Электронная библиотека » Джина Колата » » онлайн чтение - страница 23


  • Текст добавлен: 15 апреля 2014, 11:06


Автор книги: Джина Колата


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 23 (всего у книги 24 страниц)

Шрифт:
- 100% +

Когда же гораздо позже его все-таки спросили, почему грипп 1918 года был столь смертоносен именно для молодых людей, он начал с констатации другого общеизвестного факта: практически все остальные вирусные инфекции более опасны для подростков, чем для детей, и в большей степени угрожают жизни молодых взрослых людей, чем подростков. Возьмите, к примеру, корь, ветрянку или оспу. Их эпидемии лесными пожарами проносились по индейскому и эскимосскому населению Америки, безжалостно губя жизни взрослых. А вот заразившиеся дети переносили эти заболевания значительно легче. Поэтому не следует удивляться, что график смертности от необычного штамма гриппа в соотношении с возрастом умерших представляет собой практически прямую линию, говорит Палесе. Вполне предсказуемо, что чем старше человек, тем более опасен для него новый вирус.

Тогда почему же кривая смертности столь резко шла вниз, когда речь заходила о тех, кому уже перевалило за сорок? Наиболее правдоподобный ответ на этот вопрос, как считает Палесе, заключается в том, что такие люди в прошлом уже переносили грипп схожего штамма с инфлюэнцей 1918 года, но не столь опасного, а потому в их организмах вырабатывался хотя бы частичный иммунитет, спасавший их, когда на мир обрушилась пандемия.


Джеффри Таубенбергер пришел к аналогичному выводу. Но перед ним стоял гораздо более фундаментальный вопрос, ответить на который значило полностью изобличить массового убийцу: что же именно сделало вирус 1918 года столь смертоносным?

Постепенно у Таубенбергера остались лишь три гипотезы, каждая из которых вполне могла объяснять убийственную мощь гриппа. И он принялся проверять их одну за другой.

Его первая надежда найти ключ к разгадке заключалась в полученном гене геммаглютинина. В конце концов, это был один из двух протеинов, которые выделяются над поверхностью вируса гриппа. Это тот белок, с помощью которого вирус проникает внутрь клеток, а когда иммунная система пытается блокировать инфекцию, она в первую очередь блокирует геммаглютинины.

И в то же время именно свойства геммаглютинина объясняют способность вируса приживаться исключительно в легких человека. Когда вирус гриппа поражает клетку, в ней разрастается крупный зародыш нового геммаглютинина, которому энзимы пораженной клетки помогают делиться. А поскольку такие энзимы присутствуют только в клетках легких, то и вирус может размножаться исключительно там.

Одна из теорий относительно гриппа 1918 года как раз и заключалась в том, что его гены геммаглютинина мутировали настолько, что белок получил возможность делиться под воздействием энзимов не только клеток легких. А это значило, что грипп мог вторгаться в другие ткани и органы, отчего и становился столь смертоносным. К примеру, в таком случае вирус приобретал способность поражать клетки мозга, вызывая в виде осложнения летаргический энцефалит.

Впрочем, Таубенбергер не позволял себе чрезмерно больших ожиданий, когда они с Энн Рейд стали тщательно выстраивать генетическую структуру геммаглютинина вируса гриппа 1918 года. Ему самому это показалось бы невероятным, если бы первая же из проверенных гипотез оказалась верной.

Но он тем не менее не мог скрыть огромного разочарования, выяснив, что принцип деления белка геммаглютинина ничем не отличается от обычного. 16 февраля 1999 года они с Рейд опубликовали статью в авторитетном журнале «Труды Национальной академии наук», описав открытую ими генетическую структуру. При этом особо отметили, что если вирус 1918 года и мог поражать мозг и другие органы, то не потому, что подверглись мутации его гены геммаглютинина.

Отбросив первую версию, Таубенбергер обратился к другой, не менее популярной теории о том, что распространению вируса не только в легких содействовала трансформация его генов нейроминидазе. Первоначально эта идея родилась после экспериментов с мышами – животными, которые обычно не поддаются инфицированию человеческим гриппом. Но когда ученые стали многократно и систематически делать инъекции вируса гриппа человека прямо в мозг грызунам, ген нейроминидазе вируса постепенно мутировал, став причиной смертельного для подопытных животных энцефалита. Вывод отсюда сделали такой: вероятно, вирус гриппа 1918 года претерпел схожую мутацию, что позволило ему приживаться в мозгу человека. Это был весьма спорный метод искусственно связать летаргический энцефалит со смертоносным эффектом гриппа.

Таким образом, ученые принудительно заставили энзимы клеток головного мозга расщеплять белки геммаглютинина вируса, подменив этим мутацию самого геммаглютинина. Но именно в этом и состояла проблема. Подобные мутации генов нейроминидазе стали чем-то из ряда вон выходящим, никогда не происходившим естественным путем. И все же пока оставался хотя бы малейший шанс, что именно такую трансформацию претерпел вирус гриппа 1918 года, став в результате столь смертоносным, Таубенбергер и Рейд сочли своим долгом вплотную заняться геном нейроминидазе, как только закончили работу с геммаглютинином.

Однако признаков мутации гена нейроминидазе они не обнаружили. «Мы не располагаем никакими научными подтверждениями гипотезы, что вирус мог распространяться за пределы легких, – говорил Таубенбергер. – Мы исчерпали как объекты для тестирования все известные варианты мутаций и теперь ведем поиск любых уникальных отклонений от нормы», которые в конечном счете сделали вирус столь убийственным.

Следующим шагом стала проверка гипотезы, выдвинутой Петером Палесе.


Идея Палесе возникла во многом случайно.

Он и его коллеги экспериментировали с разновидностью искусственно выведенных вирусов гриппа, которые они создавали, заставляя в лабораторных условиях мутировать определенный ген, а затем выращивая культуру вируса с одним модифицированным геном, в то время как остальные оставались нетронутыми. Целью они при этом ставили, разумеется, не выведение вируса-монстра, но, напротив, отрабатывали технологию, которая могла оказаться полезной при разработке противогриппозных вакцин. Таким путем ученые способны были создавать вирусы, не вызывавшие инфекции, поскольку искусственно внесенные генетические изменения обезвреживали их, но заставлявшие тем не менее включаться и реагировать иммунную систему человека.

Как часть эксперимента, Палесе и его соратники – доктор Адольфо Гарсия-Састре из медицинской школы Маунт-Синай и доктор Томас Мюстер с медицинского факультета Венского университета – решили изучить вирус, в котором будет отсутствовать ген, наименованный NS1, вырабатывающий белок, обычно глубоко спрятанный среди других частиц вируса. Причем до тех пор никто не знал, какую функцию выполняет белок, и в процессе работы ученые хотели в этом разобраться.

К их огромному удивлению, вирус гриппа с отключенными генами NS1 мог не только расти, но и сохранял способность убивать, хотя в отличие от нормальных вирусов он оказывался смертельным лишь для одной из разновидностей мышей, а именно тех, которые от природы были лишены способности вырабатывать интерферон. Ведь при обычных условиях, когда клетку поражает вирус, в ответ на это в нее проникает также интерферон, замедляющий рост вируса и пытающийся сдерживать развитие инфекции. Для подопытных зверьков, у которых интерферон вырабатывался, вирус, лишенный гена NS1, оказывался безвреден.

Таким образом, получалось, что именно протеин NS1 служил вирусу механизмом, блокирующим воздействие на него интерферона. И если интерферон – это своего рода антивирусная ракета, выпускаемая организмом, то NS1 по аналогии можно сравнить со средством противоракетной обороны вируса.

И Палесе пришел к выводу, который напрашивался сам собой: вирус гриппа, обладавший гипертрофированно развитыми белками NS1, мог стать чрезвычайно смертоносным, поскольку интерферон оказывался против него бессилен. Вот каким путем мог возникнуть настоящий вирус-убийца! И, как полагает Палесе, именно в этом и заключался секрет гриппа 1918 года.

«Я позвонил Таубенбергеру и сказал, что мне насущно необходимо получить генетическую структуру NS1 вируса 1918 года», – рассказывает Палесе.

А что, если его гипотеза окажется неверна?

«Пока я не хочу даже допускать такой вероятности, – отвечает Палесе. – Ведь тогда нам придется все снова начинать с нуля».


Однако у Таубенбергера есть серьезные сомнения в том, что в NS1 заключается решение всех проблем. При этом он трудится не покладая рук, чтобы как можно быстрее получить генетическую последовательность, которая так нужна Палесе. Но в его теории Таубенбергер видит и уязвимое место.

Если вирус 1918 года имел лишь одну, пусть и важную, генетическую мутацию, которая позволяла ему преодолевать сопротивление иммунной системы человека, то почему это изменение не закрепилось в последующих штаммах гриппа? Даже по теории Дарвина все возникшие позднее вирусы должны были сохранить вновь приобретенное изменение, поскольку оно давало им огромное преимущество в борьбе за выживание.

«Допустим, NS1 образца 1918 года действительно обладал способностью полностью блокировать сопротивление интерферона. Но почему же в дальнейшем вирусы мутировали в обратном направлении, не закрепив в себе столь «позитивной» трансформации?» – спрашивает Таубенбергер.

У него самого есть гипотезы, в которых он старается избегать упрощенного подхода и искать лишь какое-то одно свойство, одно смертоносное оружие, которое нес в себе грипп 1918 года.

Первое и наиболее предпочтительное для него самого объяснение заключается в том, что вирус был абсолютно новым, с каким молодые люди прежде никогда не сталкивались и потому не имели в организмах антител для защиты. А вирус к тому же обладал способностью чрезвычайно быстро поражать клетки человека, размножался с невероятной скоростью, так что уже скоро заполнял собой легкие в огромных количествах. Это и приводило к возникновению пневмонии, а потом, когда обширные участки клеток легких отмирали, их заполняла жидкость и возникали кровотечения. Одним словом, именно так появлялись уже знакомые нам признаки и симптомы гриппа 1918 года.

Если это верное объяснение, считает Таубенбергер, то крайне маловероятно, что какая-то одна мутация вируса превратила тот грипп в столь смертоносное заболевание. Напротив, говорит он, «скорее всего имели место множественные и едва заметные изменения в вирусе, которые привели к тому, что все его генетические составляющие стали идеально взаимодействовать между собой». Однако большая проблема для современной науки, признает он, заключается в том, «что нам до сих пор не понятно подавляющее большинство внутривирусных взаимодействий, а потому едва заметная мутация в структуре не может быть нами замечена сразу. Ведь мы, ко всему прочему, поневоле можем сейчас изучать только каждый ген в отдельности».

С другой стороны, отмечает Таубенбергер, грипп, который стал до такой степени идеальным орудием убийства людей, по всей вероятности, достиг предела возможностей развития вируса в этом направлении, а потому любая последующая мутация могла лишь ослаблять его, делая менее смертоносным. Грипп 1918 года отличался «совершенством структурного баланса», который любое дальнейшее, даже самое незначительное изменение могло только нарушать, превращая вирус в более заурядный и распространенный штамм.

При этом, говоря о беспрецедентной убийственной силе вируса, мы не должны упускать из виду, что все, кто переболел им и выжил, приобретали к нему устойчивый иммунитет. Не имея для себя новых потенциальных жертв, вирус должен был либо мутировать, либо погибнуть. Вот почему нам теперь кажется, что вирус 1918 года попросту исчез с лица Земли, полагает Таубенбергер.

Но есть и другое объяснение, которое он считает менее вероятным, но в то же время не имеет пока оснований списывать его со счетов. Вполне возможно, что обитатели планеты 1918 года проявили необычную иммунологическую реакцию на грипп, которая была вызвана разнообразными более ранними вирусами инфлюэнцы. В особенности эпидемией 1890 года, случившейся за двадцать восемь лет до того.

Что, если младенцы и дети, подвергшиеся воздействию гриппа 1890 года, выработали в результате чрезмерное количество антител? – задается вопросом Таубенбергер. А у вируса гриппа 1918 года имелись схожие поверхностные протеины, и потому антитела против гриппа 1890 года с яростью обрушились на вирус образца 1918 года. Если произошло нечто подобное, то уже не вирус гриппа, а само по себе воздействие иммунной системы могло приводить к смерти. Чрезмерно активно реагируя на вирус 1918 года, целые армии белых кровяных телец и содержащих их жидкостей спешили заполнить легкие пациентов. Вот в таком случае чем здоровее был человек, чем активнее работала его иммунная система, с тем большей вероятностью он мог погибнуть, заразившись гриппом 1918 года.

Если верна эта гипотеза, говорит Таубенбергер, то смертоносный эффект гриппа объяснялся не какими-то особыми свойствами вируса, а тем, что он нагрянул в самое неподходящее время. Но опять-таки, добавляет он, «единст венным способом проверить эту теорию остается возможность выделить вирус 1890 года». И с надеждой снова устремляет свои помыслы к хранилищу Армейского института патологии.


В известном смысле ситуация сложилась тупиковая. Ученым вроде бы удалось схватить массового убийцу – вирус гриппа 1918 года. Но ими до сих пор не обнаружено орудие убийств.

«Мы определенно установили личность подозреваемого, но еще не выяснили, каким образом он совершал убийства», – говорит Таубенбергер.

Если бы речь шла о детективном романе, улики указали бы на преступника, а тот признался бы, где спрятал оружие. Но мы говорим о науке, а в ней далеко не всегда все просто и ясно. Напротив, порой чем больше улик собирают ученые, тем больше возникает вопросов, на которые нужно искать ответы.

Впрочем, так ли уж для нас важно, будет найдено орудие убийства или нет? Медицина наших дней дала в руки врачей средства борьбы со смертоносными эпидемиями, каких не существовало в 1918 году. Мы имеем теперь антибиотики, которые справятся с бактериями, вызывавшими тогда пневмонию, поражавшую легкие жертв гриппа, слишком обессиленных, чтобы им сопротивляться. А значит, никогда не повторится ситуация, когда множество молодых людей умирали от бактериальной инфекции, которая становилась последствием воздействия вируса гриппа. И уже существуют медикаменты, сдерживающие развитие некоторых видов инфлюэнцы и, вероятно, способные смягчить воздействие по-настоящему опасных вирусов. Имея же выделенный ген геммаглютинина гриппа 1918 года, фармакологические компании обладают возможностью произвести вакцину против него, если он непостижимым путем вдруг вернется.

И все же у нас нет повода для особого благодушия.

Станет ли новый грипп-убийца всего лишь копией гриппа 1918 года? Или же та пандемия всего лишь показала нам, что может произойти, если нарождается штамм гриппа, идеально приспособленный для уничтожения людей? И не окажется ли следующий ужасный вирус чем-то абсолютно новым, хотя и столь же совершенным в своей убийственной силе?

Джеффри Таубенбергер принадлежит к числу ученых, которые считают, что никто не в состоянии предсказать, каким будет следующий смертоносный вирус гриппа. А потому все наши надежды должны быть связаны с четкой системой слежения, которая вовремя заметит появление жестокого чудовища, чей час прихода вот-вот может наступить.

Возможно, после того как какой-нибудь китайский мальчик всего лишь поиграл с птичкой, он выпустил на свободу новый убийственный грипп. Или вообразите, что прямо сейчас, когда вы читаете эти строки, молодой мужчина или юная девушка заразились двумя штаммами гриппа одновременно. И они сплелись воедино в инфицированных легких, меняя структуру своих генов. А в результате в этом «ведьмовском котле» возникнет новый вирус, который, подобно вирусу 1918 года, окажется идеальным средством уничтожения людей.

И пока мы все чаще относимся к гриппу легкомысленно, считая его всего лишь досадным недомоганием, новая напасть, возможно, собирается с силами, чтобы атаковать нас. Но хочется верить, что и мы теперь находимся во всеоружии и научились лучше понимать события прошлого, чтобы благополучно пережить следующую пандемию.

Эпилог

Момент подлинного триумфа наступил для Джеффри Таубенбергера 6 октября 2005 года, то есть через десять лет после того, как ему впервые пришло в голову пуститься на поиски следов вируса гриппа, который свирепствовал в мире в 1918 году. В тот день сразу два ведущих научных журнала – «Сайенс» и «Нейчер» – вышли с публикациями, ознаменовавшими итог проделанного им невероятно долгого пути. Статья в «Нейчер» информировала, что Таубенбергер и его группа получили целостную картину генетической структуры вируса гриппа 1918 года. А «Сайенс» сообщал и вовсе сенсационную новость о том, что Таубенбергеру совместно с коллегами удалось в надлежащим образом оборудованной лаборатории Центра по контролю заболеваемости и профилактике воссоздать этот вирус и даже заразить им мышей, а также клетки человеческих легких, выращенные в чашках Петри.

Преодолев все препятствия, Таубенбергер добился огромного успеха. Впервые в истории он сумел возродить к жизни вирус, давно считавшийся безвозвратно ушедшим. И его достижения оказались как нельзя более своевременными. В мире росла обеспокоенность новой вспышкой птичьего гриппа, подобного тому, что наблюдался в Гонконге в 1997 году. Общественность и некоторые политики уже начинали понемногу впадать в панику. К осени 2005 года по меньшей мере 116 человек числились инфицированными различными штаммами вируса H5N1 и 60 уже умерли. Перелетные птицы занесли вирус не только в Азию, но и в Европу, и он уже проявился в одиннадцати странах. По счастью, эти вирусы птичьего гриппа не претерпели самой важной генетической трансформации, которая бы позволила инфекции передаваться от человека к человеку. Почти все заболевшие подхватили вирус напрямую от куриц, уток или других пернатых, но не распространили инфекцию среди окружавших их людей. Между тем азиатские птицы были разносчиками буквально сотен разновидностей гриппа H5N1. Наиболее насущной проблемой стало определение, каких из этих вирусов следует опасаться людям в первую очередь и как распознать момент, когда начнется их передача от человека к человеку еще до начала пандемии, остановить которую уже будет невозможно. Все надеялись, что вирус гриппа 1918 года даст ответы на эти вопросы.

И он действительно мог помочь определить признаки опасности и, как выразился Таубенбергер, составить реестр генетических изменений, которые должен был претерпеть птичий грипп, чтобы вылиться в пандемию. С его помощью ученые могли попытаться разработать средства защиты, а если повезет, то и обнаружить ахиллесову пяту заболевания, так и не дав ему возможности продолжать инфицировать людей.


Путь к тому октябрьскому дню оказался действительно долгим и тернистым, а по временам затеянный Таубенбергером проект представлялся совершенно безнадежным предприятием. Сейчас он уже совершенно спокойно признает, что его бравада бывала во многом напускной, а сам он часто сомневался, сможет ли хотя бы выстроить полную генетическую структуру вируса 1918 года.

Мысленно он постоянно возвращается в 1996 год, когда они с Энн Рейд впервые обнаружили мельчайшие частички вируса, сохранившиеся в кусках воска с тканями легких солдата, который умер в 1918 году в Южной Каролине. Материала для исследования оказалось так мало, а вирус распался на такие крохотные фрагменты, что у них невольно возникало опасение исчерпать запас тканей, так и не сумев выловить из них все гены вируса. Таубенбергер лишь слегка приободрился, когда нашел вирус в образцах тканей легких еще одного военнослужащего. Но настоящим прорывом стала экспедиция, предпринятая Йоханом Хултином на Аляску, где он обнаружил страдавшую от ожирения женщину, похороненную в вечной мерзлоте, в легких которой все еще содержался вирус 1918 года. «Он тогда привез едва ли не все ее легкое целиком», – вспоминает Таубенбергер. И хотя гены вируса в теле женщины оказались повреждены даже сильнее, чем в тканях солдат, они получили в сотни раз больше материала для дальнейшей работы. А это означало, что теперь у Таубенбергера появилась возможность по крайней мере попытаться решить поставленную перед собой задачу.

И они принялись восстанавливать структурные последовательности одного гена за другим, а потом подвергали их проверке, снова и снова задаваясь вопросом, почему этот вирус оказался столь смертоносным. Первой настоящей зацепкой стал ген NS1, который, по мнению Петера Палеса, мог играть в этом ключевую роль. Идея заключалась в том, что NS1 давал вирусу инфлюэнцы возможность останавливать работу иммунной системы, не позволяя ей уничтожать пораженные вирусом клетки. Никто, однако, не знал, какая составляющая гена NS1 особенно важна, чтобы сделать этот процесс по-настоящему эффективным. Поэтому, говорит Таубенбергер, для проверки, был ли ген NS1 вируса 1918 года способен в самом деле полностью блокировать иммунную систему, существовал только один путь: искусственно создать вирус с внедренным в него геном NS1 1918 года и испытать его на подопытных животных.

Именно это они и проделали в 2001 году, внедрив NS1 1918 года на место аналогичного гена вируса мышиного гриппа, который убивал грызунов, провоцируя их иммунную систему на столь бурную ответную реакцию, что именно она и становилась причиной гибели зверьков. Измененный вирус с включенным в него геном NS1 гриппа 1918 года оказался для мышей не смертельным.

После этого группа также протестировала измененный вирус мышиного гриппа на клетках человеческих легких, выращенных в чашках Петри, пытаясь определить, что происходит с генами интерферона, которые в первую очередь начинает выделять иммунная система людей. И клетки, пораженные вирусом, содержавшим ген NS1 1918 года, действительно не выделяли интерферон в тех количествах, в каких вырабатывали его, реагируя на другие вирусы гриппа.

Но Таубенбергера все это не удовлетворило. Да, соглашался он, результаты вроде бы подтверждают теорию Палесе, но давайте разберемся, что они означают на самом деле. «Мы же не сравнивали друг с другом два вируса гриппа человека. Измененный вирус показал, что ген NS1 дейст вительно играет важную роль в том, что происходит с мышами, но это никак не помогает понять, что происходило в 1918 году с людьми».

Те же сомнения вызывали у него и последующие эксперименты с поверхностными белками вируса 1918 года – геммаглютинином и нейроминидазе. Он внедрил ген геммаглютинина 1918 года в вирус мышиного гриппа, который, как правило, мышей не убивал. Но тот же вирус с геном 1918 года стал для них смертельным. Аналогичный процесс наблюдался, когда в вирус мышиного гриппа ввели нейроминидазе 1918 года. Мыши погибли. «Так мы выяснили, что протеины поверхности вируса 1918 года убивают мышей», – констатирует Таубенбергер. Но и птичьи штаммы H5N1 убивают их тоже. А они смертельно опасны и для людей, из чего следует вывод, что мышей можно с успехом использовать как подопытных животных для выявления смертельных разновидностей птичьего гриппа. Но и только. В характерной для него осторожной манере Таубенбергер не спешит делиться предположениями, пока не проверил их на практике. Но уже сейчас он заявляет, что установил, какие мутации должен претерпеть ген геммаглютинина, чтобы вирус, который прежде мог инфицировать только клетки организмов птиц, стал вместо этого поражать клетки людей, а значит, и передаваться от человека к человеку. Таких изменений должно произойти два. Первое позволит вирусу проникать внутрь клеток человека, а второе заставит его отдавать предпочтение проникновению именно в человеческий организм перед проникновением в организмы птиц. Ни одна из этих двух генетических мутаций в вирусах типа H5N1, которые разносят азиатские пернатые, до сих пор не произошла. А это означает, что угрозы быстрого развития пандемии пока нет.

В процессе этой работы Таубенбергер неожиданно столкнулся с еще одной странной особенностью гриппа 1918 года. Он в который раз рассмотрел последовательность составляющих гена геммаглютинина[20]20
  Здесь следует напомнить, что полная генетическая структура вируса тогда еще не была ему доступна.


[Закрыть]
. Ген был практически идентичен геммаглютинину птичьего гриппа, но в нем бросалась в глаза необычная расстановка некоторых аминокислот. Вообще говоря, генетический код – вещь изменчивая, и всегда существуют несколько вариантов отображения одной и той же составляющей гена. Однако в каждом из подвергавшихся когда-либо изучению вирусов птичьего гриппа расстановка аминокислот геммаглютинина была одинаковой. Но только не в вирусе 1918 года. Для этого можно найти только два объяснения, подумал Таубенбергер. Одно из них заключалось в том, что птичий грипп в течение десятилетий претерпел эволюцию и его вирусы в 1918 году имели иное расположение частиц. А второе подразумевало, что если вирус гриппа 1918 года действительно впервые развился в птице, то это было пернатое той породы, которую до сих пор никто не принимал во внимание. Какое же из объяснений ближе к истине? «И мы решили, что эта задача не имеет решения», – рассказывает Таубенбергер. В конце концов, от птиц, обитавших на Земле в 1918 году, давно не осталось и следа, а значит, и вирусы того времени умерли вместе с ними.

Прошло около двух лет, и однажды Том Фаннинг – ученый из группы Таубенбергера – упомянул, что один его приятель работает в Смитсоновском национальном музее естественной истории, где образцы птиц хранят заспиртованными в специальных сосудах. Фаннинг пообещал созвониться со своим знакомым и узнать, нет ли у них образцов водоплавающих начала XX века. «Так мы вышли на нужного человека – Джеймса Дина, хранителя коллекции птиц, который с энтузиазмом взялся помочь», – рассказывает Таубенбергер. Дин усадил ученого за компьютерный список птиц из коллекции музея, в котором были сотни наименований, причем каждое сопровождалось описанием вида и указанием, когда и где птица была поймана. Но на чем же остановить свой выбор?

Таубенбергер проконсультировался с ведущим экспертом по птичьему гриппу Ричардом Слемонсом из Университета Огайо, тем самым, кто первым обнаружил, что вирусы инфлюэнцы поражают пищеварительный тракт пернатых. Обычно вирусы гриппа поселяются в птице, которой нет еще и года, сообщил Слемонс, и происходит это, как правило, ближе к концу лета. Просмотрев музейный список, он сузил круг поисков до сорока птиц – уток, гусей и ржанок, которые, по его мнению, были наиболее перспективны. Его теория, объяснял Слемонс, основывалась на том же принципе, по которому действовал знаменитый грабитель банков Уилли Саттон. Однажды Саттона спросили, почему он грабит именно банки. «Потому что там деньги», – простодушно ответил бандит. Вот и Слемонс рассудил, что водоплавающие и ржанки давно известны как носители вирусов гриппа, и потому начать поиск вирусов в заспиртованных образцах посоветовал именно с них. Ученые извлекли птиц из сосудов и взяли мельчайшие образцы тканей из их клоак. Затем Таубенбергер изучил эти ткани. Вирус присутствовал у шести птиц. Причем, как не преминул он отметить, четыре из шести было пойманы одним человеком. Это был Александер Уетмор, самый известный орнитолог в Америке, одно время занимавший пост ученого секретаря Смитсоновского института. Птиц он отловил в 1915–1916 годах на берегах Медвежьей реки в штате Юта для изучения случаев их возможного отравления свинцом.

И генетическая структура вирусов в заспиртованных образцах полностью совпадала с теми, что были обнаружены в наши дни, – расстановка элементов нисколько не изменилась. Вирусы не претерпели никакой эволюции вообще. Вирусы человеческой инфлюэнцы меняются ежегодно, подвергаясь небольшим мутациям. Поэтому антитела, выработанные против прошлогоднего гриппа, не способны защитить вас от нового штамма, и вам приходится проходить иммунизацию каждый год. Если бы вирус оставался неизменным, как, например, возбудитель ветрянки, то одного укола было бы достаточно на всю жизнь. Как объяснил Слемонс, главнейшая причина неизменности вирусов птичьей инфлюэнцы состояла в том, что иммунная система пернатых практически никак на них не реагировала и потому вирусы не имели особых причин приспосабливаться, мутируя. Как на другую важную особенность, он указал на тот факт, что такого рода птицы живут всего около двух лет, а потому каждый год у вирусов появляется огромное количество новых жертв для инфицирования. И наконец, отмечал он, птицы хронически инфицированы множеством вирусов гриппа одновременно, и все они мирно уживаются между собой. «У птиц во внутренностях обитают тучи вирусов. Но ни одному не приходится бороться за выживание».

Но если вирусы птичьего гриппа не подвергались изменениям и вирус, поражавший уток в 1915-м или в 1916 году, был абсолютно тождественен современному, то откуда же все-таки взялся вирус 1918 года? Или он не имел к птичьей инфлюэнце никакого отношения? Впрочем, Таубенбергер мог пока рассматривать лишь часть генетической структуры вируса. Быть может, когда он получит ее целиком, картина изменится, думал он.

Работа между тем продвигалась неспешно. Вот почему так неожиданно тревожные вопросы, которые казались еще недавно чисто риторическими, вдруг встали перед группой Таубенбергера во всей своей реальной серьезности. Когда полная генетическая структура оказалась наконец выделена, ученые получили теоретическую возможность реконструировать сам вирус 1918 года. Но ведь это был наиболее смертоносный вирус в истории, потенциальное оружие биологического терроризма. Так следует ли оживлять его? И допустима ли даже публикация его полной генетической структуры, чтобы любой, кто располагает для этого нужными технологиями, мог возродить его самостоятельно?

Таубенбергер признает, что столкнулся с труднейшими этическими проблемами. «Мы задавали себе эти вопросы, едва приступив к осуществлению проекта, – публиковать ли полученные данные, воссоздавать ли вирус?» – рассказывает он. И они пришли к выводу, что польза перевешивает любой возможный вред. «Если бы нам удалось выяснить, как сформировалась пандемия 1918 года и почему распространялась именно таким образом, это оказалось бы настолько важно для защиты здоровья населения планеты, что, по нашему мнению, перевешивало опасность, что кто-то может воспользоваться нашим открытием во вред человечеству. Конечно, определенный риск существовал, но потенциальная польза представлялась намного более значительной. Даже сейчас лишь немногие эксперты полагают, что предпринимать подобный эксперимент не следовало в принципе, но ведь когда проект стартовал, только Таубенбергер и его соратники могли принимать решение, браться ли за него. «Никаких официальных критериев, которыми мы могли бы руководствоваться, тогда не было», – говорит он. И скорее всего потому, что никто не верил в конечный успех.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации