Электронная библиотека » А. Сертакова » » онлайн чтение - страница 18


  • Текст добавлен: 15 апреля 2014, 11:11


Автор книги: А. Сертакова


Жанр: Здоровье, Дом и Семья


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 18 (всего у книги 39 страниц)

Шрифт:
- 100% +

При развитии патологических процессов при бронхоскопии можно обнаружить:

1) воспалительные изменения слизистой;

2) наличие трахеобронхиальной дискинезии мембранозной части слизистой оболочки трахеи и крупных бронхов;

3) стенозирующие процессы в трахее и бронхах;

4) доброкачественные и злокачественные опухоли трахеобронхиального дерева;

5) инородные тела трахеи и крупных бронхов;

6) кровоточащий сосуд, являющийся источником легочного кровотечения.

Воспалительные изменения слизистой оболочки трахеи и бронхов проявляются гиперемией слизистой, возникновением отечности, появлением выраженного скопления слизистого или слизисто-гнойного секрета (катаральный эндобронхит) или гнойного секрета (гнойный эндобронхит). Наличие гнойного секрета свидетельствует о нагноительном процессе в легочной ткани, хотя и не всегда может быть обусловлено гнойным бронхитом.

Трахеобронхиальная дискинезия проявляется увеличением по сравнению с нормой амплитуды движений мембранозной части стенки трахеи и главных бронхов во время дыхания и степени их экспираторного сужения.

Дискинезия I степени характеризуется экспираторным сужением трахеи и главных бронхов до 2/3 на фоне сохраненной нормальной конфигурации их просвета или незначительном уплощении.

Дискинезия II степени проявляется полным смыканием во время выдоха передней и задней частей мембранозной стенки трахеи и бронхов и значительным уплощением их просвета. Трахеобронхиальная дискинезия сопровождает течение многих заболеваний легких, при этом отмечается увеличение сопротивления трахеи и главных бронхов при форсированном выдохе и экспираторной обструкции дыхательных путей.

При бронхоскопии можно обнаружить опухоль и установить наличие опухоли в трахеобронхиальном дереве и характер ее роста. Об эндобронхиальном росте опухоли говорят в том случае, когда в просвете трахеи или бронхов хорошо видно разрастание опухолевой ткани (опухоль имеет бугристую поверхность, цвет слизистой оболочки в ее проекции может быть розовым, сероватым или багрово-красным). Перибронхиальный рост опухоли характеризуется наличием на слизистой оболочке лишь косвенных признаков новообразования, отмечаются ограниченное утолщение слизистой оболочки, инфильтрация стенки бронха, рыхлая, легко кровоточащая поверхность. При обнаружении таких изменений слизистой оболочки обязательно должна производиться биопсия ткани с последующим гистологическим исследованием полученного материала. Если новообразование расположено дистальнее субсегментарных бронхов, то получение материала для исследования возможно с помощью бронхоальвеолярного лаважа.

Во время проведения бронхоскопического исследования можно обнаружить стенотические процессы. Стенозы бронхов подразделяются на три степени. I степень стеноза характеризуется сужением просвета бронха на 1/3, II степень – на 2/3, III степень – более чем на 2/3.

Наиболее часто причинами стенозов могут быть эндобронхиальный или в запущенных стадиях – перибронхиальный рост опухоли; туберкулез бронхов; рубцовые изменения; внешнее сдавление элементов трахеобронхиального дерева увеличенными медиастинальными или парабронхиальными лимфатическими узлами. Следует помнить, что воспалительные процессы, как правило, не приводят к стойким стенотическим изменениям, большую роль в появлении такой патологии играют новообразования.

Обнаружение инородных тел в просвете бронхов существенных сложностей не вызывает, но если прошло длительное время с момента аспирации (1–2 месяца), то в проекции инородного тела возникает воспалительная реакция, которая осложняет постановку правильного диагноза и обнаружение инородного тела. Иногда в просвете долевого или сегментарного бронха при бронхоскопии обнаруживаются известковые камни (бронхиолиты). Причиной их возникновения является пенетрация известковых петрификатов из трахеобронхиальных лимфатических узлов, пораженных туберкулезом. Появление бронхиолитов в просвете бронхов приводит к возникновению воспалительной реакции и, как ее следствие, – к рубцовым изменениям, приводящим к наступлению сужения (стеноза) просвета бронхов.

При легочных кровотечениях бронхоскопия позволяет определить интенсивность кровотечения: при небольшой кровопотере не более 50 мл в сутки на стенке бронхов определяются небольшие кровянистые наслоения или примеси крови в слизисто-гнойном содержимом бронха; при кровопотере до 200 мл в сутки кровь заполняет долевой или сегментарный бронх; при массивном кровотечении, сопровождающемся потерей более 300 мл крови в сутки, отмечается заполнение кровью двух и более долевых бронхов. Источником кровотечения могут быть распадающийся рак легкого, туберкулез, бронхоэктазы, травмированная слизистая. В случае массивного кровотечения бронхоскопию лучше выполнять жестким бронхоскопом под наркозом, при необходимости следует выполнить временную тампонаду бронха и остановить кровотечение.

При проведении цитологического исследования материала, полученного в результате бронхоскопии, можно обнаружить следующие изменения. При острых воспалительных изменениях в биоптатах обнаруживаются большое количество полиморфно-ядерных лейкоцитов, реактивные структурные изменения клеток эпителия. Хронические воспалительные заболевания проявляются наличием в биопсийном материале полиморфно-ядерных лейкоцитов, лимфоцитов, моноцитов, плазмоцитов, макрофагов, реактивных изменений в клетках эпителия бронхов, гиперплазии бокаловидных клеток. При туберкулезе легких определяются эпителиоидные клетки, гигантские многоядерные клетки Пирогова – Лангханса на фоне некротических казеозных масс. Самым достоверным цитологическим признаком туберкулеза является обнаружение микобактерий туберкулеза. Основным признаком злокачественного поражения является атипия клеток в полученном материале (разнообразие форм, размеров, контуров клеток, внутриядерных включений, изменение ядерно-цитоплазматического соотношения и т. д.). Достоверная диагностика новообразований с использованием цитологического исследования биопсийного материала возможна чаще всего при мелкоклеточном раке и при высокодифференцированных формах плоскоклеточного и железистого рака (плоскоклеточный рак с ороговением, высокодифференцированная аденокарцинома). С меньшей достоверностью (предположительно) диагноз опухоли можно выставить при малодифференцированных формах плоскоклеточного и железистого рака, при недифференцированном крупноклеточном раке. В этом случае необходимо дальнейшее гистологическое исследование микропрепаратов в сочетании с комплексным клинико-рентгенологическим и лабораторным обследованием пациента.

Глава 2. Инструментальные методы исследования сердечно-сосудистой системы
Измерение пульса

Пульс (от лат. pulsus – «удар, толчок») – связанное с сокращениями сердца наполнение сосудов, обусловленное давлением в них крови в течение одного сердечного цикла. В норме пульс составляет 60–80 уд./мин. и определяется пальпаторно на всех крупных артериях – артериальный пульс. При помощи специальных методов исследования обнаруживается венный пульс. А при особых физиологических состояниях у здоровых людей и при некоторых формах патологии может быть выявлен артериолярный, или прекапиллярный, пульс. Артериальный пульс подразделяют на центральный, определяемый на аорте, сонных и подключичных артериях, и периферический – на артериях конечностей.

Пульс крупных периферических артерий можно зафиксировать с помощью сфигмографии, получив его графическое изображение. Регистрация пульса позволяет провести амплитудный и хронометрический анализ графических данных. Пульсовые колебания кровенаполнения мелких сосудов изучают при помощи плетизмографии, реографии. Для наблюдения за частотой пульса используют специальные приборы – пульсотахометры. В настоящее время для регистрации сфигмограммы используют специальные датчики, что позволяет не только достаточно точно воспроизвести кривую пульса, но и измерить скорость распространения пульсовой волны. Сфигмограмма имеет определенные опознавательные точки, и при синхронной записи с ЭКГ и ФКГ позволяет анализировать фазы сердечного цикла раздельно для правого и левого желудочков. Сфигмограмма записывается при скорости движения ленто-протяжного механизма от 50 до 100 мм/с. Кривые, записанные с крупных и периферических сосудов, имеют свои особенности. Наиболее сложной структурой отличается кривая сонной артерии. Она начинается небольшой по амплитуде волной – пресистолический период, за которой следует крутой подъем – анакрота, которая соответствует периоду быстрого изгнания крови из левого желудочка (разница между открытием клапанов аорты и появлением пульса на сонной артерии = 0,02 с), затем иногда на кривой видны мелкие осцилляции. В дальнейшем линия резко опускается вниз – дикротическая волна, что отражает период медленного поступления крови в аорту (под меньшим давлением). По окончании систолы отчетливо регистрируется выемка (инцизура), что соответствует окончанию фазы изгнания. В ней заметен короткий подъем, вызванный захлопыванием полулунных клапанов при выравнивании давления в аорте и желудочке. Он точно совпадает со вторым тоном записываемой ФКГ. Затем кривая продолжает опускаться (пологий спуск), и на спуске практически всегда заметно небольшое возвышение. Эта часть кривой соответствует диастолическому периоду сердечной деятельности. У кривой периферического пульса особенностей гораздо меньше. В ней различают 2 колена: восходящее – анакрота, соответствует внезапному подъему давления в исследуемой артерии, на ней отмечается добавочная дикротическая волна, и нисходящее – катакрота.

Венный пульс обусловлен колебаниями оттока крови в правое предсердие во время систолы и диастолы. В норме венный пульс можно обнаружить на яремной вене при проведении флебосфигмограммы.

Измерение артериального давления

Артериальное давление – это давление крови на стенки артерий.

Давление крови в сосудах снижается по мере удаления их от сердца. У взрослых в аорте оно составляет около 140/90 мм рт. ст. (первая цифра означает систолическое давление, а вторая – диастолическое), в крупных артериях – примерно 120/80 мм рт. ст., в артериолах – в среднем 40, в капиллярах – 10–15 мм рт. ст. Постоянство артериального давления поддерживается сложной нейрогуморальной регуляцией и зависит от силы сердечных сокращений и от сосудистого тонуса.

Измерение артериального давления производится тонометром, состоящим из следующих частей:

1) резиновой манжетки шириной 12–14 см;

2) манометра со шкалой до 300 мм рт. ст.;

3) баллона с вентилем обратного хода для нагнетания воздуха.

Измерение артериального давления по методу Короткова производится следующим образом. На плечо без напряжения накладывают манжетку. Резиновую трубку подсоединяют к баллону для нагнетания воздуха. На локтевом сгибе посередине определяют пульсацию плечевой артерии и к данному месту прикладывают фонендоскоп. Постепенно нагнетают воздух в манжетку до исчезновения тонов, а затем поднимают столб ртути еще на 40 мм, медленно приоткрывают вентиль обратного хода воздуха. Как только давление в манжетке станет ниже давления крови в артерии, кровь начинает проникать через сдавленный участок артерии и появляются первые звуки – тоны.

Этот момент и есть систолическое давление. Пока артерия сдавлена, будут прослушиваться звуки. Как только манжетка перестанет давить на артерию, звуки исчезнут. Момент исчезновения тонов считают как диастолическое давление. Чтобы избежать ошибки, давление измеряют повторно через 2–3 мин.

Колебания АД в норме относительно невелики, в покое у здорового человека величина давления в разное время суток различается незначительно. При различных заболеваниях механизмы регуляции АД нарушаются, что приводит к изменению уровня давления. Стойкое повышение АД называют артериальной гипертензией, а его понижение – артериальной гипотензией.

АД обязательно измеряется в процессе наблюдения за детьми и подростками, а у взрослых – при первичном врачебном осмотре, а также в процессе диспансерного наблюдения.

Измерение венозного давления

Величина венозного давления зависит от трех факторов: объема крови, колебания давления в правом желудочке, сопротивления оттоку крови на участке «капилляры – место измерения». Венозное давление может быть измерено прямым и непрямым методами. Чаще пользуются прямым методом с помощью аппарата Вальдмана, представляющего собой толстостенную стеклянную трубку с просветом 1,5 мм, укрепленную на штативе со шкалой. Систему заполняют стерильным изотоническим раствором натрия хлорида и затем на резиновую трубку накладывают зажим. Нулевое деление шкалы прибора устанавливают на уровне правого предсердия (край большой грудной мышцы у подмышечной ямки). После пережатия жгутом плеча пунктируют локтевую вену и снимают зажим с резиновой трубки. Поступающая из вены кровь выталкивает жидкость до уровня, равного внутреннему давлению. У здоровых людей венозное давление находится в пределах 70–90 мм водного столба с колебаниями от 60 до 120 мм водного столба. Более устойчивое давление имеет место в верхней и нижней полой венах, среднее динамическое значение которого принято называть центральным венозным давлением. Последнее может быть измерено с помощью электронных манометров, которые вводятся через периферическую вену (локтевая, подключичная) с помощью полиэтиленовых катетеров. Запись центрального давления может быть осуществлена на ленту любого самописца. По показаниям катетер может быть оставлен в вене для длительных динамических измерений. Обычно измерение ЦВД используют при проведении интенсивной терапии, в отделениях реанимации. Непрямые методы измерения венозного давления для исследовательских целей себя не оправдали из-за большого расхождения полученных данных с фактическим давлением. Вместе с тем ряд методов измерения венозного давления непрямым способом может быть использован во врачебной практике. К их числу относится метод Гертнера: наблюдая за тыльной поверхностью руки при ее медленном поднятии, фиксируют момент спадения вен. Расстояние от максимальной точки поднятой руки до предсердия соответствует величине венозного давления. Метод неточен, но прост и доступен. Более точен гидростатический метод измерения ЦВД Дягтерева. Обследуемого с помощью поворотного стола медленно переводят из горизонтального положения в вертикальное и наблюдают за изменением характера пульсации в манжетке, наложенной вокруг шеи. Величина падения гидростатического давления соответствует величине центрального венозного давления и близка к данным прямых методов.

Электрокардиография

Электрокардиография – метод электрофизиологического исследования деятельности сердца, основанный на анализе электрической активности сердечной мышцы, распространяющейся по сердцу в течение всего сердечного цикла. Электрокардиограмма отражает суммарные электрические токи, возникающие в волокнах миокарда во время возбуждения. При этом суммарная электродвижущая сила сердца имеет изменяющуюся величину и направление (векторная величина). Электрокардиографический вектор направлен в сторону положительного полюса общего диполя сердечной мышцы. Если возбуждение распространяется по направлению к положительному электроду, на ЭКГ регистрируется положительный зубец, если в обратную, то отрицательный.

Электрокардиографические отведения, используемые в клинической практике, унифицированы. Везде принята система, включающая в себя 12 отведений: три стандартных отведения (I, II, III), три однополюсных отведения от конечностей (правой руки – aVR, левой руки – aVL и левой ноги – aVF), а также шесть однополюсных грудных отведений (V1, V2, V3, V4, V5, V6).

Электрокардиограмма отражает процесс распространения импульса по проводящей системе сердца и сократительному миокарду после генерации возбуждения в синусно-предсердном узле, который является в норме водителем ритма сердца. На ЭКГ в период диастолы регистрируется прямая горизонтальная линия, называемая изолинией. От импульса в синусно-предсердном узле возбуждение распространяется по сердечной мышце предсердий, что образует на ЭКГ зубец Р, а благодаря нескольким межузловым путям импульс попадает в предсердно-желудочковый узел еще до окончания возбуждения предсердий. По этому узлу импульс распространяется медленно, в связи с чем до начала следующих зубцов, отражающих возбуждение желудочков, на ЭКГ регистрируется изоэлектрическая линия; за это время механическая систола предсердий оканчивается. Затем импульс быстро проходит по пучку Гиса, его стволу и ветвям, разветвления которых передают возбуждение непосредственно волокнам миокарда желудочков. Возбуждение миокарда желудочков отражается регистрацией на ЭКГ зубцов Q, R, S, т. е. комплекса QRS, а процесс реполяризации – сегментом ST (или сегментом S либо RT при отсутствии зубца S), почти совпадающим с изоэлектрической линией. Зубец Т при этом отражает процесс быстрой реполяризации желудочков и является положительным почти во всех отведениях. За зубцом Т может следовать небольшая волна U, происхождение которой связывается с реполяризацией в системе Гиса – Пуркинье. Первые моменты комплекса QRS отображают возбуждение межжелудочковой перегородки, регистрирующееся в стандартных и левых грудных отведениях зубцом Q и началом зубца R в правых грудных отведениях. Продолжительность зубца Q в норме – 0,03 с. В следующие 0,015—0,07 с комплекса возбуждается миокард верхушек левого и правого желудочков от субэндокардиальных к субэпикардиальным слоям, в последнюю очередь (0,06—0,09 с) возбуждение охватывает основания левого и правого желудочков. Суммарный вектор сердца между 0,04 и 0,07 с комплекса направлен влево – к положительному полюсу II, V4, V5-отведений, а в последующие 0,08—0,09 с – вверх и слегка вправо. Поэтому в данных отведениях комплекс QRS характеризуется высоким зубцом R при невысоких зубцах Q и S, а в правых грудных отведениях образуется глубокий зубец S. Соотношение зубцов R и S в любом из стандартных и однополюсных отведений определено пространственным положением интегрального вектора сердца, что в норме зависит от расположения сердца в грудной клетке.

Фонокардиография

Фонокардиография (от греч. phone– «звук» + kardia – «сердце» + grapho – «писать») – метод исследования нарушений деятельности сердца и в основном его клапанного аппарата, основанный на регистрации звуков, возникающих при сокращении и расслаблении сердечной мышцы. Синхронная с фонокардиографией регистрация электрокардио– и сфигмограмм применяется для анализа фазовой структуры сердечного цикла.

Для фонокардиографии используют специальные приборы – фонокардиографы, основными элементами которых являются микрофон, преобразующий звуковые волны в электрические; частотные фильтры; регистрирующее устройство, обеспечивающее запись колебаний до 1000 Гц при скорости протяжки 50 и 100 мм/с. Обычно запись производят одновременно в низко-, средне– и высокочастотном диапазонах синхронно с проведением ЭКГ.

Фонокардиографию осуществляют в специальной звукоизолированной комнате при температуре помещения более 18 °C, так как в холодном помещении у обследуемого может появиться мышечная дрожь, создающая помехи. Пациент лежит горизонтально на спине с вытянутыми руками. В начале обследования производят запись ЭКГ в стандартных отведениях с целью выбрать для синхронной записи отведение с четко выраженными основными зубцами. До фонокардиографии рекомендуется провести тщательную аускультацию сердца с определением важных для регистрации звуковых феноменов и обнаружением точек их оптимальной слышимости. Микрофон устанавливают последовательно в шести стандартных точках. В точках на грудной стенке микрофон удерживается собственной тяжестью без дополнительной фиксации, а в других точках его приходится определенным образом фиксировать резиновым поясом. Очень плотное прикрепление микрофона препятствует улавливанию звуков высокой частоты, а неплотное – мешает регистрировать низкие. Обследуемому предлагают сделать очередной выдох и задержать дыхание, после чего делают лентопротяжку вначале на скорости 50 мм/с, а убедившись в хорошем качестве, – на 100 мм/с. Аналогично производят запись с другой точки.

Анализ звуковых феноменов производится по их отношению к периодам систолы или диастолы, амплитуде, частоте, интервалам между ними и между звуковыми феноменами и зубцами ЭКГ, записанной в синхронном режиме. Распространены обозначения шумов по их форме: убывающий, ромбовидный, веретенообразный, лентовидный. Кроме этого, шумы могут примыкать к тонам или отделяться от них некоторым интервалом, занимать лишь середину систолы или всю систолу (так называемый голосистолический шум), определяться в начале диастолы (протодиастолический шум) или в ее середине (мезодиастолический шум), а в конце диастолы – перед началом систолы (пресистолический шум).

Нормальная фонокардиограмма у взрослых представлена только двумя основными тонами сердца: I тоном, систолическим (с ним начинается акустическая систола сердца), и II тоном, диастолическим, начало которого означает окончание систолы и начало диастолы. Длительность акустической систолы (время между началами I и II тонов) напрямую зависит от частоты сердечных сокращений; при сопоставлении с интервалами Q – T на ЭКГ она в норме короче на 0,05 с, а при каких-либо нарушениях в миокарде может удлиняться. В норме могут регистрироваться непостоянные диастолические III и IV тоны, связанные с колебаниями мышцы желудочков и с сокращением предсердий, крайне редко – дополнительные тоны. Иногда в связи с особенностями движений крови и при отсутствии поражения клапанов возникают функциональные шумы. У взрослых данные шумы никогда не бывают диастолическими; функциональные систолические шумы чаще всего характеризуются колебаниями низкой и средней частот (до 200 Гц), изменчивостью по форме, амплитуде и длительностью в разных сердечных циклах. У детей довольно часто определяют физиологический систолический шум изгнания крови, а может (тем чаще, чем меньше возраст ребенка) регистрироваться низкочастотный, не воспринимаемый ухом функциональный диастолический шум, который располагается в середине диастолы (после III тона).

Реография

Реография (от греч. rheos – «течение» + grapho – «писать»; синоним: реоплетизмография) – неинвазивный метод исследования функции сердца, а также кровоснабжения органов, в основе которого лежит принцип регистрации колебаний полного (омического и емкостного) сопротивления тканей переменному высокочастотному току (импеданса) в связи с изменениями кровенаполнения исследуемых участков. Основан метод на выявленной пропорциональной зависимости между изменениями импеданса по его отношению к исходной величине, а также между приростом объема исследуемой части тела по отношению к ее первоначальному объему в связи с ее кровенаполнением. Чем больше приток крови к тканям, тем меньше их сопротивление.

Для регистрации реограмм используются специальные устройства – реографы, состоящие из следующих компонентов: генератор тока высокой частоты (не менее 30 кГц), подаваемого через электрод к исследуемому участку тела; особый датчик-преобразователь «импеданс-напряжение», соединяемый с участком тела электродом напряжения (потенциальным); усилитель сигналов датчика-преобразователя; детектор; калибрующее устройство с включаемыми в электрическую цепь стандартными сопротивлениями. Для записи реограмм могут использоваться несколько из применяемых систем отведений: биполярная, при которой накладывают 2 электрода, каждый из них является и токовым, и измерительным, – электроды накладываются на полярные точки исследуемого участка; тетраполярная, при которой между двумя токовыми электродами размещают два потенциальных электрода для измерения напряжений на участке тела между ними; фокусирующая, при которой взаимное положение потенциального и токового электродов позволяет проводить локальное исследование глубоко лежащих органов и тканей. При проведении реографии применяют биполярные одноканальные (РГ1-01, РГ2-02), четырехканальные (4РГ-1М, 4РГ-2М) реографы, автоматический реоанализатор РА5-01, тетраполярный реоплетизмограф РПГ2-02, а для фокусирующей регистрации – реоплетизмограф РПГ2-03.

Качественная характеристика реовазограммы включает в себя регулярность кривой, крутизну анакроты, характер вершины кривой, форму катакроты, количество и выраженность имеющихся дополнительных волн. Кривая считается регулярной в случае, если каждая последующая волна однородна с предыдущей. При аритмии волны следуют нерегулярно: чем дольше диастола, тем выше амплитуда последующей волны.

Качественная оценка реограммы учитывает форму кривой. Характер анакроты и катакроты, рельеф вершины, выраженность и количество дополнительных волн, их расположение на нисходящем колене кривой. Основой количественного анализа является измерение амплитуды систолической и диастолической волн и ряда временных интервалов, определение реографического индекса – отношения систолической или диастолической волны к стандартному калибровочному сигналу (выражается в относительных единицах).

Эхокардиография

Эхокардиография (от греч. echo – «отголосок, эхо» + kardia – «сердце» + grapho – «писать, изображать»; синоним: ультразвуковая кардиография) – метод исследования и диагностики нарушений морфологии и механической деятельности сердца, основанный на фиксировании отраженных от движущихся структур сердца ультразвуковых сигналов.

Для эхокардиографии используют специальные приборы – эхокардиографы, необходимыми элементами конструкции которых являются: генератор ультразвука (частотой от 1 до 10 МГц), направляемого в виде луча через грудную стенку на различные отделы сердца; датчик, воспринимающий отраженные ультразвуковые сигналы; преобразователь воспринимаемых ультразвуковых волн в электромагнитные и их усилитель, а также регистрирующее устройство, позволяющее получать изображение исследуемых структур сердца – эхокардиограмму (на экране осциллоскопа, специальной фотобумаге) – и регистрировать его на магнитном носителе информации. Современные эхокардиографы оснащены также электрокардиографическим каналом для синхронной регистрации с эхокардиограммой ЭКГ и компьютером, применение которых существенно повышает качество обработки и анализа данных исследования.

Принцип метода основан на свойстве ультразвука отражаться на границе двух сред с разной акустической плотностью, или ультразвуковом сопротивлении. Чем больше разница ультразвукового сопротивления на границе сред, тем сильнее степень отражения, которая зависит также от угла падения луча на поверхность раздела сред. Чем выше частота ультразвука, т. е. чем короче длина волны, тем выше разрешающая способность применяемого аппарата; при частоте 2,25 МГц разрешающая способность соответствует примерно 1 мм.

Выделяют несколько режимов (способов) воспроизведения эхосигнала, обозначаемых по начальным буквам слов amplitude (амплитуда), motion (движение) и brightness (яркость) как А-, М– и В-режимы одномерного изображения, а также двухмерную эхокардиографию с изображением среза движущихся структур сердца в реальном масштабе времени. Помимо этого, в эхокардиографии применяют ультразвуковой метод выявления скорости и направления (по отношению к датчику) потока крови, основанный на эффекте Допплера – допплер-эхокардиографию. В А-режиме эхосигналы регистрируются в виде пиков, амплитуда которых пропорциональна интенсивности сигнала, а расстояние между пиками соответствует расстоянию между отражающими объектами и датчиком в масштабе прибора. В М-режиме изображаются движущиеся структуры, находящиеся на одной линии ультразвукового луча, при этом движение точек разворачивается во времени (по горизонтали) и сопоставимо с временными интервалами синхронно регистрируемой ЭКГ, а по вертикали фиксируется истинный переднезадний размер структур сердца, который легко выявить посредством изображения на эхокардиограмме масштаба линейных измерений в виде пунктирных делений по вертикали (как бы образующих вертикальные линейки) с известным расстоянием между делениями в миллиметрах. Двухмерная эхокардиография дает сканограмму движущегося сердца в реальном масштабе времени, при этом изображение срезов на разных уровнях сердца аналогично анатомическим срезам. Эффект Допплера, лежащий в основе допплер-эхокардиографии, заключается в том, что частота ультразвукового сигнала при отражении его от лоцируемого объекта изменяется пропорционально скорости движения объекта (эритроцитов) вдоль оси распространения сигнала. При приближении объекта в сторону датчика частота отраженного сигнала увеличивается, при удалении объекта от датчика – уменьшается.

Рентгенологическое исследование сердца и сосудов

Исследование начинают с фиксации больного в переднезадней проекции спиной к трубке и лицом к ЭОУ (максимально приблизив его к больному). Рентгенограммы выполняют на максимально возможном фокусном расстоянии, которое обычно составляет около 100 см. Идеальной принято считать рентгенограмму, на которой отчетливо видны тени только 3–4 первых грудных позвонков, тогда как остальные позвонки скрыты за тенью сердца. Затем больного устанавливают в правую переднюю косую проекцию. Рентгенограмму в этой проекции обязательно проводят с контрастированием пищевода, хотя по показаниям оно может применяться и при выполнении снимков в других проекциях. При установке в левую боковую проекцию больного поворачивают левым боком к ЭОУ, ориентируясь на строго боковое положение грудины. Важное значение имеет оценка рентгенологом глубины сокращений контуров сердца и амплитуды пульсации аорты и легочной артерии, а также корней легких. Рентгенограмма в передней проекции позволяет судить об изменениях костного скелета, состояния малого круга кровообращения, о форме и величине сердца и больших сосудов, а также о величине отдельных полостей сердца. Из изменений костного скелета имеет значение узурация ребер, обусловленная расширением межреберных артерий вследствие развития коллатерального кровотока по ним. Следует обращать внимание на состояние позвоночника: выраженный кифосколиоз приводит к изменениям сердечно-сосудистой системы, объединяемым понятием «кифосколиотическое сердце». Оценивая состояние малого круга кровообращения, рентгенолог должен обращать внимание на ширину и структурность корней легких, на ширину и форму артериальных и венозных сосудов во всех отделах легочных полей. Конфигурация сердечно-сосудистой тени в переднезадней проекции определяется степенью выраженности дуг по правому и левому ее контурам. Следует помнить, что каждая из дуг (2-я слева и 3-я или 4-я справа) получена определенным выходящим за контур анатомическим образованием. По форме этих дуг можно судить об изменениях полостей сердца и больших сосудов. В настоящее время наиболее распространенными рентгенометрическими показателями являются кардиоторакальный индекс (отношение поперечника сердца к базальному диаметру грудной клетки), индекс Мура (отношение расстояния от сердечной линии до точки наибольшего выбухания легочной артерии к половине базального диаметра грудной клетки) и объем сердца, вычисленный на единицу поверхности тела. Косые проекции используются для того, чтобы лучше оценить величину полостей сердца. Первая (правая передняя) косая проекция позволяет получить информацию о величине правого предсердия, ширине нижней полой вены, увеличении путей оттока правого желудочка, расширении легочного ствола и левой легочной артерии. Особенно отчетливо здесь видно увеличение левого предсердия.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации