Текст книги "Жизнь, которую мы создали. Как пятьдесят тысяч лет рукотворных инноваций усовершенствовали и преобразили природу"
Автор книги: Бет Шапиро
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 20 (всего у книги 24 страниц)
Прием со свечением применялся и для оценки успеха при генной модификации первой трансгенной собаки Раппи – сокращение от Руби Паппи, «рубиновый щенок». Раппи родилась в Южной Корее в 2009 году и была одной из помета из четырех клонированных биглей, которых ученые из Сеульского национального университета модифицировали, чтобы у них экспрессировался ген красного флуоресцентного белка. Эксперимент был просто проверкой гипотезы: ученые хотели доказать, что трансгенных собак можно клонировать. Раппи и ее генетически идентичные сестры при естественном освещении выглядели абсолютно нормальными. Но под ультрафиолетом они испускали прелестное яркое рубиново-красное сияние. Когда Раппи спарили с нетрансгенным кобелем, половина ее щенков унаследовала ген красного белка, показав, что трансген успешно инкорпорировался в ее зародышевую линию.
Пока что генно-инженерных собак и кошек не раздают в местных приютах, однако Раппи и ей подобные – наше будущее. Кто-то из таких домашних животных будет светиться при ультрафиолетовом освещении, но большинство подвергнутся модификациям, вызывающим экспрессию черт, которые качественно улучшат наших любимцев. Скажем, поскольку большинство из нас обитает в городах, нам наверняка захочется получить миниатюрных питомцев, лучше приспособленных к жизни в квартире. Эту цель и поставил перед собой Пекинский институт геномики, когда в 2014 году объявил о скором начале продаж генно-инженерных микропигов – свинок породы бама, генно-модифицированных для городской жизни таким образом, чтобы вырастать не тяжелее 14 кило (что составляет около 25–35 % от габаритов обычной свиньи породы бама). Однако через несколько лет Пекинский институт геномики безо всяких объяснений отказался от массового разведения микропигов, и пошли слухи, будто эти якобы крошечные свинки, хотя и впрямь растут медленнее обычных, в конце концов достигают нормальных размеров, не слишком-то пригодных для городской жизни.
В будущем генно-инженерные породы домашних животных, вероятно, станут более совершенными версиями обычных. Синтетическая биология позволит нам укрепить черты, которых раньше добивались селекцией: гипоаллергенность, охотничьи качества, острое обоняние – только без возни с разведением. Работа уже ведется. Ученые из Институтов биомедицины и здравоохранения в Гуанчжоу в 2015 году объявили, что создали бигля с двойным объемом мускулатуры, убрав у него из генома ген миостатин, – тот самый, отсутствие которого обеспечивает двойной объем мускулатуры и у коров породы бельгийская голубая. Ученые из Гуанчжоу предполагают, что особо мускулистый бигль принесет много пользы военным и полиции, однако я в этом сомневаюсь. А вот если они смогут заставить лабрадоров и спаниелей вынюхивать раковые опухоли, я проголосую за них обеими руками.
Инструменты синтетической биологии можно также применять, чтобы делать наших питомцев здоровее и улучшать наши с ними отношения. Поскольку уже удалось выявить мутации, вызывающие у далматинцев склонность к мочекаменной болезни, а у боксеров – к заболеваниям сердца, генная инженерия сможет полностью избавить породы от этих неадаптивных черт. Мы все лучше понимаем, какие гены отвечают за какие черты, и специалисты по синтетической биологии могут с опорой на эти данные создать, к примеру, кошек, которые не экспрессируют аллергены в слюне, и золотистых ретриверов, которые не линяют.
Однако синтетическая биология позволяет нам не ограничиваться уже имеющимися чертами. Каких новых домашних животных мы создадим, когда выйдем за рамки традиционного инструментария селекции? Сбросив эволюционные ограничения, мы сможем комбинировать гены, невзирая на границы видов и даже эпох. Мы сможем создать собак, которые чирикают, как птицы, и птиц, которые мяукают, как кошки, саблезубых кошек и шерстистых морских свинок. Мы сможем создать крылатых биглей и яйцекладущих терьеров и вырастить рыб, которые будут выбираться из аквариумов и бежать к нам через комнату, чтобы приласкаться. Ясно, что все это – фантастические твари, сущая нелепица, и сегодняшняя наука ничем таким, понятное дело, заниматься не будет. Мы знаем слишком мало о взаимодействии генов и о том, какие сочетания экспрессии генов и времени ее включения обеспечивают большинство этих черт, и у нас нет способа сочетать сложные черты, возникшие в ходе долгих и независимых эволюционных траекторий. Но я бы не стала отмахиваться даже от самых безумных идей. Представьте себе, как хохотали бы наши предки охотники-собиратели, если бы им сказали, что люди когда-нибудь сумеют сделать из волка чихуахуа.
Или, если уж на то пошло, что мы превратим сгнившие остатки мертвых растений в пакеты и бутылки, которые не разлагаются и хранятся вечно.
Великий галактический мусорный остров
На самом деле на востоке Тихого океана нет никакого мусорного острова площадью в два Техаса. Эту историю, которую теперь расхватали на цитаты, рассказывают с легкой руки Чарльза Мура, капитана гоночной яхты и океанографа, который поведал, как, возвращаясь в Калифорнию с регаты между Лос-Анджелесом и Гавайями, обнаружил, что его лодка окружена островом из плавучего пластикового мусора. Растерянный и озабоченный, Мур поплыл сквозь странный остров, чтобы понять, откуда взялся весь этот пластик. Повествуя затем о своей находке, он обмолвился, что мусор плавает в океане на площади, вдвое превышающей Техас. Это сравнение подхватили СМИ, и отсюда и взялось принятое с тех пор название «Великий тихоокеанский мусорный остров». Впрочем, он и правда огромен. По одним оценкам, он занимает площадь 1,6 миллиона квадратных километров (то есть примерно в два раза обширнее Техаса и в три раза обширнее Франции), а по другим – даже больше. Однако это не буквально остров, состоящий из мусора, по которому можно пройти, словно по суше. Исследователи действительно обнаружили несколько конгломератов относительно крупного мусора – корзин, ведер, рыболовных сетей, кроссовок, конфетных фантиков, зубных щеток, флаконов из-под шампуня, – но в основном мусорный остров состоит из крошечных обломков микропластика, которые напоминают крупно смолотый перец, плавающий в гигантской тарелке океанского супа.
Кроме того, Великий тихоокеанский мусорный остров – не единственное пятно мусора в океане, а просто самое известное. Там, где кольцевые океанские течения подхватывают плавающий мусор, накопилось уже пять океанских мусорных островов – два в Тихом океане, один в Индийском и два в Атлантическом.
Но и мусорными пятнами такие острова называть не совсем корректно: строго говоря, никакие это не пятна. У них нет четких границ – границы постоянно меняются. От пятен отрываются куски, и их уносят течения, а иногда часть мусора тонет и оседает на океанском дне. Сами пятна движутся под воздействием ветров и течений и вторгаются на территории морских сообществ, когда приближаются и отступают от берегов континентов.
Океанские мусорные пятна не просто противные, но еще и вредные. Морские млекопитающие, крупные рыбы и черепахи застревают в путанице старых рыболовных сетей и прочего хлама – это явление прозвали «фантомный промысел». Птицы принимают мелкие шарики пластика и пенопласта за икринки, кормят ими птенцов – и те погибают от голода или внутренних повреждений. Химикаты, впитанные пластиком (почти все остальные материалы рано или поздно разлагаются, поэтому тамошний мусор – это в основном пластик), поглощаются океанской флорой и фауной и передаются по пищевой цепочке вплоть до нас с вами – и это имеет непредсказуемые последствия и для их здоровья, и для нашего. А когда ухудшается здоровье всей морской экосистемы, задыхающейся от пластика, страдают самые разные отрасли человеческой деятельности – от туризма и рыболовства до транспортировки грузов.
Загрязнение пластиком не рассосется само собой. Бактерии не едят пластик – в отличие от пищевых отходов, древесины и лоскутков хлопка, – поэтому пластик не биоразлагаем. Удивляться тут нечему, поскольку пластик не существовал, пока его не изготовил человек, а следовательно, естественный отбор стал требовать от бактерий умения расщеплять пластик лишь совсем недавно. Зато пластик фоторазлагаем – ультрафиолетовые лучи разрушают связи между мономерами в длинных цепочках полимеров. Сколько времени на это уйдет, зависит от того, где в конце концов окажется пластик. На мусорной свалке (или глубоко под толщей воды), погребенный под многометровым слоем другого мусора (или воды), пластик почти не подвергается действию ультрафиолета и распадается медленно – на это может уйти больше 400 лет. Когда пластик плавает на поверхности океана или прямо под ней, он распадается быстрее, но именно распадается, а не растворяется или исчезает, – и в конце концов превращается в микропластиковый суп, из которого в основном и состоят океанские мусорные пятна. Тем временем люди продолжают сбрасывать в мировой океан около восьми миллионов тонн пластика ежегодно. А зависимость от пластика для хранения, упаковки, изготовления одежды и другой продукции продолжает расти.
Недавно инженеры-химики начали работать с синтетическими полимерами, чтобы создать частично или даже полностью биоразлагаемый пластик. Например, если добавить во время синтеза полимеров крахмал, то получится отчасти биоразлагаемый пластик. Однако крахмал не только способствует микробному разложению, но и влияет на свойства конечного продукта и может ускорять распад на микропластик. Растительные пластики, в состав которых входит, скажем, кукурузный крахмал, уже начинают применяться для определенных целей, например, для одноразовых вилок, одноразовых стаканчиков (для холодных напитков: температура плавления такого пластика относительно низкая), одноразовых упаковочных изделий. Часто говорят, будто растительный пластик можно пускать на удобрения и даже есть. Однако его химический состав похож на состав нефтяного пластика, так что подобные заявления – в лучшем случае некоторое преувеличение, а в худшем – откровенная ложь. Некоторые виды растительного пластика действительно биоразлагаемы в промышленных компостных установках, но зато они прекрасно сохраняются в бытовых мусорных контейнерах и на свалках – не хуже нефтяного пластика. И еще одно: растительный пластик нельзя перерабатывать вместе с нефтяным на вторсырье. Если к нефтяному пластику при переработке случайно примешается растительный, вся партия будет испорчена и сделать из нее вторсырье не удастся.
Перспективной альтернативой и нефтяному, и растительному пластику может стать недавно открытый класс пластиков под названием полигидроксиалканоаты (ПГА). ПГА вырабатываются естественным образом у некоторых бактерий – для них это механизм запасания энергии при недостатке ресурсов. Можно заставить эти бактерии вырабатывать большое количество ПГА в промышленных условиях – для этого им надо ограничить доступ к одним питательным веществам, а другими обеспечить в переизбытке. В отличие от нефтяного и растительного пластика, ПГА биологически разлагаются и в бытовых мусорных контейнерах, и на свалках, и даже в океане. Кроме того, у ПГА шире диапазон возможностей для применения: на сегодня ученые открыли более 150 разных ПГА, которые микробы вырабатывают из сырья вроде сахаров, крахмала и масел. Эти ПГА можно использовать отдельно, а можно смешивать с другими материалами, создавая биоразлагаемые пластики большей прочности, пластичности, водо– и жаростойкости.
Хотя промышленное производство ПГА в мире пока невелико, биотехнологические фирмы разрабатывают ПГА-полимеры, чтобы в дальнейшем заменить многие небиораз-лагаемые пластические материалы, которые неизбежно оказываются в окружающей среде. На основе ПГА уже делают капсулы для сельскохозяйственных удобрений пролонгированного действия, микрошарики для косметических скрабов, микропластик, повышающий защитные свойства кремов от солнца, упаковку для овощей и фруктов, а также одноразовую посуду и приборы для сетей фаст-фуда. Самый крупный рынок ПГА на сегодня – мульчирующая пленка, пластиковый барьер, который фермеры расстилают поверх обработанной земли, чтобы защитить посевы от сорняков. В конце сезона мульчирующую пленку запахивают в землю, где она распадается на микропластик, сохраняющийся сотни лет. А мульчирующая пленка из ПГА просто разложится.
Микробная продукция ПГА открывает новые перспективы и перед синтетической биологией. Сегодня бактерии производят ПГА в промышленных масштабах, перерабатывая в ходе метаболизма сахара и растительные масла. И чем больше ученые узнают о факторах, регулирующих и ограничивающих эти микробные метаболические пути, тем больших успехов добьется наука в создании генно-инженерных бактерий, которые станут вырабатывать ПГА из других исходных материалов. Такие микробы, например, будут делать биопластик из сусла, оставшегося после варки пива, или из кофейной гущи, или из состриженной листвы и скошенной травы. А может быть, их удастся научить расчищать разливы нефти и ядовитых химикатов либо разлагать нефтяной пластик.
Что касается надежд на будущее, то я почти не сомневаюсь, что когда-нибудь появятся генно-инженерные микробы, которые наловчатся не просто изготавливать продукты, поддерживающие наш образ жизни, но и расчищать планету от мусора. Рано или поздно решение непременно найдется. Недавно ученые открыли микробы, способные расщеплять некоторые виды нефтяного пластика. Правда, естественная скорость поглощения пластика у этих микробов слишком низка для того, чтобы хоть как-то подступиться к нынешней проблеме загрязнения окружающей среды, однако работа с геномом наверняка позволит оптимизировать эти процессы. Кто знает, может быть, инженеры, создающие генно-модифицированные микробы, даже откроют, как контролировать энергию, которая высвобождается, когда эти микробы разрушают связи, скрепляющие синтетические полимеры. Синтетическая биология способна буквально превратить сегодняшний мусор в завтрашние сокровища.
Спасите нашу почву
Сегодняшние проблемы с загрязнением окружающей среды – это, возможно, неизбежное следствие эволюционного успеха нашего вида. За последние 200 лет число людей на планете возросло с одного миллиарда до девяти[22]22
Все же до восьми. – Прим. науч. ред.
[Закрыть]. Все мы что-то едим, нуждаемся в месте, где спать, и производим отходы – органические и неорганические, – которые надо куда-то девать. Загрязнение пластиком – важная часть проблемы, но это, безусловно, не единственная задача по охране окружающей среды, для решения которой можно привлечь синтетическую биологию. Глобальная индустриализация сельского хозяйства и производства провизии загрязнила воздух и воду нашей планеты и истощила плодородные земли. Последствия этого суровы: по оценкам ООН, чтобы прокормить те девять миллиардов человек, которые, по расчетам, будут жить на Земле к 2050 году, производительность сельского хозяйства надо увеличить на 50 %, а Грентэмский центр долговременного изучения будущего при Шеффилдском университете утверждает, что сегодня способность производить растительные культуры в мире на треть ниже, чем 50 лет назад. Истощение пахотных земель отчасти вызвано сезонной обработкой от сорняков, из-за чего содержащийся в почве углерод выделяется в атмосферу, способствуя накоплению парниковых газов. Кроме того, почва лишается минеральных компонентов, а это повышает риск, что она пересохнет и будет смыта дождями, что приводит к зарастанию рек и океанов водорослями. Фермеры, пытаясь выращивать полезные культуры на почвах, от природы менее плодородных, злоупотребляют гербицидами и пестицидами или применяют их неправильно, а это усугубляет проблему, поскольку меняет минеральный состав и кислотно-щелочной баланс почвы и дестабилизирует сообщество микроорганизмов, поддерживающее экосистему здоровой почвы.
Синтетическая биология уже сумела повысить урожайность и замедлить истощение культивируемых земель. Генно-инженерные растения, устойчивые к гербицидам, снижают потребность в обработке почвы, поскольку позволяют фермерам бороться с сорняками при помощи гербицидов вроде глифосата и глюфосината[23]23
Глифосат, самый популярный в мире гербицид, после 2015 года подвергся тщательному изучению, поскольку Международное агентство по изучению рака официально заявило, что он, «вероятно, канцерогенен». Это агентство определяет канцерогенность не так, как другие учреждения, поскольку считает, что вещество канцерогенно, если в принципе способно вызывать рак при тех или иных условиях, и не думает о том, могут ли в реальном мире вообще создаться такие условия. Другие крупные организации здравоохранения оценивают риск канцерогенности на основании того, насколько воздействие какого-то вещества способно вызвать рак в уже сложившихся обстоятельствах. Для этого они, в частности, измеряют продолжительность вредного воздействия и концентрацию вещества. Десятилетия испытаний (и до, и после заявления Международного агентства по изучению рака), проведенные самыми разными крупными юридическими и медицинскими организациями, в том числе Агентством по охране окружающей среды США, ВОЗ, Европейским химическим агентством и Министерством здравоохранения Канады, а также многими другими, не показали, что воздействие глифосата повышает риск рака у людей. Тем не менее Международное агентство по изучению рака причисляет глифосат к группе 2А – «возможные канцерогены», – в которую входят также работа в ночную смену, питье горячих напитков, воздействие древесного дыма, работа парикмахера и заболевание малярией. На этой классификации Международного агентства по изучению рака и основаны судебные решения последних лет.
[Закрыть]. Генно-инженерные растения, устойчивые к насекомым, снижают влияние химических пестицидов на биоразнообразие и качество почвы. Генная инженерия создала множество культурных растений, устойчивых к болезням (в т. ч. радужную папайю), более питательных (в т. ч. золотой рис), более привлекательных (в т. ч. яблоки сорта арктик) и более способных произрастать в не самых идеальных условиях (в т. ч. рис, устойчивый к наводнениям). Благодаря технологиям редактирования генома удалось улучшить и разнообразить и сорта помидоров. Зак Липман, генетик из Лаборатории Колд-Спринг-Харбор в Нью-Йорке, подправил три гена помидора при помощи CRISPR и создал сорт помидоров-черри, которые растут на кусте гроздьями, словно виноград, и быстро созревают. Такой более компактный и плодородный сорт помидоров-черри предназначен для небольших пространств, например, для садов на крышах городских домов, а может, и для садов в человеческой колонии на Марсе.
Инструменты синтетической биологии с годами будут приносить все больше пользы и нашим домашним животным, причем не только благодаря улучшению питательности их кормов. Я надеюсь, что генная инженерия со временем позволит повысить и качество жизни животных на фермах, и производство пищевых продуктов. К счастью, генную инженерию постепенно начинают признавать. Лосось линии AquAdvantage растет вдвое быстрее обычного, а значит, вдвое сокращается время, необходимое, чтобы рыба попала на рынок. Управление по контролю за продуктами питания и лекарствами США в 2015 году разрешило продавать (но не разводить) этих лососей. В 2019 году в Управлении сменилось руководство и был снят запрет на импорт лосося линии AquAdvantage из Канады, где его уже некоторое время разрешено и производить, и продавать, и дан зеленый свет выращиванию этого лосося в США. В 2020 году Управление добавило свиней линии GalSafe в теоретическое меню человека, объявив, что они безопасны как для употребления в пищу, так и для применения в медицинских целях. Небольшая модификация ДНК этих свиней приводит к тому, что у них на поверхности клеток не вырабатывается альфа-связанная галактоза. Аллергия на альфа-связанную галактозу, которую также называют аллергией на мясо млекопитающих, часто возникает после укуса клеща, но страдающие ею люди могут и есть, и получать органы, кровь и другие продукты свиней линии GalSafe, не опасаясь анафилактического шока.
Однако, несмотря на все эти обнадеживающие признаки, добиться одобрения генно-модифицированных животных – задача очень сложная, и путь к ее решению извилист. Впрочем, это может быстро измениться, если потребители и чиновники, отвечающие за получение разрешений, а также конкуренты (главным критиком лосося линии AquAdvantage стала индустрия лососевого промысла на Аляске) прислушаются к мнению ученых. Лаборатории во всем мире разрабатывают генно-модифицированные разновидности домашних животных, удовлетворяющих те или иные особые нужды человека. Быстрорастущие свиньи повышают объемы самого популярного мяса на планете. Козы, дающие молоко, от которого не бывает диареи, улучшают здоровье людей в регионах, где другие животные чувствуют себя плохо. Устойчивые к жаре коровы способны жить и размножаться там, где из-за изменений климата становится все теплее и теплее. Кроме того, генная инженерия может снизить глобальное бремя инфекционных болезней, вызывающих высокую смертность среди домашних животных и угрожающих здоровью человека. Для этого в лабораториях создают свиней, устойчивых к африканской чуме, коров, у которых не бывает коровьего бешенства, и кур, которые не могут заразить птичьим гриппом ни друг друга, ни людей.
Кроме того, синтетическая биология может создать домашних животных и растения, способных сопротивляться загрязнению окружающей среды и переменам климата. Хотя канадский проект по созданию экосвиней и закрылся в 2012 году, сперму экосвиней заморозили, чтобы иметь возможность вернуться к этому начинанию в мире, более расположенном к биотехнологиям, где усваивающие фосфор эко-свиньи одновременно сэкономят деньги свиноводов и снизят загрязнение рек и ручьев в окрестностях свиноферм. И если работу с животными по-прежнему затрудняет бюрократическая волокита, то с растениями наметился существенный прогресс. Например, ученые, работающие над проектом Harnessing Plants Initiative при Институте биологических исследований Солка, прибегают к методам синтетической биологии, чтобы улучшить способность растений поглощать и запасать углерод, повысив выработку суберина – богатого углеродом белка в корнях растений, который борется с гниением. Генно-инженерные разновидности, созданные в рамках этого проекта (так называемые IdealPlants™), отращивают более крупные и глубокие корни, чем у обычных растений и потому передают в почву больше углерода. Ученые планируют при помощи генной инженерии придать эту черту шести главным сельскохозяйственным культурам – кукурузе, рапсу, сое, рису, пшенице и хлопку, – стремясь превратить всемирную систему сельского хозяйства в орудие борьбы с переменами климата.
Пока специалисты по синтетической биологии продолжают изучать, как менять геномы растений и животных, чтобы производить больше продуктов (а также других или более совершенных продуктов), специалисты по естественным и социальным наукам оттачивают подходы к оценке риска новых биотехнологий, а практики и активисты разрабатывают методы внедрения этих биотехнологий на фермах и в лесах, мы как глобальное сообщество все больше привыкаем к применению инструментов синтетической биологии для изменения окружающего мира. Наши противоречивые отношения с генной инженерией рано или поздно гармонизируются – хотя бы даже просто от безвыходности. Невозможно одновременно поддерживать уютную непредсказуемость эволюции и двигать мир в сторону определенного будущего. Если мы хотим, чтобы у нас хватило продовольствия прокормить девять или десять миллиардов человек и чтобы при этом у всех нас был воздух, которым можно дышать, вода, которую можно пить, и биоразнообразие в окружающей среде, нам придется контролировать эволюцию. Надо направлять ее так, чтобы виды быстрее приспосабливались к современному миру, а доступ к биотехнологиям был у всех, а не только у самых привилегированных. Нам следует непременно обращаться к широкой публике, непременно учитывать культурные различия – и двигаться вперед как единое глобальное общество. Не исключено, что это вопрос жизни и смерти.
Будущее нашего вида
В октябре 2018 года в больнице китайского города Шэньчжэнь до срока родились девочки-двойняшки Лулу и Нана. Событие это осталось незамеченным. Через месяц биофизик Хе Цзянькуй из Шэньчжэньского Южного университета науки и технологии рассказал об их рождении на Втором международном конгрессе по редактированию человеческого генома в Гонконге, и на сей раз объявление о рождении девочек вызвало сенсацию. Однако, вопреки ожиданиям Хе, новости никто не обрадовался.
До ноября 2018 года Хе играл на сцене генной инженерии относительно скромную роль. Отучившись в Китайском университете науки и технологии и в Университете Райса в Техасе, где он получил докторскую степень по биофизике, Хе вернулся в Китай и основал в Шэньчжэне стартап по секвенированию ДНК Direct Genomics. Некоторые ведущие ученые и биотехнологи, специалисты по генной инженерии, знали Хе еще с тех пор, когда он жил в Области залива Сан-Франциско, но никто и представить себе не мог, на что он с коллегами отважится.
В течение нескольких лет, предшествовавших сенсационному объявлению, Хе очень интересовался модифицированием человеческих эмбрионов при помощи технологий генной инженерии. Однако его исследования, по-видимому, ограничивались эмбрионами животных, а также – что уже более спорно с этической точки зрения – нежизнеспособными человеческими эмбрионами (хотя Хе был вовсе не первым, кто рассказал о подобных экспериментах). Некоторые специалисты, с которыми Хе общался в Области залива Сан-Франциско, подозревали, что он действительно строит долгосрочные планы по генной модификации человеческих эмбрионов с перспективой на беременность. Однако никто не догадывался, что Хе уже сделал этот шаг, до тех пор, пока он не оповестил всех (по электронной почте), что дети родились.
Хе намеревался объявить миру о рождении двойняшек на конференции по генной инженерии 2018 года, но за несколько дней до нее он утратил контроль над событиями. Хе понимал, что его заявление вызовет живейший отклик, и заранее подготовился: записал и вывесил на YouTube ролики с ответами на ожидаемые частые вопросы и нанял журналиста, чтобы тот помог ему управляться с прессой. Однако за три дня до конференции Антонио Реджаладо, репортер из MIT Technology Review, обнаружил на китайском веб-сайте свежее сообщение о регистрации испытаний генной модификации человека и обнародовал свою находку. Сообщество специалистов по генной инженерии почувствовало себя оскорбленным, едва ли не шокированным. По мнению большинства, нельзя было избежать того, что какой-нибудь беспринципный ученый создаст живых генно-модифицированных людей, но никто не ожидал, что это будет именно этот ученый, именно в этот момент и именно эта модификация.
Хе надеялся на славу и восхваления, а столкнулся с международной опалой. Не прошло и нескольких месяцев, как он потерял работу в университете и был вынужден уйти с руководящей должности в компании, которую сам же и основал. Кончилось все тем, что его посадили в тюрьму.
О двойняшках, о рождении которых объявили в 2018 году, миру больше почти ничего не известно – и совсем ничего не известно о третьем генно-модифицированном ребенке, который родился летом 2019 года. Если мы что-то и знаем, то лишь из неопубликованной рукописи Хе, слитой в интернет. И нас настораживает, что данные в этой рукописи – сплошная каша.
Эксперимент начался в рамках программы по ЭКО. Родители двойняшек хотели ребенка, но у отца был ВИЧ-положительный статус, что ограничивало их доступ к лечению бесплодия. Записавшись в программу Хе, эта пара, как и другие ей подобные, получили бы возможность пройти стандартную процедуру очистки спермы, которая исключает возможность, что мать или ребенок заразятся ВИЧ. Однако Хе предлагал парам, записавшимся в его программу, дополнительную защиту от ВИЧ. После зачатия он предполагал при помощи CRISPR изменить геномы эмбрионов и придать им врожденную устойчивость к ВИЧ-инфекции (механизм этой устойчивости нам известен). Знали ли об этом родители детей и понимали ли они, с каким риском связана дополнительная процедура редактирования генома, неизвестно. В сущности, эксперимент не подвергся почти никаким этическим проверкам, поэтому невозможно разобраться, сколько человек знали о происходящем и известно ли было врачам и больницам, задействованным в процедуре ЭКО, что они имплантируют генно-модифицированные эмбрионы.
Когда эмбрионы выросли до размера в 200–300 клеток, команда Хе забрала несколько из этих клеток для секвенирования генома. Результаты секвенирования выдают некоторые важные подробности эксперимента. Во-первых, модификация генома двойняшек не в точности соответствует известным генетическим особенностям, препятствующим заражению ВИЧ-1. Мутация, циркулирующая в популяции человека, представляет собой короткую делецию ДНК, которая деактивирует рецептор CCR5 на Т-клетках человека. Эта делеция перекрывает молекулам ВИЧ доступ в Т-клетки. Носители двух копий такой мутации меньше восприимчивы к ВИЧ-инфекции, чем те, у кого этих копий одна или ее нет вовсе. В геноме одной из двойняшек были модифицированы обе копии гена CCR5, но по-разному на каждой хромосоме, и ни одна из копий не повторяла в точности циркулирующий в популяции защитный вариант. В геноме второй девочки была модифицирована только одна копия, и модификация опять же отличалась от всех циркулирующих вариантов. Поэтому на момент ЭКО невозможно было судить, окажутся ли девочки так или иначе защищены от ВИЧ. Отрывки из просочившейся в Сеть рукописи, опубликованные в MIT Technology Review, показывают, что группа Хе узнала о конкретных особенностях генома двойняшек еще до имплантации. Хотя эмбрионы можно было бы заморозить на этом этапе и проделать эксперименты, чтобы оценить эффективность и безопасность новых мутаций, группа Хе продолжила работу по прежнему плану.
Во-вторых, оба эмбриона были мозаичными, то есть не все их клетки обладали идентичными геномными последовательностями. Геномная мозаичность – известная проблема, возникающая при редактировании геномов эмбрионов, поскольку их клетки уже начали делиться и дифференцироваться на разные типы клеток и тканей. Если механизм редактирования CRISPR доставляется не во все клетки до единой или в разных клетках делаются разные модификации, то части тела, происходящие от разных первичных клеток, будут различаться последовательностями ДНК. Вдобавок частью развивающегося плода не станут как раз те немногочисленные клетки, для которых были получены геномные данные, так как они были взяты до имплантации. До появления ребенка на свет нет никаких способов оценить, сколько клеток эмбриона были отредактированы и не было ли других, незапланированных модификаций тех или иных клеток, которые станут частью организма плода. Утекшие данные показывают, что группа Хе знала об одной незапланированной модификации в геноме одной из двойняшек, но поскольку она возникла в части генома, у которой нет известной функции, ученые решили, что, вероятно, она никак не скажется на ребенке.
В-третьих, Хе приводит совершенно неубедительные обоснования для таких крайних форм медицинского вмешательства. Во время доклада на конференции Хе заявил, что следовал правилам научного сообщества по регулированию редактирования зародышевой линии человека. Эти правила были составлены в 2017 году комиссией из ученых и специалистов по этике, и в них рекомендовано прибегать к модификации тех или иных генов только в случае, если они вызывают болезнь, а все эксперименты, прежде чем переходить к работе с человеческими тканями, отрабатывать на животных, – причем это должно происходить под этическим надзором соответствующих научных и государственных учреждений. Эксперимент Хе не соответствовал ни одному из этих критериев. ВИЧ – не генетическая болезнь, которая лечится деактивацией гена CCR5; модификации были сделаны с целью изменить здоровый эмбрион: это задумывалось как мера профилактики. Хе не проверял свои конкретные модификации на животных, хотя у него были для этого все возможности. Этический надзор, о котором он говорит, очевидно, вписан задним числом, поскольку Хе зарегистрировал свой эксперимент в соответствующих органах уже после того, как двойняшки появились на свет. Хе не намеревался решать медицинскую проблему, у которой не было других решений, – похоже, он задумал и проделал свой эксперимент по генной инженерии лишь с целью прославиться.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.