Текст книги "Первая клетка. И чего стоит борьба с раком до последнего"
Автор книги: Азра Раза
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 17 (всего у книги 24 страниц)
Сколько еще Омаров и Андреев нужно принести в жертву?
Почему лимфому у Харви диагностировали, только когда она распространилась по всему телу? Почему саркому у Омара нашли, только когда она уже изрыгала клетки в кровоток, захватила окружающие мышцы, уютно обосновалась в легких и костях? Почему опухоли Андрея позволили разрастись до девяти сантиметров, когда она уже грозила пережать спинной мозг и привела к полному параличу спустя считаные дни после появления симптомов? Почему мы не пытаемся распознавать первые признаки рака, вместо того чтобы ставить цель истребить последнюю клетку зверскими методами лечения? Все, что случилось с ними, дает ответ на вопрос, зачем вообще искать рак в двадцать два года и в восемьдесят девять лет. Возраст – не гарантия, что рака у тебя не будет. Каждого из нас нужно регулярно обследовать. Необходимо обеспечить для этого научно-техническую базу. Рак нужно предотвращать еще на предраковом уровне. И не одна я это говорю.
Что ранняя диагностика – ключ к решению проблемы рака, признают все. Вот почему уже десятки лет проводятся скрининговые процедуры, и ранняя диагностика снизила смертность по меньшей мере на 25 %. Теперь нам необходимо стремиться к тому, чтобы распознавать раковые клетки еще раньше, до того, как они станут видны на сканах. Почему же на это важнейшее направление исследований выделяется только 5,7 % общего бюджета Национального института рака? Почему 70 % бюджета идут на исследования злокачественных опухолей на поздних стадиях, причем на исследования, которые ведутся на животных и культурах клеток и заканчиваются клиническими испытаниями с практически девяностопроцентной вероятностью провала? Почему все не наоборот – и мы не выделяем основную часть ресурсов на выявление рака в самом начале?
Сколько еще Омаров, сколько еще Андреев придется принести в жертву?
Что потребовалось бы, чтобы вылечить Харви? Многие виды рака можно излечить хирургией, химиотерапией, облучением и пересадкой стволовых клеток. Перечень излечимых видов рака за последние годы почти не изменился. Большинство достижений в лечении рака лишь количественные, а не качественные, и в основном они связаны с жестким отбором пациентов, которым с большей вероятностью подойдет тот или иной метод. Что же касается видов рака, устойчивых к такому лечению, за последние пятьдесят лет особого прогресса мы не достигли. Таргетная терапия и индивидуальные подходы прецизионной медицины помогают лишь небольшой доле больных, увеличивая продолжительность их жизни на несколько месяцев ценой колоссальных физических и финансовых затрат. Иммунотерапию во всевозможных формах испытывают с 1910 года, и она иногда помогает некоторым подгруппам больных.
Я уже писала, что корень зла отчасти в опоре на ненадежные платформы доклинических испытаний и на модели на животных при доклинических исследованиях. Я не против применения моделей на животных в нашей области. В биологических исследованиях эти же самые модели обеспечили большой прогресс в понимании молекулярных механизмов рака. Этих успехов удалось достичь во многом благодаря тщательным исследованиям клеточных культур и применению моделей на животных – дрозофилах, рыбках данио-рерио, червях, грызунах и человекообразных обезьянах. Но в качестве доклинических платформ для разработки лекарств все это не годится. Если мы продолжим двигаться в прежнем направлении и расходовать драгоценные ресурсы на улучшение все тех же моделей, на практическое решение проблемы рака у нас уйдет еще лет пятьсот.
Достаточно хотя бы сопоставить этот мнимый золотой научный стандарт воспроизводимой модели на животных с общеизвестным фактом, что рак у каждого пациента – уникальное заболевание и что у отдельно взятого пациента уникальны даже клетки, обсеменившие разные органы. Когда злокачественная клетка делится надвое, она порождает дочерние клетки как с такими же, так и с радикально иными свойствами, поскольку в процессе репликации ДНК постоянно возникают новые ошибки копирования. Даже если у двух раковых клеток тождественная генетика, их поведение, совсем как у однояйцевых близнецов, может быть разным в зависимости от экспрессии или молчания генов под воздействием тысячи факторов, в число которых входит и микроокружение, где эти клетки найдут себе место, и доступный для них кровоток, и местная реакция иммунных клеток. В результате возникает широчайший диапазон опухолевых клеток, уникальных в зависимости от места, где возникли метастазы. Помножьте это многообразие на иммунный ответ хозяина на каждый новый клон – и получите сложнейшую, запутанную, непостижимую картину, которая к тому же непрерывно меняется.
Рак – далеко не единственная сложная болезнь. Джон Коэн в статье для Science писал о неудачных попытках лечить ВИЧ-инфекцию у людей противовоспалительными антителами: этот метод оказался неэффективным, хотя до этого ученым удалось продемонстрировать случаи исцеления у обезьян, преднамеренно зараженных обезьяньей формой вируса СПИДа. Провалилась и попытка независимой рабочей группы повторить результат у других подопытных больных приматов. Глава Национального института аллергических и инфекционных болезней и соавтор исследования приходит к выводу, что результаты первых опытов на обезьянах, “вероятно, были счастливой случайностью”. Такая необычная прямота, безусловно, похвальна, однако у меня возникают сомнения в дальнейших действиях. Какие шаги были предприняты соответствующими управлениями, чтобы пресечь подобные исследования на животных, раз они приводят к непредсказуемым случайностям? Почему мы по-прежнему вкладываем сотни миллионов долларов в исследования на животных, тешась надеждой, будто очередной подобный эксперимент натолкнет нас на действенные клинические методы лечения людей? Почему мы как общество не требуем, чтобы перед нами более прозрачно отчитывались о распределении наших ресурсов? Кому это выгодно и почему? Уж точно не пациентам.
Конечная цель всех исследований рака – найти более удачные методы лечения, однако для изучения опухолей у людей мы избираем на диво неподходящие средства, и особенно это касается платформ испытаний медикаментов. Мы берем несколько раковых клеток из крошечной пробы опухолевой ткани, помещаем их в чашку Петри или вводим мышам и после этого ожидаем, что они воспроизведут широчайшее многообразие, которое мы наблюдаем у популяции злокачественных клеток in vivo с их эволюцией, экспансией, изменчивостью, атаками и отступлениями, возрождением и преображением. То, что при этом вырастет, нельзя считать отражением даже изначальной крошечной пробы, поскольку при извлечении из нормальной среды обитания клетки приспосабливаются к новой среде, а следовательно, меняют свойства. Мягко говоря, у нас достаточно данных, свидетельствующих о том, что клетки, растущие in vitro, больше похожи друг на друга, чем клетки первоначальной ткани, из которой их извлекли, – печени, легких, поджелудочной железы. У них налицо единообразный “транскриптомный сдвиг”: во всех клеточных культурах экспрессия в большинстве случаев наблюдается лишь у тех генов, которые нужны для выживания ex vivo. Как могут ученые, столь тщательно выверяющие каждый свой шаг, попросту закрывать глаза на такие фундаментальные ошибки?
Каков же выход? Первым делом нужно спуститься с горних вершин и смиренно признать: рак – проблема настолько сложная, что нечего и думать решать ее при помощи редукционистских доклинических платформ испытаний, которые мы придумали, чтобы разрабатывать методы лечения. За последние пятьдесят лет почти ничего не произошло – и не произойдет и в ближайшие полвека, если мы продолжим настаивать на все тех же старых методах. Есть лишь один быстрый, дешевый, а главное, повсеместно применимый и человечный способ решить проблему рака: переключиться с разработки терапии последних стадий болезни и сосредоточиться на диагностике рака в самом начале и научных методах предотвращения его развития. Хватит гоняться за последней клеткой – надо научиться распознавать следы первой.
* * *
К моменту постановки диагноза кубический сантиметр опухоли содержит приблизительно три миллиарда клеток. Это очень много клеток, их все уже не уничтожить, а надо. В кубическом миллиметре опухоли три миллиона злокачественных клеток, а в кубике со стороной 0,1 миллиметра – три тысячи. Будущее – за развитием технологий, позволяющих зарегистрировать появление даже единичных раковых клеток по их характерным следам. Что же это за следы?
Наука распознавания суррогатных маркеров пока еще в колыбели. Раковые клетки быстро отмирают, распространяя при этом красноречивые биологические маркеры. Следы рака в виде фрагментов ДНК, РНК и белков можно найти в капле крови, в воздухе, который мы выдыхаем. Или через регистрацию изменений магнитных полей, вызванных присутствием крайне немногочисленных раковых клеток, или при помощи антител, которые связывают и выявляют фемтомоли белков (миллиардные доли миллионной доли моля, то есть микроскопические доли грамма). Пока что главная проблема рака – в чем мы неоднократно убеждались – это его коварная молчаливая природа. Порой опухоль успевает заместить собой значительную часть органа, в котором растет, прежде чем появятся какие бы то ни было симптомы. Именно так все было в случае Сукету Мехты, Омара и Андрея. Сукету повезло – рак легких у него случайно нашли вовремя, но у остальных двоих к моменту постановки диагноза игра была уже проиграна. Я много лет работала со смертельными случаями ОМЛ, пока не поняла, что гоняться за таким беспринципным врагом попросту безнадежная затея, и не переключилась на раннюю диагностику. С этой целью я тридцать лет изучала предлейкозы, но, поскольку МДС подчас убивает так же жестоко, как и ОМЛ, даже не успев перейти в злокачественную фазу, я еще и старалась проводить скрининговые исследования среди обычных, условно здоровых испытуемых в поисках первых признаков МДС, ОМЛ и рака в целом.
Попытки ранней диагностики рака – в сущности, ровесницы объявления войны против рака как таковой. Увы, обычные скрининговые программы в масштабах популяции стоят астрономических денег, а ожидаемого сказочного успеха не приносят. Более того, предположение, что раннее распознавание и немедленное лечение приведут к увеличению количества вылечившихся, также не нашло однозначного подтверждения – с этим подходом связано множество поучительных историй.
Во-первых, скрининг зачастую приводит к гипердиагностике и ненужному лечению, а это вредно пациентам и увеличивает финансовую нагрузку на здравоохранение. Рак начинается с одной клетки, однако, если учесть диапазон скорости роста, иногда до первых клинических проявлений проходят десятилетия: одно исследование показывает, что путь к раку молочной железы начинается еще в утробе матери. Раз жизненный цикл некоторых распространенных видов опухолей растянут на десятилетия, мысль, что единственный способ лечения – это найти опухоль на каком-то этапе ее естественной истории и срочно уничтожить, явно ошибочна. Поэтому неудивительно, что многие случаи рака, выявленные при ранней диагностике (скажем, обнаруженные при сканировании или по анализам на опухолеспецифические антигены), – это несмертельные его разновидности, которые поддались бы лечению и на более поздней стадии, когда у них появились бы клинические симптомы.
Что же касается рано выявленных случаев агрессивного рака, тут картина отнюдь не радужная: в большинстве из них рак все равно успевает дать метастазы, поэтому ранняя диагностика лишается смысла. Например, при раке груди раннее выявление опухолей с благополучными молекулярными признаками не играет никакой роли, поскольку такие опухоли растут настолько медленно, что никак не заявят о себе на протяжении жизни пациентки, а даже если и начнут прогрессировать до стадии клинических проявлений, их можно будет вылечить доступными стандартными методами. Раннее выявление более агрессивных видов рака груди тоже не играет роли, поскольку к тому моменту, как опухоль становится видна на маммограмме, она уже успевает дать метастазы и стать неизлечимой. Обзор множества масштабных исследований на уровне популяции в нескольких европейских странах, где изучалась роль маммографии как скринингового инструмента, привел, как пишут Ф. Отье и М. Боньоль, к неутешительным выводам: “Эпидемиологические данные указывают на пренебрежимо малый вклад маммографического скрининга в снижение смертности от рака молочной железы. Более того, чем эффективнее методы лечения, тем менее благоприятен баланс вреда и пользы от маммографии. Необходимы новые эффективные методы скрининга молочной железы, а также исследования в области скрининговых стратегий по группам риска”. Специальная комиссия по профилактике заболеваний в США рекомендует скрининговую маммографию раз в два года для всех женщин от 50 до 74 лет, однако на сегодня недостаточно данных, чтобы оценить пользу и вред скрининговой маммографии в других возрастных группах.
Что касается смертности от рака предстательной железы, метаанализ множества исследований тоже не смог показать существенного улучшения в результате плановых анализов на простатический специфический антиген. Д. Илич с коллегами установил, что “в лучшем случае скрининг на рак предстательной железы приводит к небольшому снижению смертности от этой болезни в течение 10 лет, но не влияет на общую смертность. Врачам и больным, решающим вопрос о скрининге на основе специфического антигена простаты, рекомендуется взвешивать потенциальный вред от скрининга, как краткосрочный, так и долгосрочный, в том числе вред от биопсий и последующего лечения, а также риск гипердиагностики и ненужного лечения”.
Пожалуй, единственный случай, где очень нужны маркеры ранней диагностики, – это рак яичников: этот печально знаменитый убийца четырнадцати тысяч женщин в год только в США, увы, распознается, как правило, лишь тогда, когда вылечить пациентку уже нельзя. Между тем в целых 80 % случаев эпителиального рака яичников вырабатывается раковый антиген 125 (СА-125), который можно обнаружить при помощи простого анализа крови, и сначала этому открытию очень обрадовались. Однако исследования данных скрининга показали, что у этого анализа есть фундаментальные недостатки, ставящие под сомнение саму возможность применять его как скрининговый инструмент. Во-первых, на ранних стадиях, когда опухоль еще мала, она вырабатывает так мало СА-125, что обнаружить его в крови невозможно, а к тому времени, когда его уровень в крови повышается, рак уже сильно прогрессирует. По всей видимости, уровень этого антигена в крови связан с опухолевой массой, поскольку анализ оказывается положительным у 90 % женщин при второй стадии рака яичников и лишь у 30–50 % при первой стадии. Во-вторых, СА-125 не всегда говорит о злокачественной опухоли, поскольку в редких случаях вырабатывается и при доброкачественных воспалительных процессах. Вероятно, именно поэтому одно шведское исследование показало, что удалось выявить лишь 6 случаев рака яичников (причем только 2 из 6 – на той самой ранней излечимой стадии, для выявления которой и предназначался скрининг) по итогам 175 диагностических операций после скрининга случайной выборки из 5500 женщин. Измерение уровня СА-125 более информативно при мониторинге эффективности проведенного лечения в подтвержденных случаях рака: снижение уровня говорит об уменьшении опухолевой массы. Клифтон Лиф, говоря о СА-125 в своей превосходной книге “Правда малыми дозами”, приходит к выводу, что “цель диагностического скрининга – изменить перспективы для множества больных, сохранив низкую стоимость необходимого вмешательства. А этот биомаркер, как и многие другие расхваленные кандидаты, не дает ни того ни другого”.
Ханс-Улов Адами и его коллеги, основываясь на том, насколько малы успехи общепринятых скрининговых мер в масштабах населения по сравнению с колоссальными ресурсами, затраченными на них начиная с 1980 года, призвали полностью отказаться от подобных исследований, поскольку “скрининг всего населения с целью ранней диагностики рака не оправдывает ожиданий и, более того, наносит существенный вред большой популяции здоровых людей”. Они предлагают оставить скрининг с целью ранней диагностики для групп, у которых высок риск рака – либо в результате генетической предрасположенности, либо из-за стиля жизни и профессиональных вредностей.
С другой стороны, скрининг спас много жизней при колоректальном раке. Эти виды рака начинаются с доброкачественных аденом и развиваются с первой по четвертую стадию пошагово, поэтому здесь ранняя диагностика очень помогает. Подобным же образом оказался необычайно полезным скрининг на рак шейки матки, который также прогрессирует четко разграниченными шагами, начиная с дисплазии и проходя затем от первой до четвертой стадии: как только начали массово делать мазки по Папаниколау, смертность от рака шейки матки существенно снизилась. Несмотря на множество недостатков в системе скрининга, снижение смертности от рака в целом на 25 % с 1990 по 2015 год во многом объясняется высококачественным скринингом при разных видах рака молочной железы (снижение на 39 %) и колоректального рака (на 47 % у мужчин и на 44 % у женщин). Надо отметить, что в основном речь идет о профилактическом скрининге, а не о ранней диагностике рака (когда есть симптомы).
Подведем итоги. Доступные на сегодня скрининговые инструменты ранней диагностики помогают предотвратить виды рака, в развитии которых выделяются четкие стадии, но ничем не улучшают положение пациентов, больных непредсказуемыми видами рака. В число последних входят рак щитовидной железы, предстательной железы и некоторые виды рака молочной железы, когда размер не прямо коррелирует с метастатическим потенциалом и даже маленькая опухоль в принципе способна рассеивать клетки уже в начале своего существования, а природа крупных иногда такова, что они ведут себя менее агрессивно. Так что наша задача – научиться лучше выявлять предраковые состояния при помощи минимально инвазивных процедур до того, как они перейдут в рак.
Каждый год рак диагностируют у 1,7 миллиона человек в США, и усовершенствованные методы лечения помогают лишь ничтожной доле из них, а 600 000 умирают. Ранняя диагностика и профилактические меры позволят спасти жизнь 120 миллионов человек – трети населения США, обреченной в какой-то момент заболеть раком.
* * *
Представьте себе аппарат, который автоматически просвечивает вам все тело, пока вы утром принимаете душ. Или “умный бюстгальтер”, снабженный двумя сотнями крошечных встроенных биодатчиков, которые отслеживают микроизменения текстуры и температуры; достаточно надевать его на час в неделю, чтобы он собрал данные, позволяющие распознать микроскопические изменения, вызванные появлением единичных раковых клеток, и передал их приложению на смартфоне. Или таблетку с веществом, которое усваивается в основном раковыми клетками, а затем выделяется с мочой и регистрируется “умным унитазом”. Или коктейль со специальными генами, которые вырабатывают белки, позволяющие портативным устройствам распознать раковые клетки, где бы они ни прятались. А что вы скажете на то, чтобы накричать на рак ультразвуком, заставить выдать себя и свой смертоносный потенциал – вынудить опухоль под воздействием волн нужной частоты выделить в кровь больше маркеров? Или, например, можно будет сделать глубокий вдох и выдохнуть в устройство, которое точно распознает самые первые следы рака. Или просто периодически совать палец в наносенсор, который будет брать капельку крови и мгновенно выявлять суррогатные маркеры злокачественных новообразований.
Все это не сцены из “Фантастического путешествия”. Это технологии, которые сегодня уже существуют и находятся на разных стадиях развития, возвещая зарю новой эры в онкологических исследованиях. На переднем крае этой революции в ранней диагностике рака работает, например, Санджив Сэм Гамбир из Канарского центра при Стэнфордском университете: он при помощи самых разных методов – и генетических анализов, и акустики, и сканирования – учится распознавать первые признаки рака в крови, моче, кале, слюне, выдыхаемом воздухе и слезах. Появление этих принципиально новых методов – прямой результат сотрудничества специалистов из множества областей: это и генетики, и инженеры-биомедики, и радиологи, и онкологи, и специалисты по молекулярной биологии, и нанотехнологи, и эксперты по искусственному интеллекту и вычислительным системам, и волшебники биоинформатики. Командная работа и кооперация приносит победы даже в спорте – почему же не применить то же самое в онкологии?
Вот один из сценариев будущего. Каждый с рождения до смерти будет регулярно проходить скрининг на появление в организме первых раковых клеток. При выявлении будут уточняться их белковые маркеры – почтовый адрес раковой клетки. У человека возьмут пробирку крови, из нее выделят Т-клетки, активируют и вооружат адресом раковых клеток, основанным на уникальном штрихкоде из выделяемых ими белков и РНК. Потом эти CAR-T-клетки введут пациенту обратно, и они найдут и убьют все до единой клетки с этим адресом. Побочных эффектов, как при нынешней терапии с помощью CAR-T-клеток, можно больше не бояться, поскольку опухолевая масса будет ничтожной по сравнению с нынешней целью таргетной терапии. В дальнейшем можно будет даже не брать кровь для скрининга. Просто каждому младенцу имплантируют крошечное устройство, которое будет постоянно отслеживать подобные сбои и регулярно посылать сигналы, чтобы можно было тут же подтвердить диагноз и провести лечение. В идеале мы будем выявлять каждый случай рака на предраковой стадии по возмущениям в подверженных болезни сетях, которые мы будем отслеживать в динамике при помощи имплантированных устройств. Это, разумеется, пока мечты, весьма далекие от общепринятой практики. До такого нам еще как до звезд, но мы никогда не окажемся у цели, если так и не отправимся в путь. Кроме того, я очень верю в способность человека взяться за дело и быстро претворить в жизнь новаторские замыслы, если перед ним стоит четкая цель и у него нет проблем с финансированием. Эту цель нужно сформулировать так, чтобы не осталось никаких недоговорок. Нам надо прекратить разрабатывать практически неэффективные терапевтические методы и создать не что-нибудь, а гуманное лечебное средство, которое можно будет применять во всем мире. А лучшее лечение – это профилактика.
Чтобы выявить следы первой раковой клетки, нужно составить реестр первых биологических маркеров рака. На это нам и следует направить свои ресурсы. К счастью, гонка уже началась. Если мы наладим сотрудничество на самом глубоком уровне, это будет на благо всем. Прислушаемся к совету безымянного мудреца: “Хочешь добиться линейного прогресса – конкурируй; хочешь добиться экспоненциального прогресса – сотрудничай”.
* * *
Потому что душа тела в крови.
ЛЕВИТ 17:11
Все началось со связующего звена между матерью и ребенком – с плаценты. Врачи задались вопросом, можно ли выявить врожденные заболевания у растущего плода по их следам в материнской крови, а не в амниотической жидкости. Известно, что отторгнутые клетки плода способны проходить через плаценту в кровоток матери, однако выловить эти клетки плода и подвергнуть их подробному молекулярному анализу оказалось непростой задачей, поскольку их очень мало. Проблему количества удалось решить, когда выяснилось, что в материнской крови во время беременности циркулирует внеклеточная ДНК плода. Поскольку плацента отдает ДНК плода в достаточно больших количествах, ее сразу стали использовать для неинвазивного дородового скрининга врожденных заболеваний у развивающегося плода. Для этого скрининга у матери берут несколько кубических сантиметров крови, и доказано, что это самый чувствительный метод дородовой диагностики синдрома Дауна.
Анализ внеклеточной ДНК плода избавил нас от необходимости проводить пункцию амниотической оболочки. Так нельзя ли разработать похожие методики, позволяющие распознавать суррогатные маркеры, высвобождаемые в кровь растущей опухолью? Это позволит не просто рано диагностировать рак, но и избавит пациента от инвазивной процедуры биопсии. У здоровых людей внеклеточная ДНК тоже обнаруживается в крови, но в очень малых количествах. При раке в кровоток попадает опухолевая ДНК из отмирающих раковых клеток, и ее находят значительно больше, поскольку иммунные клетки не успевают в полной мере вычистить ее из крови. Можно подвергнуть эту опухолевую ДНК молекулярному профилированию и таким образом провести неинвазивную жидкостную биопсию по примеру дородового скрининга. На разработку жидкостной биопсии брошены значительные ресурсы, поскольку она дает возможность неинвазивно выявить наличие генетического материала из раковых клеток в крови или молекулярные маркеры в моче и слюне и тем самым диагностировать рак в самом зачатке или даже на уровне предраковых поражений. Что же это за суррогатные маркеры – таинственные, загадочные, замаскированные?
Во-первых, это мутировавшая ДНК из отмерших злокачественных клеток. Во-вторых, это информационная РНК, передающая инструкции по синтезу аномальных белков, а в-третьих, сами эти белки. Все они могут служить биомаркерами злокачественного процесса, все обнаруживаются в крови. ДНК зародышевой линии клеток совершенно одинакова во всех клетках организма, однако транскриптом и протеом различаются в зависимости от дифференциации тканей. Скажем, ДНК у лейкоцита и у нейрона одинаковая, но транскриптом и протеом разные. Первые признаки злокачественного новообразования заметны по мутациям ДНК или по ненормальной экспрессии наборов РНК и белков. В идеале мы когда-нибудь будем измерять все три показателя и получать тем самым по-настоящему полную картину, а понадобится для этого всего лишь капелька крови, мочи или слюны. Испытания этого метода скрининга в масштабе всего населения с целью установить клиническую значимость такого подхода потребуют теснейшего сотрудничества между учеными, правительственными организациями, промышленностью и врачами-онкологами.
В области выявления первой, а не последней раковой клетки ведется много интересных исследований. Несколько коммерческих предприятий уже проводят масштабные популяционные исследования точности и клинической применимости своих методов скрининга и регулярно открыто публикуют свои результаты. Дело за государством: оно должно обеспечить согласованное сотрудничество для систематического изучения распространенных смертельных опухолей у людей и своевременно составить пошаговый план прогресса в этом направлении. На следующих страницах мы кратко рассмотрим некоторые перспективные наработки в этой области.
Так называемые микроРНК – это мелкие регуляторные РНК, не кодирующие белков. Они присутствуют в плазме крови человека в крайне стабильной форме, а при раке их активность нарушается, поэтому они могут служить надежным источником сведений о злокачественных новообразованиях, которые невозможно выявить никакими другими методами. Нам еще предстоит создать полную базу данных, которая содержала бы уникальные профили для разных типов рака, однако в этом направлении уже ведутся серьезные исследования на разных уровнях. Разрабатывается цифровая микрофлюидика: отдельная, автоматическая, недорогая платформа, так называемая лаборатория на чипе, которой достаточно одной капли крови, чтобы сделать свое дело – выявить диагностические профили микроРНК для различных распространенных видов рака, в том числе для рака легких, яичников и желудка. На сегодня рак диагностируется лишь при 1 % эндоскопий. То есть целых 99 % делается напрасно. А благодаря такому анализу крови на эту инвазивную процедуру будут направлять лишь единицы больных по особым показаниям, что ко всему прочему позволит сэкономить колоссальные средства. Доказано, что набор из восьми микроРНК обладает надежной диагностической точностью не только при анализе тканей, но и при анализе плазмы крови больных при первой стадии рака яичников. Аналогичным образом разрабатываются формальные критерии для профилей микроРНК, которые служат диагностическими, прогностическими и предсказательными биомаркерами на ранних стадиях рака молочной железы. Профили микроРНК для рака легких уже существуют. Предоперационные уровни четырех микроРНК в плазме (конкретно miR-29a, – 200b, – 203 и -31) могут служить прогностическими биомаркерами при колоректальных видах рака, а обнаружение высоких уровней miR-31, -141 и -16 предупреждает о рецидиве при наблюдении пациента после лечения колоректального рака. Исследования микроРНК еще практически в зародыше, но они непременно привлекут внимание ученых, стоит лишь фондам и финансовым организациям сделать их своим приоритетом.
Безопасную и надежную платформу для раннего распознавания рака обеспечивает и выявление опухолевой ДНК в крови. В рамках инициативы бывшего вице-президента Байдена Cancer Moonshot создается “Атлас профилей крови при раке” (Blood Profiling Atlas in Cancer), где будут собраны данные об онкологических сигналах в крови. Поскольку опухолевая ДНК несет информацию о соматических изменениях в опухоли, это более надежный тест, однако здесь возникает сложность: чтобы покрыть самые распространенные мутации при самых частых видах рака, нужно секвенировать очень много генов. Секвенирование должно быть очень глубоким и подробным, поскольку нужно выявлять небольшие количества опухолевой ДНК на фоне гораздо более высоких уровней внеклеточной ДНК из нормальных клеток. Сейчас ведется работа над справочной библиотекой раковых мутаций в сопоставлении с мутациями, найденными у здоровых доноров. Это исследование, охватившее десять с лишним тысяч человек, называется “Атлас циркулирующих внеклеточных геномов” (Circulating Cell-Free Genome Atlas) и должно стать самой крупной базой данных с мутациями, обнаруженными в крови онкологических пациентов.
Распознав опухолевую ДНК, нужно следующим шагом определить орган, из которого она попала в кровь. Для этого надо подробно описать паттерны соматических изменений в конкретных типах опухолей, и тогда специфические мутации помогут понять, в какой ткани зародились клетки с этой ДНК. Чтобы избежать ненужного лечения, необходимо строго разграничивать агрессивные типы опухолей и относительно неинвазивные. Для уточнения этих границ нужно изучать профили опухолевой ДНК из последовательно отобранных проб и выявлять их уникальные корреляции с летальностью. Но, даже если удастся распознать, в каких тканях зародилась опухоль, и вовремя удалить ее, нет никакой гарантии, что где-то не прячутся метастазы. У пациентов с высоким риском развития определенных видов рака, например при мутациях генов BRCA1 и BRCA2 (риск рака молочной железы и яичников) или у курильщиков (рак легких), результаты анализов опухолевой ДНК следует дополнять органоспецифическими исследованиями и сканированием. Наконец, если опухолевая ДНК обнаруживается после резекции опухоли, это связывают с высоким риском рецидива при раке молочной железы и кишечника, а также при немелкоклеточном раке легких. В таких случаях опухолевая ДНК может применяться для оценки успеха лечения.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.