Электронная библиотека » Александр Астахов » » онлайн чтение - страница 30


  • Текст добавлен: 28 сентября 2017, 21:40


Автор книги: Александр Астахов


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 30 (всего у книги 53 страниц)

Шрифт:
- 100% +

Условие неизменности радиальной скорости относительного движения по величине точно так же, как и условие неизменности угловой скорости переносного вращения в соответствии с классической моделью явления Кориолиса обеспечивается внешним регулированием за счёт радиальной и тангенциальной внешней поддерживающей силы. При этом (ω = const) и (V = const).

Теперь рассмотрим, какие приращения получает поворотное движение в процессе своего формирования, как по своему физическому смыслу, так и по величине.

В соответствии с механизмом отражения, ускоренное удаление тела от радиуса за счёт изменяющейся по направлению относительной скорости, определяется, как её проекция на перпендикуляр к отражающему радиусу. Но это и есть не что иное, как ускорение переносной скорости по абсолютной величине, а также не следует забывать, что в соответствии с механизмом отражения проекция относительной скорости на перпендикуляр к отражающему радиусу образуется в процессе отражения исключительно только за счёт единого обобщённого ускорения отражения. Следовательно, ускорение радиальной скорости по направлению, ускорение переносной скорости по величине и ускорение отражения это одна и та же физическая величина.

В противном случае, если допустить, что эти ускорения являются самостоятельными величинами, то угол отражения тела должен быть втрое больше угла падения, что не имеет ни энергетического, ни практического подтверждения. Если же допустить, что самостоятельными являются только два поворотных ускорения, как это утверждает классическая физика, то угол отражения будет всего вдвое больше угла падения. Но поскольку законы отражения не зависят от ошибочных классических теорий, то только одно из поворотных ускорений может быть представлено ускорением отражения – это либо изменение радиальной скорости по направлению, либо изменение переносной скорости по абсолютной величине, что так же не соответствует механизму отражения.

Тело, изменив направление скорости при отражении, не может не удаляться от отражающей поверхности и наоборот. Остаётся только вариант триединства ускорения отражения, ускорения радиальной скорости по направлению и ускорения переносной скорости по величине.

А вот абсолютная величина каждого мгновенного ускорения отражения внутри цикла формирования ускорения Кориолиса может превышать среднее ускорение цикла не только вдвое, но и в десятки раз, что не меняет ни физического смысла ускорения Кориолиса, ни его обобщённую количественную величину. Количественная величина не меняется по той простой причине, что в среднем тело не может двигаться в направлении линейной скорости переносного вращения быстрее соответственной точки на радиусе, как мяч не может иметь среднюю скорость большую средней скорости футболиста.

Если тело получит, например, в 10 раз большее мгновенное ускорение отражения, чем среднее обобщённое ускорение Кориолиса, то к моменту отрыва от радиуса оно наберёт скорость в 10 раз большую средней скорости инерционного движения. Но тогда и радиусу, вращающемуся с постоянной угловой скоростью, понадобится в 10 раз большее время, чтобы догнать тело. При этом среднее ускорение Кориолиса при неизменной угловой скорости и неизменной величине скорости относительного движения количественно останется неизменным:

ак = 10 * Vе / (10 * t) = Vе / t

Но физическая сущность ускорения Кориолиса не изменится, даже если в связи с переменной угловой скоростью переносного вращения и с переменной относительной скоростью, все отражения будут абсолютно разными по абсолютной величине, т.к. не количественные характеристики определяют физическое явление, а его физическая сущность. Поэтому даже если все отражения будут разными, их ускорения не перестанут быть ускорениями отражения, которые одновременно определяют, как изменение направления отражённого вектора скорости, так и вектора скорости нормального удаления тела от отражающей поверхности независимо от величины скорости.

Помимо иллюстрации, показанной на рисунке (4.1.1), в этом можно ещё раз убедиться графически на рисунке (4.1.3), на котором это показано несколько иным способом. Но это лишь делает обе иллюстрации только более достоверными. Из классической физики, а именно из понятия годографа известно, что центростремительное ускорение – это линейная скорость линейной скорости. Поэтому на рисунке (4.1.3, позиция 4) вектор ускорения по изменению радиальной скорости по направлению (ar), как ему и положено быть по определению, размещён вдоль касательной к годографу вектора радиальной скорости (Vr).

Далее, если перенести в конец вектора радиальной скорости ещё и вектор абсолютного ускорения параллельно самому себе, то можно увидеть, что вектор (ar) в точности совпадает с вектором (ae), как с проекцией той же самой (aабс) на ту же самую касательную к тому же самому годографу. Это свидетельствует о том, что скорости (Vе) и (Vr) имеют общий годограф, а вектор (ar) это такая же проекция абсолютной скорости, как и вектор (ae).

Но один вектор (aабс) не может иметь две одинаковые проекции на одно и то же направление. Следовательно, векторы (ae) и (ar) это одна и та же физическая величина, которая и является ускорением Кориолиса.

Как видно, приведённая на рисунке (4.1.3) геометрия динамики поворотного движения учитывает не только геометрию прямого перемещения материи в пространстве в виде прямого преобразования напряжение-движение, но и непрямое преобразование силы в движение, которое в большинстве случаев можно определить не по прямой геометрии приращения физической траектории, а только через абстрактный годограф скорости.

Так, например, радиальное центростремительное ускорение в классической физике не имеет под собой реального приращения радиального движения тела и определяется только через годограф линейной скорости. Поэтому наличие общего годографа скорости (Vе) и (Vr) вне всяких сомнений свидетельствуют о том, что векторы (ae) и (ar) это одна и та же физическая величина.

Таким образом, поскольку две половинки классического ускорения Кориолиса, как мы выяснили, это одна и та же физическая величина, то коэффициент при ускорении Кориолиса равен «единице», но никак не «двойке». При этом напряжение Кориолиса по абсолютной величине действительно соответствует классической силе Кориолиса (см. гл. 3.5.2). Однако половина этого напряжения не реализуется в движение тела. Она компенсируется истинной силой Кориолиса-Кеплера и рассеивается среди элементов радиуса, тела и окружающей среды.

***

Выводом формулы ускорения Кориолиса занимались множество авторов. Однако, несмотря на все перечисленные выше противоречия классической модели поворотного движения, формула ускорения Кориолиса в выводах всех авторов неизменно привязана к результату, определяющемуся исторически сложившейся неправильной оценкой ускоренного геометрического приращения поворотного движения.


Рис. 4.1.5


В выводе формулы для ускорения Кориолиса, представленном в одном из многочисленных справочников по физике для высшей школы (см. Рис.4.1.5), ускорение Кориолиса определяется как ускорение эквивалентного прямолинейного равноускоренного движения по формуле пути (S) для прямолинейного равноускоренного движения. Мы не будем уточнять библиографию этого справочника, т.к. все они как две капли воды повторяют одну и ту же ошибку классической физики и соответственно высших школ всех времён и народов.

Приведем дословно выдержку из справочника: «Пусть тело (Б), находящееся на расстоянии (А) от неподвижной точки (О), движется в направлении точки (В) со скоростью (Vр). При отсутствии вращения тело (Б) через время (t) оказалось бы в точке (В). Так как направляющая (ОВ), вдоль которой движется тело, вращается в направлении (С), то фактически через время (t) тело (Б) окажется в точке (С) пройдя путь равный дуге окружности (ВС)».

Таким образом, ускорение Кориолиса в классической физике определяется через дугу (ВС), которую предлагается считать расстоянием, пройденным с ускорением Кориолиса. Причем никаких пояснений, на каком основании дуга (ВС) принимается за путь, пройденный с ускорением Кориолиса, в справочнике не приводится. Можно лишь предположить, что дуга (ВС) ассоциируется с девиацией поворотного движения. Девиация это академическое отклонение тела от реальной траектории движения в случае прекращения действия ускорения за период движения без ускорения.

Чтобы вернуть тело после движения с постоянной скоростью, которую оно имело на момент прекращения действия ускорения на реальную траекторию движения необходимо обеспечить ему такое же приращение движения, дефицит которого образуется за время отсутствия ускорения. Очевидно, что ускорение по преодолению девиации, образующейся в достаточно малом интервале времени в некотором приближении соответствует реальному ускорению криволинейного движения, по крайней мере, по абсолютной величине.

В общем случае криволинейного движения девиация в заданном интервале времени представляет собой отклонение прямолинейной траектории, которая пройдена с учетом постоянной скорости, достигнутой на момент начала образования девиации от реальной траектории, по которой тело движется с той же начальной скоростью, но с учетом реального ускорения в дальнейшем.

Причем поскольку прямолинейное движение с постоянной скоростью, равной начальной скорости образования девиации осуществляется по одной касательной к абсолютной траектории, то в общем случае отклонение прямолинейного движения однозначно определяется по отношению к единственно возможной траектории абсолютного движения. В поворотном движении такой определенности нет, т.к. в любом его сколь угодно малом интервале времени радиальное движение пересекает бесконечное множество окружностей переносного вращения, вдоль которых может быть определена своя текущая мгновенная девиация.

Однако в начале настоящей главы было показано (см. Рис. 4.1.1), что общее приращение поворотного движения для полного приращения радиуса (∆r), пересекающего бесконечное множество переносных окружностей, вдоль которых может быть определена своя текущая мгновенная девиация, определяется суммой девиаций вдоль всех промежуточных переносных окружностей поворотного движения. Эта сумма определяется дугой окружности со средним радиусом за вычетом её части, пройденной с начальной линейной скоростью в исходной точке поворотного движения.

На (Рис. 4.1.6) схематично изображена структура девиации поворотного движения в заданном интервале времени. Очевидно, средняя девиация поворотного движения эквивалентна дуге окружности (ЖЗ) со средним радиусом переносного вращения (Rср) за вычетом дуги (БГ), соответствующей линейному поступательному перемещению за счёт начальной линейной скорости переносного вращения (VлБ).

Элементарные окружные участки переносного вращения реальной траектории с радиусами большими среднего радиуса (Rср) больше соответствующих им участков дуги (ЖЗ), в то время как элементарные окружные участки с меньшими радиусами, меньше соответствующих участков дуги (ЖЗ). Однако в силу прямой пропорциональности величины радиуса и длины окружности общая сумма окружных участков вдоль кривой (БС) равна длине дуги (ЖЗ).


Рис. 4.1.6


С учётом изложенного определим линейное ускорение, эквивалентное ускорению Кориолиса (ак) через девиацию поворотного движения. При этом, поскольку в рассматриваемом случае дуга (ЖЗ), кроме девиации поворотного движения включает в себя отрезок, пройденный с начальной линейной скоростью (Vлб), применим формулу равноускоренного движения для пути (S = ЖЗ) с учетом начальной скорости, являющейся постоянной составляющей равноускоренного движения.

S = VлБ * t + ак * t2 / 2 (4.1.1)

Где VлБ – линейная скорость точки (Б)

Тот же самый путь можно определить, как суммарную длину элементарных участков поворотного движения вдоль траектории (БС), из которых и складывается в конечном итоге девиация поворотного движения с учетом постоянной начальной линейной скорости, равной дуге (БГ).

Радиус дуги (ЗЖ) равен среднему радиусу между начальным и конечным радиусом поворотного движения. Обозначим его (Rср):

Rср = (ОС + А) / 2 (4.1.2)

Очевидно, что:

ОС = А + Vр * t (4.1.3)

Подставляя (4.3) в (4.2) получим:

Rср = A + Vр * t / 2 (4.1.4)

Путь (S), выраженный через угловую скорость (ω), определится выражением:

S = Rср * ω * t (4.1.5)

Подставляя (4.4) в (4.5) и приравняв (4.1) и (4.5) получим:

Б * t + ак * t2 / 2 = (А + Vр * t / 2) * ω * t

или

2 * VлБ * t + ак * t2 = 2 * А * ω * t + Vр *ω * t2

или

2 * VлБ / t + ак = 2 * А * ω / t + Vр * ω (4.1.6)

Отсюда находим ускорение Кориолиса (ак):

ак = 2 * А * ω / t + Vр * ω – 2 * Vлб / t (4.1.7)

Заметим, что произведение А*ω есть не что иное, как (VлБ). Произведя замену, получим выражение (4.8), в котором отсутствует начальная линейная скорость, т.е. ускорение Кориолиса зависит только от угловой скорости переносного вращения и линейной скорости относительного движения:

ак = ω * Vр (4.1.8)

Выражение (4.8), полученное с учётом реального изменения радиуса поворотного движения отличается от формулы для (ак), приведенной в справочнике по физике для высшей школы (4.9):

ак = 2 * А * ω /t +2 * Vр * ω (4.1.9)

Авторы не учли, что:


во-первых: в любом промежутке времени девиация поворотного движения прямо пропорциональна радиусу, т.е. реальный путь, пройденный телом за счет ускорения Кориолиса ровно вдвое меньше длины дуги (ВС) с максимальным радиусом за вычетом дуги (БГ), равной длине пути, пройденного с начальной линейной скоростью (Vлб);

во-вторых: начальная скорость тела в точке (Б) Б ≠ 0. Поэтому путь (S), пройденный телом под действием ускорения Кориолиса равен не:


S = ак * t2 / 2 (4.1.10)

как записано в справочнике. С учетом начальной линейной скорости переносного вращения (VлБ) путь равен:

S = VлБ * t + ак * t2 / 2 (4.1.11)

В случае изменения направления движения тела (Б) на противоположное, т.е. к центру вращения выражение для (Rср) приобретет вид:

Rср = А – V * t / 2 (4.1.12)

S = VлБ * t – ак * t2 / 2 (4.1.13)

Тогда получим для (ак):

 ак = 2 * VлБ / t – 2 * А * ω / t + V * ω (4.1.14)

или

 ак = ω * Vр (4.1.15)

***

Поскольку формулы ускорения Кориолиса (4.1.9) и (4.1.15) соответствуют приращению либо только линейной скорости относительного движения по направлению, либо только приращению линейной скорости переносного движения по абсолютной величине, то формулу ускорения Кориолиса намного проще вывести через прирост линейной скорости переносного вращения.

Пусть тело (Б) движется (см. рис. 4.1.5) вдоль радиуса в направлении точки (В) с постоянной радиальной скоростью (Vр). За время (t) – время прохождения пути (БС) линейная скорость движения по окружности увеличится от линейной скорости точки (Б) – (Vлб) до линейной скорости точки (С) – (Vлс). Разгон происходит под воздействием направляющей (ОВ) на тело (Б) с силой эквивалентной силе Кориолиса (Fк) и ускорением Кориолиса (ак). Ускорение определяется как прирост линейной скорости за единицу времени (t):

ак = (VлС – VлБ) / t (4.1.16)

Если выразить линейные скорости через угловую скорость получим:

ак = (ω * (А + Vр * t) – ω * А) / t (4.1.17)

или:

ак = ω * Vр (4.1.18)

В некоторых случаях радиальное относительное движение может осуществляться с ускорением. Это необходимо учитывать при определении ускорения Кориолиса. Рассмотрим случай равноускоренного радиального движения.

Вернемся еще раз к формуле (4.16):

ак = (VлС – VлБ) / t (4.1.16)

Запишем выражение для линейной (окружной) скорости в точке (Б):

Б = ω * А (4.1.19)

И для линейной (окружной) скорости точки (С):

С = ω * (А + Vр * t) (4.1.20)

Здесь (Vр) – радиальная скорость с учетом радиального ускорения.

Скорость (Vр) можно найти через радиальное ускорение. Так как ускорение в общем случае может меняться, найдем среднюю величину радиального ускорения (ар) на участке (БС):

ар = (арс + арб) / 2 (4.1.21)

Тогда радиальная скорость с учетом радиального ускорения определится выражением:

Vр = Vрн + (арс + арб) * t/2 (4.1.22)

где: Vрн – радиальная скорость начальная.

Подставим (4.22) в (4.20):

С = ω * (А + (Vрн + (арс + арб) * t / 2) * t) =

= ω * А + ω * t * Vрн + ω * арс * t2 / 2 + ω * арб * t2/2 (4.1.23)

Подставим (4.23) и (4.19) в (4.16):

ак = ω * А / t + ω * Vрн + ω * арс * t / 2 + ω * арб * t / 2 – ω * А / t

или формула для ускорения Кориолиса при ускоренном радиальном движении примет вид:

ак = ω * Vрн + ω * t * (арс + арб) / 2 (4.1.24)

Как следует из выражения (4.8) и (4.15), девиация поворотного движения не зависит от начальной линейной скорости переносного вращения, т.к. начальная скорость есть величина постоянная. Поэтому приращение поворотного движения в каждом минимальном интервале времени, начинающегося не с нулевого радиуса эквивалентно приращению поворотного движения, начинающегося с нулевого радиуса. На (Рис.4.1.7) графически пояснено определение девиации поворотного движения с нулевого радиуса поворота без учёта начальной линейной скорости переносного вращения.


Рис. 4.1.7


В соответствии с положениями теоретической механики движение по любой криволинейной траектории может быть достигнуто одним поступательным и одним вращательным движением (см. Рис. 4.1.7). Следовательно, общий путь сложного движения раскладывается на три составляющие: на путь переносного движения (О-О1), путь относительного движения (О1-В = О1-А) и на поворотный путь (ВС).

В соответствии с классической схемой криволинейного движения поступательное движение по траектории переносного движения (О-О1) и вращательное движение в точке переносной траектории, соответствующей конечному моменту рассматриваемого интервала времени в точке (О1) осуществляются с учётом завершённого в рассматриваемом интервале времени относительного движения (ОА).

При этом дуга (ВС), соответствующая максимальному радиусу поворота в рассматриваемом интервале времени принимается за девиацию поворотного движения, в то время как реальный радиус поворотного движения растёт линейно и достигает максимального радиуса поворота только к концу рассматриваемого интервала времени. Таким образом, классическая схема сложного движения не отражает реальной действительности.

При наличии переносного вращения движение вдоль относительной траектории следует рассматривать одновременно с поворотом относительной траектории в конечной точке траектории переносного движения (О1), соответствующей конечному моменту рассматриваемого интервала времени. При этом поступательное движение осуществляется как перемещение точки начала относительного и поворотного движений в конечную точку траектории переносного движения, из которой одновременно осуществляются относительное и поворотное движения. Однако при этом реальная девиация поворотного движения соответствует окружным участкам кривой (О1-С), которая обозначена на рисунке (4.1.7) синим цветом.

В предложенной академической схеме представления сложного движения классический принцип разложения абсолютной траектории на составляющие, соответствующие каждому виду движения полностью сохраняется. Однако при этом учитывается реальный путь, пройденный с ускорением Кориолиса, т.к. реальное приращение поворотного движения определяется средним радиусом поворота, изменяющимся без учёта начальной линейной скорости переносного вращения от нуля до (Rmax). В этом случае абсолютная величина девиации поворотного движения равна сумме окружных участков синей кривой (О1-С) или длине дуги (DN).

Таким образом, полное геометрическое ускорение Кориолиса количественно соответствует линейному ускорению в направлении линейной скорости переносного вращения или ускорению по изменению направления радиальной скорости относительного движения каждому в отдельности, что полностью соответствует приведённому выше механизму формирования ускорения Кориолиса и физическому смыслу ускорения Кориолиса в нашей версии.

***

Аналогичный геометрический вывод ускорения Кориолиса приведен в другом справочнике по физике (Х. Кухлинг, «Справочник по физике», МОСКВА, «МИР» 1983). «Перемещение тела в радиальном направлении равно r = vt. За то же время точка, удаленная от центра вращения на расстояние r, пройдет по дуге окружности путь s = rωt. Подставив сюда выражение для r, получим s = vtωt = vωt2. Отсюда следует, что s ~ t2, т.е. движение происходит ускоренно, а s = аt2/2. Таким образом, vωt2 = аt2/2, следовательно, ускорение Кориолиса равно ак = 2vω» (см. Рис. 4.1.8).


Рис. 4.1.8


Как и в большинстве случаев описания физических явлений в современной физике, в выводе Кухлинга какие-либо физические обоснования ускорения Кориолиса отсутствуют. У Кухлинга нет никаких пояснений, из каких соображений путь (s) увязывается с приращением, полученным непосредственно за счет ускорения Кориолиса, кроме некорректной с физической точки зрения фразы: «За то же время точка, удаленная от центра вращения на расстояние r, пройдет по дуге окружности путь s = rωt». Точка, удаленная от центра вращения на расстояние (r) действительно пройдет указанное Кухлингом расстояние. Однако теоретическое обоснование соответствия пути (s = rωt) девиации поворотного движения у Кухлинга, как и других авторов по сути дела отсутствует.

В классической схеме девиации поворотного движения одно и то же приращение фактически учитывается дважды. Один раз как реальное приращение, т.е. девиация непосредственно поворотного движения. Второй раз как искуственное для определения девиации приращение линейной окружной скорости, обусловленное несоответствием максимального радиуса текущему радиусу. При этом приращение поворотного движения в классической физике практически удваивается. Но вопреки классическому физическому смыслу ускорения Кориолиса, это исключительно именно удвоенное переносное ускорение, без какого-либо намёка на ускорение по изменению радиальной скорости относительного движения по направлению.

***

В приведенных выше классических геометрических выводах поворотного ускорения Кориолиса радиальное движение осуществляется в направлении от центра вращения. При движении к центру вращения классическая логика определения ускорения Кориолиса, заложенная в геометрические модели девиации поворотного движения приводит к полному абсурду. Например:

Пусть тело из точки (Б) (см. рис. 4.1.5) движется к центру вращения вдоль направляющей (ОБ). В соответствии с классической логикой определения девиации поворотного движения при отсутствии вращения тело (Б) через время (t) оказалось бы в точке (К). Однако так как направляющая (ОБ), вдоль которой движется тело, вращается в направлении (Г), то фактически через время (t) тело (Б) окажется в точке (Д) пройдя путь равный дуге окружности (КД).

Таким образом, в соответствии с классической же логикой при радиальном движении к центру вращения за девиацию поворотного движения должна приниматься дуга окружности с минимальным радиусом в рассматриваемом интервале времени.

Очевидно, что ускорение Кориолиса, определенное через приращение поворотного движения, равного дуге окружности с минимальным радиусом, должно быть вдвое меньше ускорения, определенного через средний радиус радиального движения и вчетверо меньше классического ускорения Кориолиса. Между тем в реальной действительности при смене направления радиального движения и при неизменных остальных параметрах сложного движения только ни направление поворотного ускорения, ни его абсолютная величина неизменяется (см. гл. 8).

По этой же логике при смене направления радиального движения к центру вращения ускорение Кориолиса в выводе Кухлинга, в котором поворотное движение начинается с нулевого радиуса (см. рис. 4.1.8), и вовсе отсутствует! Учитывая, что минимальная величина радиуса при движении к центру вращения равна нулю, классическая логика определения девиации поворотного движения вообще может привести к парадоксальному результату, в соответствии с которым при радиальном движении к центру вращения ускорение Кориолиса и вовсе отсутствует!


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации