которые являются нестабильными и рано или поздно спонтанно «распадутся», при этом испустив частицу и перейдя в более стабильное состояние. В то время как квантовая механика позволяет нам рассчитать так называемый период полураспада (время, за которое распадется половина ядер), определить с ее помощью, когда распадется каждое конкретное ядро, мы не в состоянии. Знание периода полураспада приобретает хоть какую-то значимость, когда мы применяем его к статистически большому числу идентичных ядер. Можно рассчитать вероятность того, что ядро распадется через заданное время, однако более точные расчеты мы провести не в силах – и наша неосведомленность здесь ни при чем.

Решить эту дилемму можно, просто сказав, что квантовой механикой дело не ограничивается, а непредсказуемость радиоактивного распада действительно можно списать на нашу неосведомленность, поскольку нам не хватает более глубокого понимания Природы, с помощью которого мы могли бы точно предсказать, в какой именно момент распадется любое из ядер, точно так же как более полное знание о силах, участвующих в процессе подбрасывания монетки, позволило бы нам предсказать его результат. Если бы это было так, в поисках ответа нам пришлось бы выйти за границы квантовой механики. В шестой главе мы увидим, что таких взглядов придерживался Альберт Эйнштейн, который не мог смириться с тем, что квантовая механика словно бы утверждает, что на фундаментальном уровне наш мир по сути своей непредсказуем. И правда, одним из самых знаменитых высказываний Эйнштейна стало его замечание о том, что «Бог не играет в кости», которым он показал свое неприятие вероятностной концепции мира. Однако Эйнштейн ошибался.

Давайте внимательнее рассмотрим происхождение квантовой непредсказуемости и индетерминизма.

Обводящие удары

Мы понимаем, как окружающие нас объекты двигаются и взаимодействуют друг с другом под влиянием сил, и можем предсказывать их поведение в основном благодаря Исааку Ньютону. Помню, несколько лет назад в физическом журнале была напечатана статья, в которой с математической точки зрения анализировалась изогнутая траектория полета футбольного мяча. Бразильский футболист Роберто Карлос, фотография которого была напечатана на обложке журнала, известен своими выдающимися свободными ударами, совершая которые он умел заставить мяч полететь по более изогнутой траектории в облет защитной стенки, чем это было под силу большинству футболистов. Фокус – хотя вряд ли, конечно, Роберто Карлос подробно изучал все эти уравнения – заключался в том, как именно ударить мяч, чтобы он завертелся и в полете вступил во взаимодействие с воздухом. Точно так же годами совершенствовались мячи для гольфа, чтобы траекторию их полета можно было контролировать при определенном ударе. Само собой, есть и бесчисленное количество других примеров. Суть в том, что во всех случаях движения макроскопических объектов уравнения движения можно решить при наличии необходимых вводных данных. Если нам известны масса и форма тела, точная природа воздействующих на него сил, его точное текущее положение и скорость, то мы путем решения уравнений движения можем рассчитать его точное положение и скорость в любой момент будущего. В этом и заключается вся соль более ранней дискуссии о ньютонианском детерминизме.

Анатомия уравнения

Говоря о «решении» уравнения для классической частицы (а именно, той, что не подвержена квантовому поведению), мы имеем в виду, что применяем алгебру, для того чтобы найти значение точного положения и скорости этой частицы в определенный момент будущего. Но уравнение Шрёдингера отличается. Его решение, скажем, для движения электрона внутри атома представляет собой не просто набор чисел, описывающих, где электрон будет находиться в любой конкретный момент (который мы бы получили, решая ньютоновы уравнения, описывающие движение Луны вокруг Земли).

Решение уравнения Шрёдингера гораздо полнее. Это математическая величина, известная под названием «волновая функция» и обозначаемая греческой буквой Ψ (пси). Если вы ищете корни всей квантовой странности, то вы их только что нашли: все они содержатся в волновой функции.

В элементарной алгебре всегда существует неизвестная величина х. Представьте, что х – это положение частицы: «х обозначает место», где нужно копать. В более продвинутой алгебре значение х может зависеть от значения второй неизвестной, скажем t, которой обычно обозначается время. Таким образом, если, к примеру, t=1, то х может быть равен 4,5, а если t=2, то х=7,3 и так далее. Само собой, я просто назвал эти цифры наугад. Так мы решаем уравнение движения для классической частицы. Вот только, так как частица существует в трехмерном пространстве, нам необходимы три числа, чтобы определить ее положение: х, у и z. Суть в том, что х, у и z – это просто символы, которые заменяют определенные числа, это не настоящие «величины».

Волновая функция в уравнении Шрёдингера немного похожа на них. Она представляет собой неизвестную величину и может быть вычислена для любого момента времени, чтобы описать состояние квантовой частицы. Под «состоянием» здесь я подразумеваю все, что мы вообще можем знать о частице.

В физике мы всегда пользуемся математическими символами, чтобы описать некоторую величину или свойство системы, которую мы изучаем. Мы обозначаем величину напряжения буквой V, давление – буквой Р и так далее. Отличие квантовой механики заключается в том, что не существует прибора, который мог бы измерить квантовую функцию подобно тому, как мы измеряем давление и напряжение. Хотя концепция «давления» несколько абстрактна в том смысле, что это величина, которая описывает коллективное движение молекул газа, ее существование хотя бы можно ощутить физически. В отличие от существования волновой функции.



Уравнения движения Ньютона действительно так точны и надежны, что с их помощью можно на много лет вперед предсказать орбитальное движение планет и их лун. Эти уравнения использовались НАСА для расчета траекторий ракет, летящих на Луну и обратно. Во всех вышеприведенных примерах определение текущего состояния физической системы и воздействующих на нее сил в принципе позволяет нам точно определить все будущие состояния этой системы.

Так почему мы не можем применить то же самое уравнение для описания движения микроскопической частицы вроде электрона? Если электрон в данный момент находится в определенной точке и мы применяем к нему некоторую силу, например включая электрическое поле, то мы должны быть в состоянии сказать наверняка, что через пять секунд он будет находиться в такой-то точке.

Но это не так. Оказывается, уравнения, описывающие движения окружающих нас объектов, от песчинок и футбольных мячей до планет, в квантовом мире бесполезны.

Самое важное уравнение физики

Серьезный вклад в развитие теоретического понимания квантовой механики внес австрийский физик Эрвин Шрёдингер, который взял идеи де Бройля и поставил их на твердое математическое основание. Важно отметить, что существует несколько математических способов описать поведение квантовой системы вроде электрона или атома, и подход Шрёдингера – лишь один из них. Однако именно так квантовую механику обычно преподают студентам-физикам и так я буду ее разбирать на страницах этой книги.

Шрёдингер решил проверить, можно ли с помощью идеи де Бройля о волнах объяснить модель атома Бора. Напомню, Бор предположил, что электроны в атомах двигаются по фиксированным (квантованным) орбитам, но никто не знает, почему так происходит. Шрёдингер предложил новое уравнение, которое описывает не принцип движения частицы, а принцип развертывания волны. В результате у него получилось волновое уравнение.

В наши дни авторы научно-популярных книг об идеях современной физики, как правило, обходят стороной все математические уравнения, кроме Е=mc2, о котором я уже упоминал. Но уравнение Шрёдингера заслуживает хотя бы краткого обзора (см. формулу на странице 64), пускай и из эстетических соображений[16]16
  Другой вопрос, захотят ли подростки носить футболку с волновым уравнением на груди. Впрочем, в такой футболке, пожалуй, можно встретить разве что ботаника.


[Закрыть]
.

Результатом решения уравнения Шрёдингера является математическая величина, называемая волновой функцией. Именно здесь и проявляет себя вся вероятностная природа квантовой механики. В случае с электроном, к примеру, волновая функция не дает нам его точного положения в конкретный момент времени и раскрывает лишь вероятность того, что электрон окажется в том месте, где мы будем его искать. Само собой, вы сразу подумали: но этого мало! Сложно поверить, что мы не можем получить никакой более точной информации, чем сообщение о том, где может находиться электрон. Конечно, прочитав это, вы все равно ничего не поняли. Поэтому я постараюсь объяснить лучше.

Волновая функция содержит большое количество информации. В любой момент времени она обладает значением для каждой точки в пространстве. Так что, в отличие от положения в пространстве классической частицы, волновая функция распространяется на все пространство – отсюда и термин «волновая». Но не стоит думать, будто она представляет собой настоящую физическую волну наподобие волны света. Тут я должен признаться, что на самом деле никто не знает, что такое волновая функция. Большинство физиков считает ее абстрактной математической сущностью, которую можно использовать для получения информации о природе. Другие относят ее к ее собственной, очень странной отдельной реальности. В шестой главе мы увидим, что обе эти точки зрения могут быть одинаково справедливы. Как ни странно, важнее всего, что, вне зависимости от того, реальна волновая функция или нет, ее математические свойства остаются неизменными, а в том, что она может сообщить нам о поведении природы на субатомном уровне, нет никаких сомнений.

Давайте в качестве примера возьмем единственный электрон, заключенный в коробку. Представим, что мы точно знаем его изначальное положение, и введем эту информацию в уравнение Шрёдингера. Таким образом мы сможем рассчитать его волновую функцию для более позднего момента. Теперь давайте представим, что мы ввели в компьютерный файл или записали на бумаге массив чисел, которые представляют собой значения волновой функции электрона для разных точек сетки внутри коробки. Использовать эту информацию, чтобы с некоторой степенью уверенности определить местоположение электрона, мы уже не сможем. Вместо этого нам придется довольствоваться знанием того, где он окажется с наивысшей степенью вероятности. Это делается следующим образом.

Волновая функция описывает каждую точку пространства двумя числами. Вероятность того, что электрон находится в непосредственной близости от этой точки, представляет собой сумму квадратов этих чисел[17]17
  Математически это объясняется тем, что волновая функция представляет собой так называемую «сложную функцию», а следовательно, обладает как «действительной», так и «мнимой» частью, но вдаваться в подробности я не буду.


[Закрыть]
. Я говорю это, чтобы вы поняли, что сама по себе волновая функция не является вероятностью, сначала ее надо возвести в квадрат[18]18
  Заранее не угадаешь, когда у тебя в руках окажется волновая функция. Будет обидно не знать, что с ней делать.


[Закрыть]
.


Вероятность распределения электрона, заключенного в коробке. Это не физическое облако, описывающее «размазанный» электрон, а математическое облако вероятности. Если мы знаем наверняка, что электрон изначально находился в одном из верхних углов коробки, то его волновая функция вскоре распространится на весь объем коробки. Однако большая плотность вероятностного облака, рассчитанная на основании волновой функции, скажет нам, что электрон до сих пор, скорее всего, будет найден в непосредственной близости от своего изначального местоположения. С течением времени вероятностное облако распределится более равномерно, и электрон можно будет с равной вероятностью найти в любой точке коробки.


Вероятностная природа, а следовательно, и неотъемлемая непредсказуемость квантовой механики требует более подробного обсуждения сущности волновой функции. Например, можно объяснить вам, как волновая функция изменяется со временем, используя удачную аналогию.

Грабителя только что выпустили из тюрьмы, но местная полиция уверена, что он не завязал со своим криминальным прошлым, и может следить за его возможными перемещениями по городу, постоянно изучая карту. Хотя полицейские не могут установить его точное местоположение в конкретный момент времени, они могут определить вероятность совершения ограблений в разных районах. Сначала в зоне наивысшего риска оказываются дома возле тюрьмы, но с течением времени опасная область расширяется. Также можно с некоторой долей уверенности сказать, что богатые районы города с большей вероятностью попадают под удар, чем бедные. Эту волну совершаемых одним человеком преступлений можно считать волной вероятности. Она неосязаема и нереальна, это просто набор абстрактных чисел, присвоенных каждому району города. Точно так же волновая функция распространяется во все стороны из той точки, где в прошлый раз был замечен электрон, и позволяет нам определять вероятность того, где он окажется впоследствии.

Вскоре полицейские получают информацию об ограблении, совершенном по определенному адресу, и понимают, что их подозрения были верны. Это изменяет распределение вероятностей, поскольку теперь они знают, что вор не мог уйти далеко от места преступления. Точно так же, если электрон засекают в определенном месте, то его волновая функция тотчас изменяется. В момент обнаружения вероятность нахождения электрона в другом месте равняется нулю. Если снова выпустить его из поля зрения, его волновая функция снова распространится.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации