Автор книги: Ласло Мерё
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 11 (всего у книги 21 страниц)
Хаос в том смысле, в котором используют это слово математики и физики, никоим образом не исключает возможности стабильности. Более того, он даже гарантирует некоторые виды стабильности, хотя и не в том смысле, который знаком нам по повседневной жизни.
Математики и физики считают систему хаотической, если она обладает следующими тремя свойствами:
1. Состояние системы определяется малым числом переменных (от пяти до десяти), причем очень простым образом.
2. Система чрезвычайно чувствительна к малым изменениям начального состояния.
3. На некотором этапе развития система оказывается сколь угодно близка ко всем состояниям, которых она теоретически может достичь, хотя и не обязательно достигнет каждого из возможных состояний.
Как и все математические утверждения, эти три условия изложены здесь слишком сжато, чтобы их можно было понять без дальнейших объяснений. Рассмотрим их несколько подробнее, чтобы понять, что можно считать хаосом, а что нельзя.
Первое условие отражает то наблюдение, что даже очень простые уравнения могут иметь чрезвычайно сложные решения. Примером такой ситуации служит двойной маятник: хотя его движение можно описать тремя простыми уравнениями, маятник может двигаться по чрезвычайно сложной траектории. Суть математического хаоса в том и заключается, что он может быть порожден необычайно простыми, и даже полностью детерминированными, условиями.
Второе условие – это другая формулировка «эффекта бабочки». Отличительным свойством хаотических систем является то обстоятельство, что малые отклонения, как правило, не сглаживаются, а усиливаются системой. Поэтому даже при наличии уравнений движения хаотической системы (например, двойного маятника) мы не можем предсказать, в какое состояние эта система в конце концов придет, потому что в системах реального мира невозможны абсолютно точные измерения и любые начальные значения, которые мы вводим в уравнения движения, неизбежно отличаются – пусть даже на ничтожно малую величину – от значений истинных, а даже мельчайшие отклонения начальных значений порождают по мере развития системы огромные различия.
Третье условие говорит нам, что хаос не равен полному беспорядку. Случайный шум – например, радиопомехи или возмущения воды в бурной реке – не есть хаотическая система. Радиопомехи абсолютно случайны, в хаосе же нет ничего случайного. Хаос кажется в высшей степени иррегулярным, но далеко не все то, что кажется «хаотичным», действительно хаотично. Третье условие добавляет и еще кое-что. Когда двойной маятник качается, его траектория оставляет на бумаге плотный клубок каракулей и рано или поздно подходит сколь угодно близко ко всем точкам, которых она может достигнуть. Но при этом эта траектория подчиняется простому принципу конструкции маятника; в ней нет ничего случайного! Таким образом, третье условие означает также, что хаотическая система в конце концов заполняет все предоставленное ей пространство, в том смысле, что в области действия системы нет ни одного участка, на который система рано или поздно не проникнет, каким бы малым он ни был. В некотором смысле можно сказать, что хаос осуществляет принцип, утверждающий, что природа не терпит пустоты.
В таком, формальном, смысле слова хаос не есть состояние полной неразберихи. Именно в этом на самом деле и состоит его суть: система, проявляющая хаотические с математической точки зрения свойства, выглядит хаотической, но подчиняется простому набору правил. Существуют структуры и еще более сложные, чем хаос. Я только назову их: броуновское движение, турбулентность, вихревое течение. Эти в высшей степени сложные структуры не считаются хаотическими. Возможно, самое интересное свойство хаоса – это его теоретическая простота.
Математики и физики часто испытывают неприязнь к чрезмерно сложным системам, в особенности потому, что даже простые системы часто бывают неразрешимыми. У природы такой неприязни не бывает. Природа ничего не пытается решить. В природном мире объекты просто возникают в соответствии с законами физики, химии и биологической эволюции, и природа решает, какие из них в итоге выживут, а какие – исчезнут, не спрашивая, не слишком ли сложной оказалась та или иная структура.
Структура человеческого мозга в значительной степени определяется информацией, закодированной в ДНК, и, хотя наш мозг содержит гораздо больше переменных, чем те пять или десять, которых требует первое условие хаоса, тем не менее в самом мозге этих переменных заключено на много порядков меньше, нежели в том количестве информации, что необходимо для его описания. Природа истолковывает первое условие в гораздо более крупном масштабе, чем математики и физики, и тысячи генов, в которых закодированы правила, необходимые для построения мозга человека, – это, по меркам природы, «небольшое» число переменных. Можно представить себе, как естественному отбору удалось создать столь невероятно сложную структуру, определенную таким сравнительно небольшим числом переменных, даже если математиков или физиков перспектива работы с таким огромным их количеством привела бы в ужас.
По-видимому, для возникновения человеческого мозга со всеми его высшими когнитивными функциями была необходима возможность действия хаоса. Это не значит, что законы хаоса должны были быть закодированы в нашей ДНК – точно так же, как животному для поддержания равновесия не требуется, чтобы в его мозге была закодирована гравитационная постоянная. Но законы физики – часть природной окружающей среды, и организмы развиваются с учетом ограничений, которые налагают эти законы, и возможностей, которые они предоставляют.
Может быть, человек – единственное животное, мозг которого способен применять законы хаоса в когнитивных процессах. Электроэнцефалограммы показывают, что люди мыслят непрерывно, даже во сне. Насколько нам известно, никакое другое животное этого не делает. Даже у наших родственников, человекообразных обезьян, есть периоды нулевой активности даже в бодрствующем состоянии, и в такие периоды для активизации их высших мозговых функций требуется внешний стимул. Непрерывная мозговая деятельность человеческого мозга обеспечивает возможность долговременного хаотического поведения, которое, по-видимому, и является определяющей составляющей человеческого мышления.
Наука хаосаОдним из основных побудительных мотивов развития математики было стремление найти более удобные способы вычислений, и за последние десять тысяч лет поиски таких способов приводили к появлению все более замысловатых вычислительных средств и алгоритмов. Но даже умнейшие из математиков могут оказаться бессильны перед лицом человеческой иррациональности. Например, Ньютон писал в 1720 году, когда потерял 20 000 фунтов (огромное состояние по тем временам) на фондовой бирже: «Я могу исчислить движение небесных тел, но не безумие человека»[81]81
Цит. в Dunbar (2000), р. 1.
[Закрыть].
Начиная с глубокой древности математики спорили также о природе тех объектов, которые изучает математика, – например, чисел и геометрических фигур. Еще в V веке до нашей эры пифагорейцы открыли иррациональные числа, и древнегреческие геометры спрашивали, можно ли разделить произвольный угол на три равные части при помощи только неразмеченной линейки и циркуля. Эта задача оставалась нерешенной до XIX века, пока не были разработаны более современные математические теоремы, при помощи которых была доказана невозможность такого построения[82]82
Невозможность трисекции угла доказал в 1837 г. французский математик Пьер Лоран Ванцель (1814–1848).
[Закрыть].
Хотя решение задачи о трисекции угла заняло целых два тысячелетия, математики продолжали твердо верить, что любую математическую задачу, которую можно поставить, рано или поздно удастся и решить, а любая вычислительная задача, которую можно рассчитать в теории, в конечном счете должна оказаться рассчитанной и на практике. Возможно, именно поэтому результаты, полученные Пуанкаре в области теории хаоса, остались в свое время настолько мало замеченными. Но теорема Гёделя уничтожила идею о том, что математика может решить любую задачу, которую математики могут сформулировать. Когда стало ясно, что математика не способна произвести любой расчет и доказать или опровергнуть любое утверждение, которое может быть в ней сформулировано, математики заинтересовались исследованием пограничных областей своей дисциплины. Что именно невозможно вычислить или предсказать? Может ли математика сказать что-либо интересное о таких объектах, за исключением того, что они неисчислимы и непредсказуемы?
До сих пор мы по большей части видели в этой главе негативные аспекты хаоса – те объекты, которые он объявляет неисчисляемыми и непредсказуемыми. Однако, хотя мы не можем предсказать будущего состояния хаотической системы, иногда появляется возможность вычисления вероятности того, что она придет в одно, а не другое состояние. Такое вычисление дает своего рода теоретическое решение, но оказывается, что сама природа хаотических систем делает невозможным сколько-нибудь точное предсказание наступления экстремальных событий.
Тут важно помнить, что теория хаоса занимается не беспорядком, случайностью или путаницей, а точно определенным типом кажущегося беспорядка. Именно так работают точные науки: при любой возможности они стремятся сосредоточиться на простых вопросах – таких, на которые можно ответить, поставив эксперимент, – оставляя по-настоящему масштабные и трудные задачи на долю тех, кто приобретает знания другими способами. Точные науки избегают вопросов вроде «В чем смысл жизни?», «Почему существует материя?» или «Что есть абсолютная гармония мира?», а вместо них задают вопросы более прозаические: «С какой скоростью скатывается по наклонной плоскости шарик?», «По какому маршруту циркулирует в организме кровь?», «Как размножаются животные?» или «Почему мякоть яблока, если ее расковырять пальцем, становится коричневой, а мякоть апельсина – нет?» К слову, именно последний вопрос, вроде бы взятый с потолка, привел венгерского ученого Альберта Сент-Дьёрдьи к открытию витамина С.
То, как сформулирована теория хаоса, делает ее достаточно простой для применения в естественно-научных изысканиях, а масштаб спектра явлений, которые она описывает, обеспечивает возможность широкого применения результатов таких изысканий. Отвечая на такие узкие, банальные с виду вопросы, ученые умудряются приходить к чрезвычайно общим выводам. Например, закон сохранения материи и энергии вполне мог появиться в писаниях мистиков или философов или найти выражение в произведениях искусства. Эти методы познания мира действительно привели к осознанию законов сохранения, хотя и не с такой щепетильной точностью, с какой их сформулировала наука. Отличительная особенность точных наук состоит в том, что мы знаем не только то, что знаем, но и то, как именно мы пришли к этому знанию.
Теория хаоса привела к открытию масштабной инвариантности – принципа не менее общего и изящного, чем закон сохранения материи и энергии.
8
Масштабная инвариантность
Сколько раз я жалел, что у моих очков нет телефонного номера!
На илл. 14 показан обменный курс фунта стерлингов к доллару за разные временные интервалы в течение 2012/13 бюджетного года. При первом же взгляде на графики бросается в глаза, что я не отметил на оси абсцисс даты и время, а на оси ординат не указал масштаб. Можно ли сказать, на каком графике показана история курса за пять минут, а на каком – за час, за сутки и за неделю? Чтобы не лишать вас удовольствия, я не стану приводить здесь ответы на эти вопросы; их можно найти в конце книги[83]83
В верхнем ряду находятся графики за неделю и за час, в нижнем – за сутки и за пять минут. Графики построены по данным, предоставленным финансовой компанией Plus500.
[Закрыть]. Не огорчайтесь, любезный читатель, если вам не удается понять, какому временному отрезку соответствует какой график. Этого не могут сказать даже самые прославленные гуру фондового рынка.
Тот факт, что графики состояния финансового рынка выглядят одинаково на всех временных масштабах, привлек внимание Бенуа Мандельброта, с которым мы уже встречались в главе 6. Он захотел узнать, в чем тут дело – есть ли что-то, чего не замечают эксперты, или же различить эти графики действительно невозможно.
Илл. 14. Обменный курс фунта стерлингов к доллару. Которая из кривых построена на пятиминутном масштабе? А на часовом? На суточном? На недельном?
(Графики Йожефа Бенце)
Если бы на четырех графиках, приведенных на илл. 14, было показано соотношение между британским фунтом и британским же пенсом – или американским долларом и американским центом, – тогда именно по той причине, что эти соотношения никогда не изменяются, графики выглядели бы как горизонтальные прямые линии, и невозможность определения временной шкалы никого бы не удивила. Но обменные курсы, изображенные на графиках, подвержены сильным колебаниям, и разумно было бы ожидать, что у этих колебаний имеется своего рода временной ритм, такой, что изменения в течение минуты и изменения в течение недели сильно отличаются друг от друга. Но на деле они оказываются пугающе похожими.
Для разработки модели такого графика Мандельброт хотел найти математический объект, масштабно-инвариантный не только на практике – так сказать, на вид, – но и в теории. Один такой объект, очевидно, существует – это прямая линия. Но есть ли другие, нетривиальные (как сказал бы математик) примеры таких объектов? Если их не существует, то значит, в кривых поведения фондового рынка таится нечто еще не открытое, что когда-нибудь позволит нам определять временной масштаб рыночного графика. Такое знание привело бы нас к ценным новым открытиям в природе финансовых рынков.
Если мы ищем не строгого математического самоподобия, а просто хотим найти объекты, выглядящие одинаково в разных масштабах, то природа предлагает нам несколько примеров. Например, у папоротника крупные листья, каждый из которых содержит множество более мелких листьев, кажущихся идентичными, а каждый из них содержит множество еще меньших листьев, кажущихся идентичными, и так далее (илл. 15). В какой-то момент это самоподобие нарушается: отдельные клетки папоротника выглядят как обычные растительные клетки, а не как листья папоротника.
Илл. 15. Самоподобный папоротник
Илл. 16. Мозаика VII века из базилики Санта-Мария-ин-Козмедин в Риме
(Фото Франческо де Комите; воспроизводится по лицензии https://creativecommons. org/licenses/by/2.0/legalcode)
Илл. 17. Четвертая итерация треугольника Серпинского
(Чертеж Йожефа Бенце)
Можно найти такие примеры и в искусстве. На илл. 16 показана мозаика из базилики Санта-Мария-ин-Козмедин, римской церкви VII века. Исходя из той же идеи треугольников, заключенных внутри треугольников, польский математик Вацлав Серпинский открыл истинно самоподобный математический объект, который можно получить за бесконечное число итераций, последовательно вырезая из треугольников треугольные фрагменты. На илл. 17 показана четвертая итерация этого процесса.
Другие истинно самоподобные математические построения были открыты еще в конце XIX века, но до Мандельброта их в основном считали всего лишь занятными диковинами. Мандельброт назвал такие объекты «фракталами», и мы вскоре поймем, что он имел в виду.
ФракталыВ конце 1970-х годов Мандельброт работал в Исследовательском центре имени Томаса Джона Уотсона, входившем в состав компании IBM, и, следовательно, имел доступ к высокопроизводительным (по тем временам) средствам компьютерной графики. В 1980 году он написал программу для отображения объекта, представленного на илл. 18, который стал известен под названием множества Мандельброта. Это множество, а точнее его граница, определяется при помощи сравнительно простой формулы, и кривые, образующие эту границу, оказываются масштабно-инвариантными. В каком бы месте мы ни увеличили изображение, оно выглядит так же, как исходная фигура. Определить, с каким увеличением мы рассматриваем это множество, невозможно. В интернете можно найти очень эффектные анимации глубокого «погружения» в множество Мандельброта, в которых исходная форма снова и снова возникает по мере укрупнения масштаба, подтверждая самоподобие этого объекта[84]84
Зрелищную полноцветную анимацию, использованную для создания илл. 18, можно найти по адресу: https://www.youtube. com/watch?v=zLqMXDCMEVg
[Закрыть].
Илл. 18. Множество Мандельброта (левое верхнее изображение) и последовательное (по часовой стрелке) увеличение центра фигуры. Каждое следующее увеличение производится с изменением масштаба в несколько миллиардов раз
Нечего и говорить, что границы множества Мандельброта – это не обычная кривая, подобная дуге окружности или даже какой-нибудь фантастически изогнутой линии. На самом деле это вообще не одномерная кривая. Однако она и не двумерна, потому что не покрывает никакого целого сегмента двумерной плоскости. Она простирается подобно клочковатому облаку. Если такой кривой потребуется присвоить размерность, та должна быть неким числом, находящимся между единицей и двойкой. Такая «дробная» (от англ. fraction – «дробь») размерность и побудила Мандельброта назвать множества этого типа фракталами[85]85
Классический труд по фракталам – Mandelbrot (1983). Об истории фракталов см. Mandelbrot (2002). Среди научных трудов можно назвать Falconer (2003), Schroeder (2009) и Sprott (1993). Красивые фракталы можно найти в Lesmoir-Gordon and Edney (2005), Peitgen and Richter (1984).
[Закрыть].
В интернете можно найти множество изображений этих замечательных объектов, а также программ для их создания, и я горячо рекомендую читателю их исследовать. Хотя генераторам фракталов требуется всего несколько параметров, они создают необычайное богатство форм. Одно из представлений фрактала мы видели на илл. 8, а еще два показаны на илл. 19. Они созданы самым простым из возможных способов, с использованием только лишь фрактального генератора неспециализированного графического редактора Photoshop. При помощи генераторов фракталов можно обогащать изображения, делая их еще более зрелищными и выявляя скрытые в них регулярности и симметрии.
Илл. 19. Фракталы, сгенерированные в программе Photoshop
(Автор изображения – Вера Мерё)
Масштабная инвариантность как закон природыМандельброт обнаружил, что графики поведения финансовых рынков имеют многие из свойств фрактальных кривых. Это обстоятельство позволило ответить на вопрос о возможности определения масштаба графиков финансового рынка. Если они фрактальны и, следовательно, самоподобны во всех масштабах, это означает, что специалисты по финансам не упускали из виду какой-нибудь тонкости, которая позволила бы им определять масштаб таких графиков. Если графики действительно самоподобны, для этого попросту не существует даже теоретической возможности. По-видимому, финансовые рынки масштабно-инвариантны по самой своей природе.
Параметры фрактала определяют ход его развития при генерировании – так же как начальное состояние двойного маятника определяет его траекторию. В случае маятника мы видели, что малые изменения параметров порождают гигантские различия в траектории. Происходит ли то же самое с фракталами? Насколько чувствительно их развитие к начальным условиям? Как мы увидим дальше, ответ на этот вопрос – «чрезвычайно чувствительно».
Хотя исходно Мандельброт разработал концепцию фракталов для моделирования поведения финансовых рынков, вскоре он начал подозревать, что фракталы могут быть в природе не исключением, а правилом. Например, береговые линии образуют зигзаги произвольной формы, весьма напоминающие кривую средних значений индекса Доу – Джонса за прошлую неделю; иногда от них отходят острова, похожие на клочковатые облака. На расстоянии их изрезанные контуры кажутся четко определенными, но чем больше мы к ним приближаемся, тем виднее становятся все более многочисленные замысловатые извивы, и в конце концов исчезает почти всякая возможность сказать, находится ли та или иная конкретная точка – камешек или песчинка – в море или на берегу. На самом деле береговые линии так же фрактальны, как границы множества Мандельброта.
Первые мысли Мандельброта о фракталах были изложены в его статье 1967 года под названием «Какова длина побережья Великобритании? Статистическое самоподобие и фрактальная размерность» (How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension)[86]86
Science. New Series. Vol. 156. № 3775. 1967. May 5. P. 636–638.
[Закрыть]. В ней он описывает так называемый «парадокс береговой линии» – тот факт, что результат измерения длины береговой линии становится тем больше, чем более короткая линейка используется для измерений, потому что такая линейка позволяет измерить большее количество изгибов и зигзагов. Разумеется, к сходному выводу можно прийти, даже измеряя длину простой дуги окружности, но там увеличение измеренной длины с уменьшением длины линейки имеет фиксированный предел, который мы и называем длиной дуги. То же справедливо и в отношении других обычных кривых, но не фрактальных линий, длина которых расходится до бесконечности. В той мере, в какой береговая линия подобна фракталу, она содержит, по существу, бесконечное количество отрезков, доступных измерению, – и больших, и малых. Мандельброт показал, что ни точно определить береговую линию Великобритании, ни точно измерить ее длину невозможно. У нее нет длины – так же, как у распределения Коши, что показала нам наша подруга Фиби, нет стандартного отклонения. Таким образом, фракталы, как и распределение Коши, приводят нас в Диконию.
Это явление настолько вдохновило Мандельброта, что он начал коллекционировать примеры фрактальных явлений в природе. При этом он обнаружил: стоит понять, что именно ты ищешь, и ты встречаешь это практически повсюду. Как мы уже видели, листья папоротника похожи на фракталы; то же можно сказать о разветвленных системах кротовых туннелей. Подобны фракталам и горные вершины, и снежинки, и облака, и границы норвежских фьордов. Даже человеческий мозг можно считать сложным фракталом. По итогам всех этих наблюдений в 1983 году Мандельброт опубликовал книгу под названием «Фрактальная геометрия природы» (The Fractal Geometry of Nature).
Фракталы заинтересовали и психологов. Они провели исследования, чтобы выяснить, какого рода изображения (пейзажи и абстрактные картины) кажутся нам красивыми, и один из неизменных результатов этих исследований сводился к тому, что нас привлекают изображения, подобные фракталам[87]87
Pratt and Lambrou (2013); Freeman (1991); Hagerhall et al. (2004); Taylor et al. (2011).
[Закрыть]. Возможно, это связано вот с чем: мы настолько окружены фракталами, что эти изображения кажутся нам более знакомыми, чем фигуры более традиционной геометрии. Удивительно, что психологам понадобилось столько времени на открытие этого факта – ведь фракталы буквально на каждом шагу!
Изображения фрактального типа – подобные упомянутому выше «треугольнику Серпинского» – мозаике VII века – существуют в искусстве издавна. Можно еще упомянуть «пламенеющие» арки и ажурные переплетения готической архитектуры, в которых, как и во многих произведениях современной живописи, в некоторой мере проявляется самоподобие. Однако за годы, прошедшие с тех пор, как программы для генерирования фракталов стали широко доступны, появился целый новый жанр изобразительного искусства, в котором фракталы используются осознанно. На илл. 20 изображена «оболочка Мандельброта» (Mandelbulb), созданная Дэниелом Уайтом и Полом Ниландером на основе трехмерного варианта множества Мандельброта.
Илл. 20. Оболочка Мандельброта
(Авторы изображения – Дэниел Уайт и Пол Ниландер)
Фракталы активно используются современными художниками, работающими в области компьютерной графики. Каждый холм и каждое облако в вашей любимой видеоигре построены алгоритмом генерирования фракталов, создающим реалистичные изображения. Самоподобие встречается даже в литературе: последний, связывающий, сонет (магистрал) в классическом венке состоит из первых стихов предыдущих четырнадцати сонетов. В музыке существует фуга, в которой самоподобие выражается в повторяющемся возникновении одной и той же темы. В ней же есть и масштабная инвариантность, проявляющаяся в увеличении и уменьшении, когда тема воспроизводится с большей (увеличенной) или с меньшей (уменьшенной) длительностью нот, в сжатии (стретто), когда голос, имитирующий тему, вступает еще до того, как завершился предыдущий, и в инверсии, когда тема повторяется в зеркальном отражении.
Самоподобие может приносить огромную пользу инженерам, потому что одна и та же конструкция может быть использована для изготовления механизма, выполняющего некую функцию на всех возможных масштабах. Однако тут сразу же возникают трудности, например, в связи с тем, что при увеличении размеров абсолютно одинаковых трехмерных объектов отношение их объема к площади поверхности не остается неизменным. Это может вызвать нарушения структурной или термодинамической устойчивости. С другой стороны, природа ничего не конструирует. Она просто лепит наугад, и выживает то, что выживает.
Если бы мы открыли закон, из которого следовало бы, что все на свете стремится к достижению максимальной масштабной инвариантности, это было бы большим шагом к пониманию того, как в природном мире возникают структуры невероятной сложности. Из этого вытекало бы, что вещи становятся масштабно-инвариантными не из-за некоего конкретного конструктивного принципа, определенного именно их собственной историей, но в соответствии со всеобщим законом. Если бы такой, ранее не известный, всеобщий руководящий принцип был найден, честь его открытия можно было бы приписать Мандельброту. Но если такой принцип и существует, мы знаем очень мало о механизме его работы и еще менее способны определить область его применимости.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.