Текст книги "Кости, гены и культура"
Автор книги: Александр Марков
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 27 (всего у книги 36 страниц)
Глава 11
Социальное обучение и культурные традиции
Многим кажется совершенно очевидным, что главная причина небывалого успеха гоминид из рода Homo, заселивших весь мир и создавших искусство, земледелие и космические корабли, кроется в нашем могучем интеллекте. Но интеллект – понятие многогранное и довольно расплывчатое. Иногда его определяют как способность справляться с новыми проблемами, для которых у особи нет готового (ранее выученного или унаследованного) решения. Причем справляться нужно не методом проб и ошибок (так и одноклеточные умеют), а за счет понимания и просчитывания ситуации, то есть путем создания адекватных мысленных моделей тех или иных аспектов окружающего мира. Некоторые исследователи, однако, сомневаются, что люди так уж сильно превосходят других животных по своей врожденной способности к такому моделированию и по изобретательности. Маленькие дети, например, существенно превосходят орангутанов и шимпанзе только в решении социальных задач, а с физическими задачами справляются не лучше обезьян (книга 2, глава 4, раздел “Ключевое различие найдено?”). Но, даже если рассматривать не интеллект вообще, а только социальный интеллект, пространство возможностей все равно остается очень широким. Какими именно аспектами социальной жизни наших предков был порожден сильный и длительный отбор на увеличение мозга? Может быть, мозг развивался ради макиавеллиевских хитростей, помогавших особям без прямого насилия повышать свой статус в группе, привлекая половых партнеров и получая эксклюзивный доступ к дефицитным ресурсам? Или ради способностей к кооперации, слаженным коллективным действиям, обузданию эгоистических порывов во имя общего блага, выявлению и наказанию обманщиков-“фрирайдеров”? Или, может быть, ради способностей к социальному обучению, которые, достигнув определенного уровня совершенства, создали предпосылки для старта культурной эволюции? Все перечисленные варианты предполагают умение моделировать психику других особей, их мотивы и намерения (то, что в англоязычной литературе называют theory of mind). Но какой из них ближе к истине? В последние годы некоторые антропологи, этологи, психологи и эволюционисты-теоретики стали склоняться к последнему варианту (“мозг для социального обучения и культуры”). Мы тоже за годы, прошедшие с написания первых двух книг, начали отдавать ему предпочтение. В этой главе мы поговорим о социальном обучении и культурных традициях у животных, а в следующей – о той роли, которую, вероятно, сыграла в становлении человека сопряженная эволюция социального обучения, мозга и культуры.
Оптимальный способ обучения
Умение учиться, наблюдая за действиями сородичей, – полезная способность. Она экономит время и силы, а главное, позволяет осваивать выгодные способы поведения и получать ценные знания без рискованных проб и ошибок. Такое обучение называют социальным (Резникова, 2009).
Социальное обучение очень широко распространено в животном мире. Многие животные, включая даже некоторых беспозвоночных, перенимают те или иные особенности поведения у других особей, наблюдая за ними и копируя их действия. Распространенность социального обучения в живой природе, по-видимому, объясняется тем, что во многих случаях это самый простой и безопасный способ выработать оптимальное поведение.
Два других способа – метод проб и ошибок и “аналитическое”, разумное решение проблем – имеют серьезные ограничения. Чтобы просчитать ситуацию в уме и найти правильное решение, не подглядывая за другими и не экспериментируя, нужны обширные познания и незаурядные когнитивные способности. Впрочем, даже если вам так повезло, что у вас есть и то и другое, вы все равно не застрахованы от роковых ошибок. Это крайне затратный путь, в большинстве случаев недоступный даже самым умным животным, включая людей (хотя бы потому, что мы редко располагаем всей информацией, необходимой для разумного решения).
Этнограф и специалист по культурной эволюции Джозеф Хенрик в своей книге “Секрет нашего успеха. Как культура направляет эволюцию человека, одомашнивает наш вид и делает нас умнее” (Henrich, 2015) приводит много ярких исторических примеров того, как в незнакомых условиях (например, в дальних неизведанных странах) интеллект европейских исследователей оказывался бессилен перед задачами, с которыми легко справляются аборигены (нецивилизованные охотники-собиратели) благодаря своему культурному багажу – накопленному опыту бесчисленных поколений предков. Среди этих примеров есть душераздирающий рассказ о том, как хорошо подготовленная арктическая экспедиция под руководством Джона Франклина погибла от голода в местности, которую жившие там инуиты считали весьма изобильной. В отличие от прибывших европейцев, они знали, как найти и добыть ее богатые ресурсы. Или еще история о том, как европейские исследователи, отправившиеся в Центральную Австралию, отравились местными растениями просто потому, что не посчитали нужным прислушаться к аборигенам, которые знали, как эти растения правильно готовить. Причем аборигены не могут объяснить, почему их надо готовить так, а не иначе – просто у них так принято. Сами охотники-собиратели, случайно утратив какой-то ценный навык, обычно не в состоянии изобрести его заново даже под угрозой смерти. Например, известен случай, когда изолированная группа инуитов разучилась делать каяки и луки, потому что внезапный мор унес всех членов сообщества, обладавших этими жизненно важными знаниями. Численность сообщества начала быстро падать, и оно наверняка вымерло бы полностью (а добраться без каяков до других людей было невозможно), если бы не счастливая случайность – прибытие кочующей группы охотников из другого инуитского племени. Гибнущее сообщество переняло у гостей утраченные технологии, и дела сразу пошли на лад. По мнению Хенрика, секрет нашего успеха – вовсе не в интеллекте, а в способности накапливать опыт поколений благодаря эффективному социальному обучению. Никто на свете не сумел бы изобрести с нуля ашельское рубило, не говоря уж о каяке или паровой машине. Но это можно сделать постепенно, маленькими шажками (даже случайными), опираясь на имеющийся культурный багаж и запоминая удачные шажки. Культурная эволюция может быть (и почти наверняка была в течение большей части истории рода Homo) таким же слепым процессом, как и эволюция биологическая. При этом она, как и естественный отбор, способна создавать на удивление мудрые, как будто кем-то нарочно спроектированные поведенческие и технологические адаптации. Для того чтобы культура успешно развивалась, людям вовсе не обязательно понимать, почему то или иное поведение выгодно, а тот или иной инструмент – удобен и эффективен. Достаточно лишь тщательно копировать действия других людей, в первую очередь – успешных и уважаемых. Обычно именно это и происходит. Так обеспечивается отбор удачных инноваций.
Метод проб и ошибок гораздо проще, чем пресловутое разумное решение проблем: он не требует ни большого ума, ни обширных знаний. Однако он тоже связан со значительными издержками. Возможных вариантов поведения много, а удачных среди них, как правило, куда меньше, чем провальных. Пробовать все варианты – долго и рискованно.
Куда быстрее и безопаснее использовать социальное обучение, то есть наблюдать за поведением сородичей и поступать так же, как они. Эта стратегия тоже не лишена недостатков, но у нее есть большой плюс: поведение, демонстрируемое сородичами, скорее всего, уже испытано на практике. Оно прошло проверку и оказалось достаточно успешным, чтобы сородичи его выучили и использовали. Вероятно, именно поэтому многие животные полагаются на социальное обучение в большей степени, чем на экспериментирование.
Эти соображения получили яркое и оригинальное подтверждение в 2010 году, когда группа эволюционистов во главе с Кевином Лаландом из Сент-Эндрюсского университета организовала соревнование компьютерных программ – алгоритмов, разработанных специально для этого турнира 104 коллективами добровольцев (ученых и программистов из разных стран). Ранее такие компьютерные турниры с успехом использовались для выявления выигрышных стратегий в так называемой дилемме заключенного. Об этих увлекательных исследованиях, важных для понимания эволюции альтруизма (книга 2, глава 5), рассказано во многих научно-популярных книгах, в том числе у Роберта Сапольски в “Биологии добра и зла” (Сапольски, 2019).
Успешное использование компьютерных турниров в изучении дилеммы заключенного вдохновило Лаланда и его коллег организовать аналогичный турнир для выяснения вопроса о том, как выгоднее учиться новым способам поведения. В этом турнире компьютерные программы соревновались, какая из них сумеет лучше приспособиться к стабильной или переменчивой среде, подстраивая свое поведение под текущую обстановку (Rendell et al., 2010). Текущая обстановка (состояние окружающей среды) задавалась неким числом из заранее предопределенного набора (например, можно предусмотреть 100 возможных состояний среды). Переменчивость условий определялась тем, насколько часто это число сменялось другим числом из того же набора (например, в среднем раз в 10 или 100 лет). Соревнующиеся игроки (компьютерные программы) могли выбирать тот или иной способ поведения, который тоже задавался в виде числа из заранее установленного набора (например, можно предусмотреть 50 возможных способов поведения). При этом для каждого способа поведения было заранее задано, насколько он выгоден при каждом из возможных состояний среды. Выгодность поведения выражалась в количестве ресурсов, получаемых игроком.
Чтобы выбирать оптимальное поведение, подстраивая его под меняющуюся среду, каждый игрок во время каждого хода мог использовать либо метод проб и ошибок (то есть попробовать какой-нибудь способ поведения наугад, чтобы выяснить, насколько он выгоден), либо социальное обучение – подсмотреть, как ведет себя другой игрок. При этом подсматривающий ничего не узнавал о том, насколько выгодно это поведение для другого игрока. Подсмотренное или апробированное в эксперименте поведение можно было в дальнейшем (начиная со следующего хода) использовать для получения ресурсов из среды. Выигрывала, естественно, та стратегия, которая позволяла добыть больше всего ресурсов.
Условия среды в ходе игры могли в любой момент измениться (с какой-то заданной вероятностью, которую можно было менять от игры к игре). При смене условий менялась и степень выгодности разных вариантов поведения. Предсказать, как именно и в какой момент изменится обстановка, игроки не могли, хотя у них была возможность на основе своего “жизненного опыта” прикинуть, как часто в среднем происходят изменения.
Оба способа обучения (запоминание чужого поведения и “инновация”, то есть метод проб и ошибок) были дорогостоящими: нужно было потратить ход, чтобы осуществить акт обучения любым из двух способов. В первом случае игрок узнавал лишь, что какой-то другой игрок X использует поведение Y, но не получал никакой дополнительной информации о выгодности поведения Y. Во втором случае игрок получал на основе собственного опыта точную информацию о выгодности определенного поведения (Z) в текущих условиях. Каждый раз игрок должен был решать, на что ему потратить свой ход: на обучение одним из двух способов или на то, чтобы применить выбранный способ поведения для получения ресурсов из среды.
Ученые ожидали, что самыми выигрышными окажутся стратегии, при которых для обучения будут со сравнимой частотой использоваться оба подхода, то есть социальное обучение (копирование) и асоциальное обучение (инновация). Например, можно было предположить, что если условия среды меняются часто, то более выигрышными окажутся стратегии, предпочитающие инновацию, а если редко, то выгоднее будет больше полагаться на копирование.
Результаты турнира удивили исследователей. Оказалось, что в широком диапазоне входных параметров (в том числе при разной степени переменчивости условий среды) в долгосрочной перспективе уверенно побеждают стратегии, полагающиеся в обучении почти исключительно на копирование чужих действий. По сумме преимуществ и недостатков инновации оказались плохой идеей по сравнению с копированием[52]52
Совсем без инноваций, конечно, нельзя – должен же кто-то пробовать новые способы поведения! Однако в реальной жизни совсем без инноваций и не получится: жизнь всегда преподносит какие-нибудь сюрпризы, и животные волей-неволей будут периодически пробовать какое-нибудь новое поведение в новых условиях. Но компьютерный турнир показал, что по-крупному вкладываться в инновацию (например, часто пропуская ради этого ход) – проигрышный путь.
[Закрыть].
Задним числом, конечно, можно сказать, что результат этот очевидный и ожидаемый. Ведь все игроки постоянно пытаются оптимизировать свое поведение. Если отдача от привычного, то есть с успехом применявшегося в прошлом, поведения вдруг уменьшилась, то это, скорее всего, означает, что поведение пора менять. Любая сколько-нибудь конкурентоспособная стратегия должна реже менять поведение, если дела идут хорошо, и чаще – если плохо. Если все игроки меняют свое поведение, когда оно дает низкую отдачу, то сам факт того, что кто-то из ваших соседей ведет себя так, а не иначе, кое о чем говорит. А именно о том, что в текущих условиях с большой вероятностью данное поведение является выигрышным. Конечно, вам может не повезти. Вы можете подглядеть поведение неудачника, который даже не доживет до следующего хода. Но вероятность этого все же меньше, чем шанс наткнуться на негодный вариант поведения, действуя методом проб и ошибок. Логика здесь примерно такая же, как при сравнении случайного мутирования с горизонтальным переносом генов. Внося случайную мутацию в один из своих генов, вы сильно рискуете – ведь новую мутацию еще никто не проверял на совместимость с жизнью. Если же вы заимствуете чужой ген и аккуратно заменяете им свой собственный, похожий, то рискуете меньше, потому что чужой ген все-таки принадлежал какому-то живому существу, чьи предки успешно прошли через фильтр естественного отбора.
Хорошие способности к социальному обучению могут привести к появлению в популяции культурных традиций – способов поведения, устойчиво передающихся от одних особей к другим и сохраняющихся в ряду поколений. Как уже говорилось, многие специалисты допускают, что социальное обучение и постепенно развивающаяся культура сыграли ключевую роль в антропогенезе. Мы постараемся развить эту важную мысль. Но сначала познакомимся с некоторыми новыми фактами, касающимися социального обучения и культурных традиций у животных.
Социальное обучение черепах и культурные традиции синиц
Очевидная тенденция последних десятилетий состоит в том, что круг животных, у которых задокументировано социальное обучение, непрерывно расширяется. Социальное обучение наблюдали у многих млекопитающих, птиц, рыб и даже насекомых. Обычно оно обнаруживается у животных, ведущих общественный образ жизни или как минимум практикующих активные контакты между родителями и детенышами, в ходе которых могут передаваться полезные знания (илл. XXII на цветной вклейке). До какого-то момента этологи полагали, что способность к социальному обучению развивалась в различных ветвях эволюционного дерева животных исключительно как адаптация к социальной жизни. С другой стороны, способность учиться у других может оказаться еще древнее, если исходно она развивалась не как специальная адаптация общественных животных, а как удобный и довольно-таки универсальный способ оптимизации собственного поведения, эффективный вне зависимости от того, какой образ жизни – общественный или одиночный – ведет животное. Например, в компьютерном турнире, о котором мы говорили в разделе выше, соревнующиеся алгоритмы не изображали из себя социальных животных. Скорее они вели себя как одиночки. При этом копировать чужое поведение им было все равно очень выгодно.
На птицах и млекопитающих идею о досоциальных корнях социального обучения проверить трудно, поскольку и птицы, и млекопитающие заботятся о своем потомстве, то есть живут группами хотя бы в период выращивания детенышей. Даже если группа состоит только из матери и ее отпрыска, все равно это некий коллектив, жизнь в котором может способствовать развитию специфических адаптаций, в том числе склонности учиться у других.
Чтобы выяснить, действительно ли социальное обучение неразрывно связано с социальностью, необходимы эксперименты с животными, у которых контакты с сородичами сведены к минимуму. Этому условию вполне удовлетворяют сухопутные угольные черепахи, Geochelone carbonaria, обитающие в Центральной и Южной Америке. Они не только ведут одиночный образ жизни, но и о потомстве не заботятся: самка откладывает яйца в ямку в земле и бросает их на произвол судьбы, а детеныши потом сами выкапываются и расползаются в разные стороны.
В 2010 году этологи из Венского университета экспериментально показали, что угольные черепахи способны извлекать полезную информацию из наблюдений за сородичами (Wilkinson et al., 2010). В опытах использовали восемь черепах, которых разделили на две равные группы – “наблюдатели” и “контроль”. Эксперименты проводились в комнате, посередине которой была установлена прозрачная загородка в виде буквы V. В углу, образованном двумя стенками загородки, помещалось лакомство. Чтобы до него добраться, черепаха должна была обойти одну из стенок, причем для этого требовалось какое-то время двигаться прочь от приманки.
Задача оказалась непосильной для необученных (контрольных) черепах. Они видели угощение, подходили к углу загородки, но что делать дальше – не знали. Понять, что нужно сначала уйти от лакомства, чтобы потом до него добраться, бедные рептилии не смогли. Каждой из четырех контрольных черепах было предоставлено по 12 попыток, и все они оказались безуспешными.
Затем одну из контрольных черепах научили решать задачу, воспользовавшись стандартным учительским приемом: начали с упрощенного варианта, а потом постепенно усложняли задание. После 30 уроков черепаха уверенно справлялась с этим нелегким делом, причем обходила она загородку всегда справа – так ее научили.
Когда “демонстратор” был обучен, начались опыты с четырьмя оставшимися черепахами – “наблюдателями”. Наблюдателя сажали в небольшую клетку, откуда он видел, как демонстратор добирается до угощения. Затем демонстратора убирали из комнаты, за загородкой ставили новую порцию пищи, а наблюдателя выпускали из клетки (рис. 11.1).
Рис. 11.1. Схема эксперимента по выявлению способностей к социальному обучению у черепах.
Каждому наблюдателю, как и контрольным черепахам, было предоставлено по 12 попыток. Из четырех наблюдателей один справился с заданием все 12 раз, второй – 11 раз, третий – 3 раза, четвертый – 2 раза. В общей сложности, таким образом, было зарегистрировано 28 успешных попыток из 48. В контрольной группе, как мы помним, все 48 попыток были неудачными. Это статистически значимое различие, которое свидетельствует о том, что черепахи действительно сумели извлечь полезное знание из наблюдений за сородичем.
В большинстве случаев наблюдатели обходили загородку справа, как это делал демонстратор, однако в 8 тестах из 28 они обошли препятствие слева. Таким образом, черепахи не всегда в точности копировали поведение демонстратора, скорее лишь пытались сделать нечто в том же духе. Такое неточное копирование в ходе социального обучения характерно для многих животных. Как отмечает Жанна Резникова в своей статье 2004 года “Сравнительный анализ различных форм социального обучения у животных”:
Даже самые “умные” особи наиболее “интеллектуальных” видов, наблюдая за успешными действиями сородичей, как правило, не копируют их, а действуют в том же направлении, но своим путем. <…> Такая деятельность чаще всего не приносит успеха последователям, и инновации “затухают”, оставаясь частью поведенческого репертуара изобретателя и умирая вместе с ним. Исключение составляют лишь шимпанзе, и притом лишь те особи, что были воспитаны в обществе людей. Только эти животные могут точно копировать поведение демонстратора. Человек, вероятно, является единственным видом, у которого есть врожденная склонность к точному копированию действий конспецификов.
Так или иначе, работа австрийских этологов показала, что общественный образ жизни не является обязательным условием для развития способности к социальному обучению. Вероятно, умение делать полезные выводы из наблюдений за сородичами развивается не как специфическая адаптация к общественному образу жизни, а скорее как универсальный способ оптимизации собственного поведения и как следствие общего развития способности к обучению.
Хотя устойчивые культурные традиции, казалось бы, требуют очень высокого уровня развития социального обучения (в том числе высокой точности копирования), они тем не менее на сегодняшний день обнаружены далеко не только у шимпанзе (и не только у приматов). В последние годы культурные традиции начали активно изучать и у других млекопитающих, и у птиц.
Например, биологи из Оксфордского университета совместно с коллегами из Австралии и Канады экспериментально изучили процесс формирования традиций у больших синиц (Parus major), проводящих зиму в лесу Уайтем к западу от Оксфорда (Aplin et al., 2015).
Выбор объекта был не случаен: изобретательность этих птиц, а также распространение новых навыков в их популяциях хорошо известны. Знаменитая история о том, как английские синицы научились открывать молочные бутылки, чтобы добраться до сливок, и этот навык стремительно распространился по большой территории, вошла в учебники. Однако констатировать распространение навыка гораздо проще, чем доказать, что он распространился именно благодаря культурной передаче нового знания от одной особи к другой. Ведь возможны и другие механизмы, в том числе многократные независимые изобретения или упрощенные варианты социального обучения (например, вид сородича, клюющего молочную бутылку, может стимулировать исследовательское поведение других птиц без прямого заимствования готового навыка).
Эксперимент проводился в восьми группах (субпопуляциях) больших синиц, численностью в 100–200 особей каждая, занимающих зимой разные участки на территории леса Уайтем. Миграция птиц из одной группы в другую происходит лишь изредка. Как минимум 90 % птиц в каждой группе были помечены индивидуальными метками, что позволило следить за поведением каждой особи по отдельности при помощи специальной аппаратуры, установленной рядом с экспериментальными кормушками-головоломками. Достать пищу из такой кормушки птица может, сдвинув клювом дверцу либо влево, либо вправо.
Восемь групп подразделили на три части: A (две группы), Б (три группы) и контроль (три группы). Из каждой группы было поймано по два самца, которые прошли в неволе тот или иной курс обучения. Самцов из субпопуляций А научили добывать пищу (мучных червей, которых большие синицы обожают), сдвигая дверцу кормушки вправо. Для этого сначала птицам предоставляли открытую кормушку, а затем постепенно, на протяжении четырех суток, прикрывали дверцу. Все птицы успешно освоили технологию открывания дверцы. В ходе обучения движение дверцы в противоположную сторону было заблокировано, так что открыть ее можно было только одним способом.
Самцов из субпопуляций Б научили открывать дверцу, сдвигая ее влево. Контрольных самцов ничему не обучали, а просто давали еды вдоволь. Затем обученных и контрольных самцов выпустили на волю в том же месте, где поймали.
Через двое суток после того, как самцы были выпущены, на территории каждой субпопуляции установили по три кормушки-головоломки, которые можно было открывать любым из двух способов. Открыв кормушку, синица обычно берет оттуда одного мучного червя и улетает. Через секунду после этого кормушка автоматически закрывается. Рядом с кормушками находились видеокамеры и аппаратура для идентификации птиц по индивидуальным меткам. Наблюдения продолжались в течение 20 зимних дней.
В группах A и Б, куда вернулись обученные демонстраторы, умение открывать кормушки начало стремительно распространяться с первого же дня, а к концу периода наблюдений навыком овладели 68–83 % особей (в среднем 75 %). Правда, птицы из трех контрольных групп тоже оказались не лыком шиты – некоторые особи по прошествии нескольких дней догадывались, как добраться до корма, после чего число обладателей нового знания начинало расти. Однако в целом в контрольных группах процесс шел медленнее: лишь 9–53 % птиц научились открывать кормушки за 20 дней.
Самое интересное, что в группах A и Б подавляющее большинство птиц открывали кормушки именно так, как это делали демонстраторы: слева направо в группах A и справа налево в группах Б. В контрольных группах столь четких преференций не наблюдалось (рис. 11.2).
Рис. 11.2. Распространение умения открывать кормушки в восьми субпопуляциях больших синиц за 20 дней. Высота столбцов отражает число успешных решений (левая вертикальная ось). C1, C2, C3 – контрольные группы; T1, T2 – группы А с демонстраторами, обученными открывать дверцу слева направо (способом А, темно-серый цвет); T3, T4, T5 – группы Б с демонстраторами, обученными открывать дверцу справа налево (способом Б, светло-серый цвет). Точки с доверительными интервалами показывают долю случаев, когда дверца была открыта способом А (правая ось). Видно, что в группах A и Б птицы почти всегда пользовались тем способом открывания дверцы, которому были обучены демонстраторы. По рисунку из Aplin et al., 2015.
Полученные результаты показывают, что навык распространялся в основном благодаря культурной передаче – и это привело к формированию поведенческих различий между группами.
Чтобы проверить, влияет ли социальная структура группы на распространение знаний, ученые составили для каждой субпопуляции схему ее “социальной сети”, отражающую частоту контактов между особями (до недавних пор подобные исследования проводились только на обезьянах, см. раздел “Шимпанзе учатся друг у друга навыкам полезным и не очень” ниже). Для этого в лесу установили 65 обычных кормушек с семенами подсолнечника, оборудованных приборами для идентификации птиц по индивидуальным меткам. Подсчитывалось число совместных посещений кормушек птицами. Считалось, что совместное посещение кормушки – это социальный контакт и что чем чаще две особи посещают кормушку вместе, тем теснее между ними связь.
Выстроенные на основе этих данных социальные сети сопоставили с данными о последовательности приобретения полезного навыка (умения открывать кормушку-головоломку) в каждой субпопуляции.
Оказалось, что структура социальной сети сильно влияет на динамику распространения знаний. Вероятность приобретения нового знания резко повышается в случае близкого знакомства с особью, уже этим знанием обладающей. Эти результаты позволили отвергнуть гипотезу о случайных заимствованиях у кого попало, равно как и гипотезу о преобладании независимых изобретений.
Чтобы проверить, насколько устойчивыми являются сложившиеся традиции, ученые повторно установили кормушки-головоломки в трех подопытных субпопуляциях (по одной из всех трех групп – A, Б и контрольной) спустя 9 месяцев после описанных экспериментов (в начале следующей зимы). На сей раз наблюдения велись в течение пяти дней. За это время в контрольной субпопуляции только три особи успешно добывали пищу из кормушки, причем все они уже знали, как это делать, по опыту прошлой зимы. Напротив, в субпопуляциях A и Б использование кормушек приобрело массовый характер даже быстрее, чем в первый раз. Навыком быстро овладели и те птицы, которых прошлой зимой здесь не было (из-за высокой смертности, характерной для данного вида, в среднем лишь 40 % птиц, присутствовавших на участке во второй период наблюдений, находились там также и в первый период). Самое удивительное, что местные традиции (приверженность к сдвиганию дверцы влево или вправо) не только сохранились, но даже укрепились: процент альтернативных решений уменьшился по сравнению с прошлым годом.
Это говорит о возможной склонности синиц к конформизму. Птицы, по-видимому, не просто заимствуют полезные навыки у любого сородича, продемонстрировавшего такой навык. Скорее они перенимают стиль поведения, характерный для большинства особей в группе. Известно, что конформизм – важнейший фактор культурной эволюции у людей, определяющий развитие и сохранение всевозможных местных, племенных и национальных культур. О конформизме у диких животных (за исключением приматов) почти ничего не известно.
Чтобы проверить гипотезу о конформистском характере социального обучения, ученые проанализировали поведение тех птиц, которые пользовались обоими способами открывания дверцы. Всего таких птиц было 78. Большинство из них сначала открывали кормушку традиционным для данной группы способом, потом попробовали альтернативный (и убедились, что он работает ничуть не хуже!), но затем все-таки вернулись к традиционному. Восемь особей начали с нетрадиционного поведения, но потом стали поступать как все. Лишь три птицы продолжали упорствовать, используя изначально освоенный ими нестандартный способ (есть все-таки и среди синиц настоящие нонконформисты!). Ну а таких птиц, которые начали бы с традиционного способа, а потом переключились на нетрадиционный, не было замечено ни одной. В среднем у всех особей частота использования альтернативного способа открывания дверцы снижалась со временем.
Дополнительные аргументы в пользу конформизма дал анализ поведения 41 птицы, перелетевшей за время наблюдений в другую группу. Из 27 особей, переселившихся в группу с такой же традицией открывания дверцы, 26 остались этой традиции верны. Напротив, из 14 особей, перелетевших в группу с другой традицией, большинство (10) изменили свое поведение и только три птицы продолжали открывать дверцу так, как принято у них на родине. Последняя, 14-я, синица открывала дверцу то так, то эдак, не отдавая предпочтения ни одному из способов.
Кроме того, оказалось, что вероятность усвоения конкретного способа открывания дверцы растет с частотой его использования не линейно (как должно быть при непредвзятом заимствовании навыка), а по сигмоиде – сначала медленно, потом все быстрее. Это значит, что навык заимствуется предвзято, с оглядкой на мнение большинства.
Исследование показало, что некоторые важные закономерности передачи знаний и формирования культурных традиций, ранее известные лишь у человека и отчасти у других приматов, могут быть распространены среди животных шире, чем принято считать.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.