Электронная библиотека » Лев Кривицкий » » онлайн чтение - страница 52


  • Текст добавлен: 21 декабря 2013, 02:31


Автор книги: Лев Кривицкий


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 52 (всего у книги 204 страниц) [доступный отрывок для чтения: 53 страниц]

Шрифт:
- 100% +
10.4. Мобилизм и глобальная тектоника плит

Одним из величайших достижений научной мысли в сфере геологии явилась теория мобилизма, выдвинутая и обоснованная выдающимся немецким геофизиком Альфредом Вегенером в 1912 г. Фактически мобилизм является распространением идеи эволюции в сферу геодинамики, причём в той форме этой идеи, которая предусматривает мобилизационную активность всего строения земной природы, начиная с ядра и кончая малыми и большими литосферными плитами, «плавающими» в раскалённом «океане» верхнего слоя мантии.

Идее мобилизма предшествовал целый ряд гипотез, авторы которых пытались объяснить геологические изменения чисто механическими причинами. Во второй половине XVIII века шотландский геолог Дж. Хаттон и российский учёный М. Ломоносов выдвинули гипотезу поднятий, согласно которой формирование геологических структур объяснялось давлением магмы и действием вулканических сил.

В середине XIX века более конкурентоспособной оказалась гипотеза сжатия (контракции), обоснованная в 1852 г. французским геологом Э. де Бомоном. Следуя в фарватере гипотезы Канта-Лапласа о формировании Земли путём сгущения горячего протопланетного облака, де Бомон предположил, что по мере остывания происходило уменьшение объёма Земли, вследствие чего твердеющая при охлаждении земная кора стала сминаться, коробиться и дробиться.

В конце XIX века в связи с накоплением новых фактов гипотеза сжатия утратила популярность в научной среде, а господствующие позиции заняла альтернативная ей гипотеза расширения земного шара. Она была предложена М. Ридом и развита Б. Линдеманом, У. Кэрри и др. В соответствии с этой гипотезой первоначальный диаметр Земли составлял всего лишь 10 860 км, но снижение плотности вещества привело к расширению Земли и растягиванию её коры до современных размеров, вследствие чего возникли её разрывы, образовались континенты и океаны.

Компромиссом между гипотезой сжатия и гипотезой расширения явилась гипотеза пульсации, разработанная американским геологом В. Бухером и российско-советскими учёными В. Обручевым и М. Усовым. Данная гипотеза во многом напоминает теорию пульсирующей Вселенной. В соответствии с этой гипотезой Земля последовательно испытывает растяжения, последствием которых являются разрывы коры, активизация вулканов, возникновение океанов, а затем – сжатия, в ходе которых возникают складчатые структуры, происходит горообразование, формируется мощная континентальная кора, затухают вулканические процессы.

В связи с накоплением фактов об относительной неизменности объёма Земли в последние 400 млн. лет в XX веке распространение получила гипотеза фиксизма, выдвинутая в 1942 г. голландским геологом Р.В. Ван Бамеленом и российско-советским геотектоником В. Белоусовым. Данная гипотеза базируется на представлении о фиксированном, неподвижном положении геологических структур и пытается объяснить геологические изменения последовательным разогревом и остыванием земной коры, вследствие которых происходят лишь вертикальные подъёмы и опускания, а также перемещения отдельных блоков литосферы.

Теория мобилизма уже при своём возникновении в 1912 г. в своей первоначальной форме стала новым научным направлением, пришедшим в резкое противоречие с вышерассмотренными гипотезами. Она базировалась на представлении о последовательных, эволюционно значимых горизонтальных движениях элементов земной коры, которые происходят с очень малой скоростью, но по прошествии длительных промежутков времени преодолевают геологически значимые расстояния и оказывают решающее влияние на изменения геологических структур.

Первоначальный вариант теории мобилизма строился А. Вегенером на представлении об удивительном сходстве очертаний материков, которые, будучи вырезаны из своего нынешнего положения на географической карте почти идеально прикладывались друг к другу. Особенно сильное впечатление производило складывание берегов Южной Америки и западных берегов Африки. На этой основе А. Вегенер попытался обосновать предположение о существовании некогда в ранней истории Земли единого материка, который он назвал Пангеей. Раскол этого гиперматерика дал старт дрейфу континентов. Первоначально Пангея раскололась на два суперматерика – Лавразию и Гондвану. Лавразия включала Европу, Азию без Индии и Северную Америку, а Гондвана – Индию, Африку, Южную Америку, Австралию и Антарктиду. Расколовшись, суперматерики стали расходиться и между ними образовалась впадина океана Тетис.

Научный мир в начале XX века довольно неприязненно встретил теорию Вагенера. Многие научные мужи в области геологии считали движение континентов такой же наукообразной чепухой, как и многие физики – неодинаковое течение времени в различных точках пространства в теории относительности Эйнштейна. Сила привычки и обыденного рассудка, базирующихся на повседневном наблюдении, не позволяли допустить саму возможность движения континентов. Что может быть прочнее и неподвижнее, чем прикреплённость континентов к определённому месту на Земле? Разве что сама Земля, которая казалась людям неподвижной десятки веков, но которая оказалась движущейся с огромной скоростью и вокруг Солнца, и вместе с Солнцем. Скорость же передвижения континентов составляет ежегодно всего лишь несколько сантиметров.

Стремясь придать доказательность своей теории, которая первоначально базировалась лишь на сходстве очертаний материков на географических картах, основоположник мобилизма стал опираться на данные геологии, минералогии, палеонтологии, климатологии. Он указывал на оледенение всех южных материков в один и тот же период времени, общность геологического строения континентов, разделённых в настоящее время тысячами километров, и множество других разнообразных фактов.

Однако, несмотря на проделанную огромную работу, Вагенер так и не смог определить источник энергии, движущей столь тяжёлые и громоздкие образования, как континенты. В качестве такого источника он указывал на действие механических сил вращения Земли. Но это объяснение вскоре было опровергнуто расчётами, поскольку эти силы оказывались явно недостаточными для передвижения столь огромных масс. Критика мобилитического учения всё ширилась, а Вагенеру нечем было отвечать на многочисленные контраргументы. Не в силах он был объяснить процессы горообразования. В результате теория мобилизма в период её создания не была признана научным миром.

История создания мобилитической теории формирования земной коры весьма напоминает историю первоначального развития генетики. Как и открытие Менделя, открытие Вагенера оказалось забытым и взошло на Олимп признания научным миром лишь через десятки лет в результате усилий нового поколения учёных.

Новый импульс к развитию концепция мобилизма получила, когда голландский геофизик Ф. Венинг-Мейней обосновал существование конвективных течений в мантии Земли, что позволило американскому геофизику Д. Григсу и английскому специалисту А. Холмсу предположить, что именно эти ненаблюдаемые непосредственно потоки являются источником дрейфа континентов. Тем самым были заложены основы для формирования современных представлений о мобильном формировании земной поверхности, приведённых в системное единство в рамках теории тектоники литосферных плит. Эта теория стала складываться в конце 50-х – начале 60-х годов XX века на совершенно новой технической и эмпирической основе, широком использовании геофизических методов. Создание сети сейсмостанций позволило составить подробную карту сейсмической активности Земли.

На этой карте со всей наглядностью перед исследователями предстали линейные образования, на которых располагаются около 98 % эпицентров землетрясений и столь же огромное большинство проявлений вулканической активности. Эти линейные «пояса» обрамляют огромные зоны, на которых сейсмическая активность почти отсутствует. Постепенно приходило понимание того, что эти зоны располагаются на цельных литосферных плитах, а на границах этих плит происходит наползание их друг на друга, следствием чего и является сейсмическая активность. Раздвижение же этих плит образует океаны и моря.

Так тектоника литосферных плит постепенно обретала объяснительную и доказательную силу, позволившую ей стать наиболее конкурентоспособной геологической теорией и значительно превзойти альтернативные теории в качестве мобилизационного ядра наук о Земле. Слово «тектоника» в переводе с древнегреческого означает «строение», «строительство». Тектоника литосферных плит как геологическая теория направлена на изучение и объяснение их строения, образования и взаимодействия. Данная теория, именуемая также новой глобальной тектоникой, отличается от всех старых учений о формировании и строении земной коры. И хотя в её основе лежит мобилизм, она отличается и от вегенеровского варианта мобилизма, рассматривая его как упрощённую схему движения плит.

Литосферные плиты представляют собой твёрдые, жёсткие и необычайно прочные образования, составляющие собой основу земной коры. Толщина континентальных литосферных плит достигает 200–220 км, в океанах вблизи континентов она охватывает 80–90 км, а в районах океанических рифтовых зон падает до 2–3 км.

Несмотря на огромную по человеческим меркам прочность и толщину, литосферные плиты испытывают столь же огромные напряжения и деформации при своих перемещениях и под давлением других плит. Под действием этих напряжений плиты способны давать трещины, деформироваться, разламываться, раскалываться. Каждый разлом является источником землетрясений или вулканических извержений с выбрасыванием газов и вытеканием магмы из горячего слоя мантии. Плиты «плавают» по поверхности астеносферы, перемещаются в горизонтальном направлении и вращаются под действием тепловых конвективных потоков в мантии. В какой-то мере взаимодействие литосферных плит можно представить по аналогии с весенним ледоходом на реках: подтаявшие льдины увлекаются течением и сталкиваются, трутся, наплывают друг на друга, трескаются, раскалываются и крошатся, а промежутки между ними заполняются водой.

Литосферные плиты также могут наползать друг на друга, тереться, скользить рядом, сближаться, расходиться, создавая зоны растяжения или зоны сжатия, формирующие рельеф земной коры. Одна плита может надвигаться на другую или подвигаться под другую.

Мы, люди, представляем собой население поверхности литосферных плит, и наши локальные цивилизации формируются в зависимости от условий, возникших на тех или иных литосферных плитах. Ещё более зависим от этих условий населяющий плиты растительный и животный мир, в свою очередь влияющий на своеобразие наших цивилизаций. История биосферы и человечества представляет собой биологическую и биосоциальную эволюцию, происходящую на относительно стабильных «платформах», образуемых медленным и постепенным перемещением литосферных плит. Геологическая эволюция – не просто арена, на которой происходит биологическая и социально-историческая эволюция. Геологический космос является важной предпосылкой биокосмоса и антропокосмических процессов.

Современные литосферные плиты представляют собой результат отвердения и надламывания остывшего поверхностного слоя планеты в ходе предшествовавшей эволюции. Эти куски поверхности планеты настилающей их почвой сначала спекались, а затем остывая, трескались, надламывались и раскалывались. Поэтому они очень различны и по размерам, и по физико-химическим характеристикам.

По своим размерам плиты подразделяются на крупные, средние и мелкие. Самая крупная из плит – Тихоокеанская, она вместе с плитой средних размеров, именуемой Наска, несёт на себе дно Тихого океана. Как и все океанические плиты, Тихоокеанская плита довольно тонкая. К наиболее крупным относятся и шесть континентальных плит – евразийская, североамериканская, южноамериканская, африканская, индийская и антарктическая.

Плиты неточно совпадают с материками, захватывая и части океанического дна. Типичными примерами средних плит являются Филиппинская, Карибская, Сомалийская, Охотоморская (на ней расположено Охотское море), а также плиты со специфическими названиями – Кокос, Скоша, Наска и др. К средним плитам относится также Аравийская плита, всё ещё не полностью отколовшаяся от Африканской. Средние плиты имеют размеры от тысячи до 3000 километров.

Малые плиты (микроплиты) имеют размеры от 300 до 1000 км. Типичными примерами таких плит являются Сардиния, Лут, Мендерес и Мизия. По границам крупных плит располагается мозаика малых плит, возникающих путём крошения краёв крупных.

Геодинамические процессы перемещения литосферных плит не замечаются нами, потому что по земным меркам они совершаются крайне медленно, по несколько сантиметров в год. В то же время за миллионы лет геологической истории они совершенно меняют лик Земли.

Напомним ещё раз, что и колоссальные скорости движения нашей планеты в Космосе, и взаимные перемещения космических систем также не замечаются нами вследствие несоизмеримости космических масштабов с человеческим способом восприятия. И звёзды, и континенты представляются обыденному восприятию одинаково неподвижными, а иллюзия неподвижности Земли и суточного вращения Солнца вокруг неё была принята за реальность вплоть до открытия Коперника.

Все мы движемся на платформах литосферных плит. Огромная Тихоокеанская плита сближается с Евразийской со скоростью 8 см в год и подвигается под неё. Африка сближается с Евразией со скоростью до 4 см в год. Северная Америка отодвигается от Западной Европы как части Евразии довольно медленно – со скоростью 2–2,3 см в год. Южная Америка удаляется от Африки со скоростью 4 см в год. Ещё быстрее «разбегаются» Австралия и Антарктида – со скоростью 7 см в год. Скорость столкновения Индийской плиты с Евразийской достигает 5 см в год, что вызывает деформации Гималаев, Памира и Гиндукуша, провоцируя мощную сейсмическую активность во всём регионе. Давление Аравийской плиты вызывает деформации Кавказского хребта, однако скорость наползания Аравии на Евразию составляет всего лишь 2–2,5 см в год, вследствие чего и сейсмическая активность в регионе значительно ниже.

Динамика литосферных плит на Земле в какой-то мере воспроизводит динамику Метагалактики. Материки вырвались из общего мобилизационного ядра, получившего название Пангеи, и стали разбегаться, то сталкиваясь и наползая друг на друга, то вращаясь и раскалываясь, увлекаемые конвективными потоками мантии.

10.5. Формирование Земли

История Земли подразделяется на два основных периода – астрономический и геологический. В астрономический, догеологический период происходило формирование Земли как планеты, формирующаяся Земля ещё не была такой, какой мы её знаем, это была, по выражению В. Вернадского, совсем другая планета, вследствие чего она получила в науке название Протоземли (от греч. «прото» – «пред», «до»). Формирование Земли в форме Протоземли началось почти одновременно с образованием Солнечной системы около 4,6–5 млрд. лет назад.

Первый миллиард лет космического периода эволюции Земли не оставил никаких следов для воспроизведения в геологической истории этого периода. Самые древние осадочные породы, обнаруженные на Земле, имеют возраст около 3,8 млрд. лет. Поэтому догеологическая история Земли воспроизводится на основе астрофизических данных и химических знаний, накопленных за много лет и постоянно пополняемых. Одновременно с накоплением косвенных данных растёт число гипотез, пытающихся связать их воедино.

Как и другие планеты, Земля образовалась путём фрагментации протопланетной туманности и сгущения соответствующего фрагмента протопланетного облака. Бомбардируясь планетозималями, Протоземля наращивала свою массу. В современной науке конкурируют две наиболее авторитетные концепции о первоначальном состоянии вещества Протоземли в период её образования и раннего формирования. К ним относятся гипотеза Канта-Лапласа о горячем и жидком состоянии вещества и концепция холодного изначального вещества, которое стало разогреваться под действием радиоактивности. Классическая концепция Канта-Лапласа в последнее время всё больше теряет свою конкурентоспособность в связи с тем, что холод межзвёздного пространства и отдалённость протопланетного облака от Протосолнца вряд ли могли обеспечить горячее состояние фрагментов облака.

Вторая концепция, выдвинутая в качестве гипотезы ещё в первой половине XX века, весьма органично согласуется со всем, что нам известно о природе образования космических объектов и систем. Если холодные газопылевые облака являются исходным материалом для образования таких горячих объектов, как звёзды, то тем более это касается далеко не столь горячих форм, как планеты и их спутники. Тот же самый процесс разогревания недр под действием сжатия характерен как для высоких звёзд, так и для «низких» планет. Только планетам не хватает массы для запуска в их ядрах термоядерных реакций.

Не всемогущий Господь, а очень прозаические газопылевые облака лежат в основе образования и галактик и звёзд, и планет, и нашей Земли, и всего, что на ней. Вряд ли стоит молиться этим нашим творцам-основателям, они нас всё равно не услышат. Только мы можем сделать лучше то, что «навалили» газопылевые облака при формировании Земли. Проясняющаяся сегодня картина разогрева вещества Земли из холодного протопланетного облака значительно шире той, что была предложена в прошлом веке. Она выделяет среди причин разогрева не только естественную радиоактивность, но и столкновения Протоземли с планетозималями, а главное – мощное выделение тепла при сжатии протопланетного газа и соответствующем возрастании его давления. Механизм разогрева был тот же, что и у звёзд, включая Солнце, но масса фрагмента облака была значительно меньше, и разогрев тоже значительно меньше.

Двойная планетная система Земли с Луной сформировалась, по-видимому, из одного фрагмента протопланетного облака. Отсутствие на Луне железа вряд ли может служить аргументом в пользу гипотезы о «захвате» Луны Землёй из окружающего пространства. Более основательными представляются суждения об их совместном формировании, при котором каждая из них постоянно влияла на другую.

И Протоземля, и Протолуна стали формироваться в эпоху нестабильности Солнечной системы, когда мелкие шарики и обломки планетозималей роились в околосолнечном пространстве, постоянно сталкивались между собой, расшибались и слипались друг с другом. Сначала, очевидно, образовалась путём такого слипания Протоземля, а затем из оставшегося вещества того же фрагмента облака – Протолуна. В результате уже на этом этапе первоначального формирования произошла под действием притяжения Протоземли синхронизация движения Протолуны: период вращения последней вокруг своей оси полностью совпал с её периодом обращения вокруг Протоземли.

Обе они подверглись дальнейшей бомбардировке со стороны планетозималей, метеоритов, межпланетных обломков и прочего космического мусора. При столкновениях происходило расшибание, дробление, крошение, разбрасывание, сплющивание тел этих мелких объектов в более крупные и массивные тела Протоземли и Протолуны. Затем образовавшиеся комья вещества стягивались под воздействием тяготения более плотных ядер обеих планет, и они принимали форму, приближенную к шарообразной. Всё более разогревались ядра планет и их недра в целом.

В процессе формирования Земли наряду с астрономическим и геологическим периодами геологи выделяют три последовательно сменявших друг друга фазы – фазу аккреции (наращивания), фазу расплавления и фазу образования первичной коры (лунную фазу). Наращивание, или аккреция происходила по мере вышеописанных столкновений Протоземли с инородными телами и вбирания ею в себя, слипания и поглощения этих тел. Считается, что Протоземля набрала при этом около 95 % своей нынешней массы. Наращивание длилось миллионы лет, а возможно, и сотни миллионов, причём столкновения становились всё более мощными по мере роста планетозималей. Действие всех трёх вышеописанных факторов – гравитационного сжатия, высокой радиоактивности и бомбардировки «строительным материалом» Солнечной системы обусловило переход ранее холодной Протоземли в горячее расплавленное состояние.

Если бы космический корабль инопланетян пролетел в это время над формирующейся Землёй, перед космическими путешественниками предстала бы неприглядная картина, являющаяся для них неоспоримым научным доказательством того, что на данной планете жизни нет и быть не может. Поверхность Протоземли была бездонным океаном расплавленного вещества с температурой от 800 до 1250 °C. От этого клокочущего океана поднимались в огромном количестве ядовитые испарения и газовые потоки, состоящие из соединений серы, углерода, щелочных элементов. Они составляли первичную атмосферу Земли, которая постепенно улетучивалась в околоземное пространство. Тёмные тучи из этих испарений окутывали Протоземлю, не давая пробиться к её поверхности солнечным лучам. Время от времени планетозимали, метеориты и их фрагменты врывались в ядовитую атмосферу и «плюхались» в расплавленный базальтовый океан, ещё более повышая его температуру и разбрызгивая во все стороны огромные массы вещества, после чего переплавлялись и пополняли массу Протоземли.

Отсюда вполне понятно, что фаза аккреции в фазе расплавления так и не закончилась, она продолжалась, хотя и в меньших масштабах, но с большей эффективностью наращивания массы, поскольку в расплаве вещество космических «пришельцев», каким бы твёрдым оно ни было, быстро ассимилировалось с телом планеты и не нарушало процесса формообразования земного шара.

Это формообразование происходило не только вовне, но и вглубь. Фаза расплавления длилась около 600 млн. лет. Всё это время продолжалась наметившаяся в предшествующей фазе дифференциация и структурирование земного вещества с выделением плотного массивного горячего ядра и окутывающей его мантии.

Разумеется, ядро стало выделяться ещё в астрономический, догеологический период – период сгущения соответствующего фрагмента протопланетного облака. В этом фрагменте ядро играло роль более массивного и сгущённого тяготеющего центра, своеобразного клубка, на который как бы наматывалась разреженное газопылевое вещество. В фазе расплавления произошло преобразование ядра. Тяжёлые элементы «тонули» в расплаве и погружались всё глубже в недра Протоземли, достигая ядра и обогащая его этими элементами. Особую роль в этом процессе играло расплавленное железо, которое, обладая вдвое большим удельным весом по сравнению с силикатами, постепенно скапливалось в ядре, а выдавленные наружу силикаты скапливались на периферии, образуя мантию.

Такой сценарий развития событий, на наш взгляд, позволяет преодолеть расхождения двух альтернативных концепций, конкурирующих в геологии по поводу порядка формирования глубинной структуры Земли. Первая из этих концепций, впервые выдвинутая и обоснованная российско-советским учёным О. Ю. Шмидтом, связана с признанием первоначальной химической однородности Протоземли, вещество которой состояло из железа, силикатов и сульфидов. Структурированность Земли, как и других планет Солнечной системы, возникла в результате расслоения в фазе расплавления на тяжёлое ядро и более лёгкую силикатную мантию, верхний слой которой образовал протокору.

Вторая концепция отстаивает первичность образования ядра при гравитационном сжатии фрагмента протопланетного облака. Ядро было разогрето до 1250 °C, а затем начало остывать, и в результате «обросло» мантией и одновременно другими оболочками, как только силикатный материал остыл до нужной кондиции.

Очень важным в этой концепции мы считаем признание формообразующей роли ядра. Роль земного ядра для формирования и развития Земли во многом аналогична роли ядер атомов, ядер звёзд и ядер галактик для их формирования и развития. «Как теперь всё более чётко выясняется, – отмечают российские специалисты по палеогеографии А. Свиточ, О. Сорохтин и С. Ушаков, – тектоническая активность Земли, образование земной коры с присущими ей месторождениями полезных ископаемых, геохимическая эволюция мантии, её дегазация и генетически связанные с ними процессы формирования океанов и атмосферы, а также возникновение и развитие жизни на Земле в конце концов приводятся в действие и управляются планетарным процессом образования земного ядра» (Свиточ А.А., Сорохтин О.Г., Ушаков С.А. Палеогеография – М.: Академия, 2004 – 448 с., с. 37). Приведение в действие, обусловливание движения и управление ядрами периферии характеризуют мобилизационную активность ядерного компонента в любой ситуации.

По мере завершения процесса формирования Солнечной системы бомбардировка планетозималями Протоземли стала сокращаться. В связи с завершением распада короткоживущих изотопов значительно снизился уровень радиоактивности вещества Протоземли. Прекратилось и гравитационное сжатие протопланеты. Все три источника и три составные части разогревания Протоземли исчерпали свой энергетический потенциал. Протоземля начала остывать. Остывание длилось гораздо меньший промежуток времени, нежели пребывание в расплавленном состоянии.

Когда температура земной поверхности опустилась ниже точти плавления базальтов (от 800 до 1000 °C), поверхностная часть мантии, составляющая протокору, стала застывать и превратилась в земную кору. Когда температура поверхности опустилась ниже 100 °C, точки кипения воды, конденсация водяных паров привела к выпадению их на эту поверхность и образованию гидросферы. Извержения вулканов, вызываемые прорывами магмы сквозь трещины в коре и дегазацией мантии, способствовали обновлению газовой оболочки Протоземли и формированию атмосферы. Вулканическая активность на новорожденной Земле была чрезвычайно сильной и распространённой почти по всей её поверхности. Этому способствовала всё ещё очень высокая температура мантии и непрочность только что застывшей базальтовой оболочки.

Фазу образования первичной коры нередко называют лунной фазой, поскольку Протоземля в этот промежуток времени была похожа на свою вечную спутницу Луну. Поверхность Протоземли покрывал слой реголита (от греч. «регос» – покрывало). Это был, как и на Луне, особый материал, сформировавшийся из спекшихся и раздробленных метеоритными бомбардировками частиц и состоявший из различных обломков и пыли. Всё ещё частые удары метеоритов проламывали непрочную базальтовую оболочку и покрывали Протоземлю кратерами, ещё больше активизируя вулканически извержения (это, конечно, резко отличает Протоземлю от Луны – почти лишённой вулканизма планеты). К тому же более массивная, чем Луна, Протоземля удерживала вырывавшиеся из её недр газовые потоки и создавала защиту от прямых попаданий метеоритов.

В связи с сохранением достаточно высокой температуры и возможной плотностью атмосферы, создающей парниковый эффект, некоторые исследователи отрицают достоверность лунной модели данной стадии формирования Земли и считают более предпочтительной венерианскую модель. Но если остывающая Протоземля и была на какой-то стадии формирования похожа на Венеру, то по мере охлаждения она, безусловно, теряла сходство и приобретала относительную стабильность своей структуры в сочетании с высочайшей активностью химической и физико-геологической среды.

С формирования относительно стабильной структуры ведёт свой отсчёт превращение Протоземли в Землю. Дальнейшее развитие Земли связано с формированием протобиосферы и её превращением в биосферу. Первичная биосфера Земли развивалась под двойной защитой – со стороны атмосферы и гидросферы. Земля же в своём геологическом развитии, в отличие от всех известных нам планет, приобрела двойственный характер мобилизационных источников эволюции – из глубин, со стороны ядра, и с поверхности – от биосферы.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации