Автор книги: Лев Кривицкий
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 168 (всего у книги 204 страниц)
Конечно, столь быстрое наследственное усвоение даже таких поверхностных адаптаций, как защитная окраска, весьма сомнительно. И все же такую возможность нельзя сбрасывать со счетов. Несмотря на все громкие успехи генетики путь от генов к признакам, как постоянно признают генетики, скрыт от нас в невероятной сложности процессов развития. А пока это так, мы не вправе выносить окончательных вердиктов о том, что и как наследуется при смене поколений. Генетика уже преподносит и еще преподнесет эволюционирующей науке множество сюрпризов, которые существенно изменят и уже изменяют наши пока еще очень скудные знания о наследственности. И как знать, не произойдет ли на крутых переломах развития знания решительная переоценка значения неистовых трудов таких отвергнутых в свое время фанатиков науки, каким был Пауль Каммерер.
Последняя серия экспериментов Каммерера проводилась на жабах-повитухах. Такое странное название эти животные получили вследствие того, что, руководствуясь инстинктом охраны потомства, их самцы наматывают на задние ноги яйцевые шнуры, словно принимают роды. Каммерер подвергал жаб содержанию при повышенной температуре, вследствие чего они переходили от икрометания на суше к откладке яиц в воде.
Здесь яйцевые шнуры набухали, и самцы теряли способность становиться «повитухами». В обычных условиях жабы-повитухи спариваются на сухих местах, при этом самцы легко удерживают самок, поскольку кожа у этих самок сухая и огрубевшая. У ряда других же видов жаб, которые спариваются в воде, кожа самок становится скользкой и покрывается слизью. Поэтому для удержания самок под действием определенных гормонов у самцов развиваются специальные бугорки. Каммерер утверждал, что в проведенных им экспериментах измененные инстинкты размножения передается по наследству, а у жаб-повитух при размножении в воде тоже развиваются мозолистые бугорки.
Причем в четвертом и пятом поколениях эти мозолистые образования, по описанию Каммерера, увеличивались и распространялись с больших пальцев по предплечьям до локтей. «Описанные мозоли, – отмечает Л. Бляхер, – по утверждению Каммерера, передавались потомкам, воспитывавшимся при нормальной температуре, причем кастрация обладающих мозолями самцов не препятствовало сезонному возобновлению мозолей» (Бляхер Л.Я. Проблемы наследования приобретенных признаков (история априорных и эмпирических попыток ее решения) – М.: Наука, 1971 – 274 с., с. 189).
В 1923 г. Каммерер сделал доклад об экспериментах с жабами-повитухами в линнеевском обществе в Лондоне. Присутствовавший здесь чрезвычайно авторитетный в научных кругах профессор Камбриджского университета У. Бетсон выступил с резкой критикой работы Каммерера. Он отметил, что рисунки, иллюстрирующие брачные мозоли жаб-повитух, неясны и неубедительны, а у единственного самца, который демонстрировался перед ученой аудиторией, кожа утолщена и имеется темное пятно на ладони, но отсутствуют шиповатые структуры, характерные для брачных мозолей.
С противоположных позиций выступил профессор Э. Мак-Брайд. Он заявил, что работы Каммерера «имеют такое же значение для изучения наследственности с эволюционной точки зрения, как все менделеевские эксперименты вместе взятые» (Цит. по: там же, с. 190).
Проверить обоснованность результатов Каммерера вызвался известный американский специалист по амфибиям Г. Нобль. При тщательном обследовании демонстрировавшегося при чтении доклада самца жабы-повитухи Нобль не обнаружил брачных мозолей и даже их зачатков. При обследовании же темных пятен на ладонях особи он предположил, что под кожу было введено темное вещество, сходное с тушью (Там же, с. 191).
После этого сразу же разразился грандиозный скандал. Бетсон публично обвинил Каммерера в фальсификации. Скандал подхватили газеты и по всему миру стали распространяться статьи, порочащие имя ученого. Каммерер объяснил это тем, что кто-то намеренно сделал инъекции опытному экземпляру, чтобы уничтожить плоды его многолетних трудов. Но ему никто не верил. В результате Каммерер не выдержал систематической травли и в 1926 г. покончил с собой.
Известный писатель и ученый Артур Кестлер занялся собственным расследованием обстоятельств гибели ученого, итогом которого стала книга «Дело о жабах-повитухах». Он воспроизводит обстановку травли Каммерера и на документальных материалах показывает бездоказательность обвинений в фальсификации. В конечном счете, исходя из представленных материалов, обвинители Каммерера предстают как клеветники.
В 1996 г. вышла еще одна книга, посвященная трагической судьбе Каммерера – «Зависть и торможение в науке» Марка Гиллмана. Ее автор, воспроизводя обстановку травли, которой был подвергнут Каммерер фактически за его научные убеждения, раскрывает суть этих событий как типичное проявление недобросовестной конкуренции в научной сфере.
Трагедия Каммерера во многом напоминает трагедию Больцмана, великого физика, создавшего в завершенном виде теорию термодинамики изолированных систем и ставшего предшественником современной синергетики. Вдохновленный теорией биологической эволюции Дарвина, Больцман стремился распространить теорию эволюции на понимание физических процессов. Однако выводы из законов Больцмана получились противоположными теории Дарвина, поскольку оказывалось, что в закрытых системах эволюция приводит не к усложнению организации, а к большей вероятности хаоса и тепловому равновесию. Осознав тупик в своем объяснении эволюции и нарастающий конфликт с научным сообществом, Больцман также покончил жизнь самоубийством.
Что касается Каммерера, то у него, по-видимому, под давлением конструктивной и неконструктивной критики возникло ощущение краха тех идей, доказательству которых он посвятил всю свою жизнь и ради которого столько лет непрерывно трудился, не зная отдыха и покоя. Да, Каммерер во многом ошибался, и его уход из жизни был также трагической ошибкой. Ибо тот, кто отстаивает представления об эволюции, должен запастись поистине комической нравственной силой и безграничным стремлением к истине.
Закончить раздел об экспериментах Каммерера нам хотелось бы словами великого индийского поэта Рабиндраната Тагора:
26.4. Экспериментальная проверка возможности наследования механических, температурных и пищевых воздействий на организм
Перед ошибкою захлопывают дверь.
В смятеньи истина: «Как я войду теперь?».
Установив общее правило в качестве закона ненаследования приобретённых признаков и восприняв его в более мягкой и осторожной форме – закона невозможности прямого наследования приобретённых признаков, необходимо очень тщательно и последовательно проверять это правило на предмет наличия исключений и, соответственно, границ применимости самого правила.
Всё ли необходимое было сделано в науке для такой проверки, которая могла бы существенно повлиять на наши знания об эволюции? Нет, далеко не всё. И вина за это лежит не на экспериментаторах, а на захвативших господствующие позиции в науке геноцентрически мыслящих теоретиках, которые не просто предлагали конструктивную критику попыток такой проверки, а создавали атмосферу враждебности, подвергали гонениям и травле, в лучшем случае – замалчиванию деятельность учёных, осуществлявших каждую из этих попыток.
Попыток, в общем-то, делалось немало, и они носили довольно разнообразный характер. Но они проводились лишь эпизодически, а не систематически, как положено в науке, не имели твёрдой материально-технической базы и предпринимались лишь обособленными от научного сообщества энтузиастами или группами энтузиастов.
Видимо, для них не послужила уроком судьба Каммерера, и они продолжали с непоколебимым упорством ломиться в наглухо закрытую бронированную дверь. Причём точно так же действовали сторонники «вейсманизма-морганизма» в сталинском СССР, которых подвергала ещё худшим гонениям псевдоламаркистская клика Лысенко.
Лысенковские псевдоламаркисты удивили мир превращениями ржи в пшеницу, ели в сосну, пеночки в кукушку именно путём ассимиляции организмами внешних условий. Они создали собственную науку о наследственности, противостоящую генетике, которую клеймили как идеалистическую псевдонауку, отражающую заблуждения буржуазной идеологии загнивающего Запада.
В результате российская наука, избавившись от ига лысенковщины, надолго утвердилась в непререкаемой правоте «классической» генетики и геноцентрического объяснения эволюции, а слово «ламаркизм» сделалось почти ругательным, стало отождествляться с лысенковщиной и гонениями на генетиков. В этом сказался традиционный российский максимализм и ментальная предрасположенность к тому, чтобы бросаться из крайности в крайность.
Соответственно неприятие в России экспериментов, направленных на поиск и обнаружение влияний соматических структур на генетические структуры было ещё более жёстким, чем на Западе. В настоящее время отношение к гипотезам и практическим поискам, призванным найти генетические и морфофизиологические механизмы проницаемости барьера Вейсмана, начинает понемногу изменяться и на Западе, и в России. Это изменение обусловлено, прежде всего, развитием современной генетики, показавшей принципиальную ограниченность понимания механизмов наследственности в рамках генетики «классической». Как выражается Ю.Чайковский, проблема возможного наследования приобретённых признаков сейчас принята к обсуждению. Сам он верит в возможность такого наследования, хотя и считает передачу их от поколения к поколению весьма нерегулярной и неустойчивой.
Действительно, такая нерегулярность и неустойчивость влияний биологической работы соматических структур на биологическую работу структур генетических вполне допустима, исходя из знаний, полученных современной генетикой. Лишь в значительном числе поколений при сохранении вектора отбора такие нерегулярные и неустойчивые влияния могут выстроиться в регулярные и устойчивые.
Главная ошибка неоламаркистов заключается в том, что они предполагают отыскать эти влияния сразу в регулярном и устойчивом состоянии за то время, пока длится эксперимент. Ламаркистские эксперименты нередко приобретают большую длительность, продолжаются иногда более десятилетия, как это было, например, при проведении экспериментов Каммерером. Каким упорством и какой любовью к науке нужно обладать, чтобы жертвовать такой значительной частью столь кратковременной человеческой жизни, чтобы получить результаты, которые заведомо будут раскритикованы и подвергнуты опровержению в «нормальной» науке!
И всё же этого времени, этой длительной и неблагодарной, чрезвычайно трудоёмкой работы, как правило, недостаточно для получения сколько-нибудь регулярных, устойчивых, убедительных и объективно доказательных результатов. Хотя из любых правил, связанных с нерегулярностью исследуемых процессов, возможны разнообразные исключения и отклонения от нормы.
Десять лет жизни потратил на изучение влияния упражнений на наследственность крупнейший психолог XX века Жан Пиаже. Л.Бляхер в своей книге описывает этот эксперимент следующим образом:
«О возможном значении мышечных усилий для изменения органов, ссылаясь на собственные наблюдения, писал психолог Ж.Пиаже. Он обследовал в период с 1919 по 1929 гг. более 80000 экземпляров прудовика из Невшательского озера. Обычно живущий в стоячей или медленно текущей воде, этот прудовик населяет в альпийских озёрах каменистые отмели, где волны заставляют его цепляться за камни. У прудовиков этих стаций нога более широкая, чем у форм из спокойных водоёмов. Пиаже показал, что при содержании прудовиков после вылупления во встряхиваемых сосудах описанные изменения воспроизводятся экспериментально, однако они не передавались потомству» (Бляхер Л.И. Проблема наследования приобретённых признаков (история априорных и эмпирических попыток её решения) – М.: Наука, 1971 – 274с., с.195).
И далее: «Тем не менее Бурдье считает наблюдения Пиаже свидетельством в пользу ламаркизма, полагая, что наследование приобретённых признаков может осуществляться только после длительного, многовекового воздействия механического фактора. Никаких доводов, кроме субъективной уверенности в пользу этого предположения, Буардье не приводит» (Там же, с.196).
Проанализируем этот пример более тщательно. Прудовик на Невшательском озере в Швейцарии, как и в других альпийских озёрах и в других водоёмах с каменистым дном и быстрым течением воды, обитает в изменённых условиях по сравнению с обычными прудовиками, живущими в прудах, озёрах и болотах со стоячей или медленно текущей водой. Обитание в изменённых условиях привело к существенному изменению биологической работы прудовика и вызвало заметное изменение его морфологии.
Постоянная тренировка органов вызвала изменение строения этих органов в виде адаптивно необходимого расширения ноги, укорочения раковины и увеличения её отверстия. Это масштабное изменение является модификацией, оно происходит в рамках наследственно определённой нормы реакции и потомству в готовом виде не передаётся. Если изменённых прудовиков переселить в тихий водоём, их потомство будет ничем не отличаться от прудовиков, обитающих в таких водоёмах.
Но данная модификация является массовой. Отбор постоянно элиминирует особей, неспособных к соответствующему условиям изменению морфологии. Эти изменения происходят в процессах развития каждой особи, живущей в подобных условиях. Генетическая система каждой особи находится под постоянным давлением гормонов, вырабатываемых соматической частью организма в биологической работе с участием ответственных за информационное обеспечение поставки этих гормонов генетических структур.
В конечном счёте после очень большого множества повторений форм изменённой биологической работы организмов в смене поколений может произойти сдвиг норм реакции в обусловленном биологической работой направлении, выживут и дадут потомство наиболее приспособленные, то есть приспособленные к унаследованию форм биологической работы в данном направлении.
Заметим, что подобный сценарий эволюции ни в чём не противоречит основам современной генетики и полностью находится в русле её развития. Причём этот сценарий отвечает дарвиновскому, а не ламарковскому механизму происхождения видов: дивергенция вида происходит под действием отбора вариаций, побеждающих в непрерывной борьбе за существование благодаря выработке полезных для выживания признаков. Что же касается эксперимента, проведённого Пиаже, то он, конечно, показал не прямое наследование приобретённых признаков, а тенденцию к выработке полезных приспособлений в процессе тренировки органов.
Продолжение этой тенденции может показать только эксперимент природы. Конечно, чтобы отследить этот эксперимент, приходится прибегать к экстраполяции. Но всякая теория эволюции вынуждена опираться на экстраполяцию, важно, чтобы эта экстраполяция учитывала собственную преобразующую активность организмов, а не исходила из ошибок наследственного аппарата, пассивно накапливающихся на молекулярном уровне.
В 1940 г. эксперимент с вынужденной экспериментаторами тренировкой провёл У.Блур. Он заставлял самок крыс интенсивно бегать в течение месяца и более, после чего позволял им спариваться с самцами и измерял содержание холестерина и фосфолипидов у них в мышечных тканях (Там же, с.196). Он доказал то, что и без того было известно: тренировка изменяет химический состав мышц. Возможность передачи изменённого состава мышц потомству ему доказать не удалось.
Довольно многочисленными были эксперименты, направленные на проверку возможности наследования температурных и пищевых воздействий на организмы. Известность получили опыты М.Штандфуса, а затем и Э.Фишера с охлаждением куколок, вызвавшим потемнение крыльев у бабочек, полученных из этих куколок, опыты У.Тоуера с разогреванием яиц и личинок колорадского жука, обеспечившего посветление крыльев у взрослых организмов, опыты Ф.Самнера с разогревом беременных самок мышей, в результате чего развивались мыши с увеличенными хвостами и лапами, что воспроизводилось у части их потомков, воспитанных при комнатной температуре.
Все эти опыты давали нерегулярные, неустойчивые и сомнительные с методологической точки зрения результаты, вследствие чего подвергались справедливой критике. Они кое-что показывали, но ничего не доказывали. Они не учитывали выявленный генетикой потенциал наследственности, скрытый в гетерозиготном состоянии и проявляющийся в генетическом разнообразии (гетерогенности) популяций.
Но с учётом того, что обнаруженные в экспериментах влияния прижизненных изменений на наследственные всегда могут быть объяснены проявлением наследственных признаков дальних предков подопытных животных, такие влияния становятся недоказуемыми и рассматриваются как объект не знания, а веры.
Но разве не объектом веры является так называемое «непрямое» приспособление, которое рассматривается как результат поддержки отбором накопленных в скрытом состоянии ошибок генетического аппарата? Реальное приспособление живых организмов посредством биологической работы при этом считается несущественным для возникновения наследственной приспособленности. Зато информационный шум, возникающий на молекулярном уровне, представляется источником возникновения любых приспособлений.
Наиболее интересные результаты по сохранению в потомстве признаков, вызванных температурными и некоторыми химическими воздействиями, были получены в экспериментах В.Йоллоса ещё в 1920-е годы над простейшими – инфузориями. Н.Иорданский характеризует эти эксперименты следующим образом:
«Устойчивость к неблагоприятным температурам или химическим веществам сохранялась у инфузорий в течение многих десятков (до сотни) поколений и, следовательно, была наследственной. Подчёркивается, что, во-первых, вся экспериментальная популяция представляла собой клон, полученный путём бесполого размножения, и, во-вторых, в эксперименте отсутствовала смертность инфузорий, вызванная действием экстремального фактора. Это истолковывалось как исключение возможности действия отбора» (Иорданский Н.Н. Эволюция жизни – М.: Издат. центр «Академия», 2001 – 432с., с.37).
Как отмечает Н.Иорданский, анализ данных опытов проводил Ж.Женермон, который объяснил наследование изменений длительными модификациями. «Женермон указал, что хотя экспериментальная популяция инфузорий представляет собой клон, это отнюдь не означает генетической гетерогенности популяции. Во-вторых, в процессе развития длительных модификаций, очевидно, основную роль играет отбор, влияющий не на смертность, а на темпы размножения: преобладание в популяции получает более многочисленное потомство более устойчивых к действию неблагоприятного фактора особей» (Там же).
Основанием для отнесения этих форм наследования к длительным модификациям явилось прекращение приобретённой приспособленности через большое число поколений. Если бы не это, феномен отнесли бы к мутациям, вызванным воздействием экстремальных факторов. Мы помним требование Гийено, чтобы в экспериментах использовались только однородные в генетическом отношении организмы. Но и клоны не соответствуют этому требованию. Это даёт возможность геноцентрического объяснения любых негеноцентрических экспериментов.
Довольно сходными по методологии и полученным результатам с изучением действия температурных факторов были опыты по проверке действия необычной пищи на изменчивость живых организмов и возможности её унаследования. Особенности и качество пищи оказывают постоянное влияние на химический состав тел живых организмов, получение ими исходного сырья для выработки гормонов и ферментов, на биологическую работу внутренних органов.
Эксперименты по влиянию пищи на изменчивость организмов были проведены для изучения проблемы индустриального меланизма английскими исследователями Дж. Харрисоном и Ф.Гаретом. Вот как описывает эти эксперименты Л.Бляхер:
«Полагая, что потемнение бабочек зависит от того, что гусеницы питаются листьями растений, на которых осели распыленные в воздухе минеральные частицы, эти авторы кормили гусениц пяденицы листьями боярышника, ветки которого перед этим стояли в слабом растворе сернокислого марганца или азотнокислого свинца. Бабочки, развившиеся из этих гусениц, обнаружили в известном проценте (в одном опыте 4 %, а в другом даже 16 %) изменения, сходные с индустриальным меланизмом. Такой же эффект Харрисон получил при кормлении гусениц другой пяденицы, взятых с деревьев сильно задымлённых местностей. Искусственно полученные тёмные бабочки при скрещивании с нормальными, светлыми, обнаруживали рецессивный характер меланистических изменений. Не исключено, что соли оказывают мутагенное воздействие» (Бляхер Л.Я. Проблема наследования приобретённых признаков (история априорных и эмпирических попыток её решения) – М.: Наука, 1971 – 274с., с.203).
Каким бы ни было влияние ненаследственных факторов на наследственные, их всегда можно объяснить мутацией, не оставляя шансов для иначе мыслящих экспериментаторов. При этом не замечают упрощённости и примитивности геноцентрического мышления. Наследственное вызывается только наследственным, и не может испытывать никакого влияния ненаследственного. Всё наследственное определяется молекулами, но не организмами. Если возникло что-то новое, нужно предполагать мутацию.
«Впрочем, – пишет далее Л.Бляхер, – вся проблема индустриального меланизма получила вполне удовлетворительное разрешение в работах Г.Кетлуэлла. Этот автор показал, что индустриальный меланизм представляет не результат влияния внешней среды на изменение отдельных особей, а результат влияния на генетическую структуру популяции. «Тёмные формы бабочек получают преимущество перед светлыми, так как они менее заметны в задымленных районах для насекомоядных птиц, следствием чего является естественный отбор и преимущественное выживание меланистических форм» (Там же, с.203).
Методология экспериментов Г.Кетлуэлла ни в чем не превосходит методологию ламаркистских экспериментов и к ней можно высказать не меньше претензий, чем те, которые высказывал Гийено и другие критики экспериментальных «доказательств» наследования приобретённых признаков. Кетлуэлл лишал бабочек активности, прикрепляя их к фону и превращая в пассивных жертв насекомоядных птиц.
Это вполне соответствовало установке геноцентрически мыслящих теоретиков на закрепление представлений о пассивной роли организмов в процессах наследования. Поэтому в работах Кетлуэлла аналитики не видели очевидных методических ошибок, и они были восприняты не просто с удовлетворением, но с восторгом и упоением. Мало того, что в них увидели решение проблемы индустриального меланизма. Они были приняты ни много, ни мало как доказательство естественного отбора.
Дарвин якобы не доказал естественный отбор как фактор эволюции, а только выдвинул идею отбора в качестве правдоподобной гипотезы. Дарвин не доказал, а Кетлуэлл доказал. И ламаркисты вслед за неодарвинистами повторяют миф о недоказанности естественного отбора, поскольку он-де не проходил проверку в лабораторных экспериментах.
Естественный отбор отразился не в лабораторных экспериментах учёных педантов, а в бесчисленных наблюдениях биологов-натуралистов, ни одно из которых не обходилось без обнаружения фактов борьбы за существование и выживание наиболее конкурентоспособных в огромной лаборатории природы, распространённой по всей планете Земля. Ни одно явление жизни и ни один акт эволюции не обходится без проявления фактов борьбы за существование и преимущественного выживания наиболее приспособленных.
И каким же образом, влияя на каждый мельчайший акт эволюции естественный отбор может не влиять на крупномасштабные эволюционные события? Каждый организм в каждый момент своей жизни должен выдержать проверку отбором, чтобы получить возможность жить дальше и продолжить себя в смене поколений путём оставления потомства. Какие здесь ещё нужны доказательства?
Но отбор как фактор эволюции в естественных условиях действует на активно борющиеся за существование, биологически работающие, всячески сопротивляющиеся элиминации организмы. Искусственное лишение организмов присущей им жизненной активности сужает естественный отбор до уровня избирательной элиминации по уже проявленному наследственному признаку, тогда как в естественных условиях отбор действует, исходя из эффективности биологической работы, проявляемой на основе как наследственных, так и приобретённых в этой работе признаков. Поэтому лишение Кетлуэллом бабочек обычной для них активности при атаках насекомоядных птиц превращает изучаемый им отбор в вариант искусственного отбора. Бессознательный искусственный подбор характерен не только для неоламаркистов, но и для неодарвинистов.
Происходит проверка не эффективности естественного отбора по обеспечению преимущественного размножения носителей определённых наследственных признаков, а лишь проверка эффективности искусственного отбора по дифференциальному выживанию тех носителей наследственных признаков, которые остаются менее заметными при их нахождении на определённом фоне. Всё это демонстрирует вопиющую банальность опытов Г.Кетлуэлла. Как и опыты А.Вейсмана с отрубанием хвостов мышам, Кетлуэлл в своих экспериментах экспериментально проверяет то, что было ясно и безо всяких экспериментов, а именно то, что выживет больше бабочек, менее заметных для охотящихся на них птиц.
Воспроизводя и поддерживая геноцентрическую иллюзию, будто эволюционное значение имеет только отбор наследственных изменений, опыты Кетлуэлла способствуют и укреплению иллюзии, будто вопрос о происхождении и наследственных, и приобретённых изменений уже не стоит перед наукой, поскольку на него дан исчерпывающий ответ отбором наследственных признаков. Наука развивается, и её уже не уместишь в прокрустово ложе геноцентрической теории, якобы подтверждённой подобными экспериментами.
Сегодня существенное развитие биологической науки возможно только на основе самого основательного изучения влияния биологической работы на наследственность. Ламаркистские эксперименты могут не слишком много помочь на пути такого исследования в силу своей методологической слабости и беспомощности. Хотя более внимательно приглядеться и прислушаться к их результатам необходимо. Речь, конечно, не идёт об опровержении существования барьера Вейсмана и о прямом наследовании приобретённых признаков, а об определении условий и форм проницаемости этого барьера под давлением биологической работы, поддержанной отбором.
Для последовательного и поэтапного решения этой чрезвычайно трудной проблемы необходим равноправный союз генетики с натуралистической биологией. Генетическими манипуляциями на молекулярном уровне этой проблемы не решить. Путь от генов к признакам лежит через биологическую работу организмов, и определить этот путь без изучения влияний, оказываемых этой работой на работу генов, в принципе невозможно.
Несостоятельной является и сама альтернатива: либо отбор, либо наследственное усвоение результатов биологической работы. Такая альтернатива был отвергнута уже Дарвином. Только в единстве и взаимодействии отбор и биологическая работ могут объяснить происхождение видов.
В 1950-е годы российские энтомологи Е.Смирнов, С.Келейникова и Г.Самохвалова провели серию экспериментов по проверке возможности наследования приобретённой приспособленности к питанию ранее малопригодными растениями у оранжерейных тлей. Экспериментаторы помещали тлей, ранее привычно питавшихся викой, на красный перец, горчицу, гречиху и другие «невкусные» для них растения.
«При выкармливании тлей листьями горчицы, – пишет Л.Бляхер, – авторы обнаружили увеличивающееся из поколения в поколение повышение смертности и понижение плодовитости; однако с 7-9-го поколений смертность начинала снижаться, а плодовитость увеличиваться. Полученный результат авторы расценили как наследственное привыкание к растению, первоначально непригодному для культуры тлей, причём это привыкание, по их словам, осуществляется согласно закону наследуемости приобретённых свойств» (Там же, с. 205–206).
При этом авторы эксперимента допускали, что в полученных результатах известную роль сыграл естественный отбор. Но сам по себе вывод о соответствии закону наследуемости приобретённых свойств мог сойти им с рук только потому, что сильные позиции в науке ещё занимали представители лысенковщины, тяготевшие к использованию ламаркизма для обоснования своих псевдонаучных теорий и практических «достижений».
Более поздние и методологически обоснованные опыты Шапошникова на тлях, проводившиеся по сходной схеме, были прерваны и прекращены, а их автор надолго попал в немилость к руководившей наукой советской бюрократии и не смог не только продолжить опыты, но и сохранить полученные результаты. Естественно, что и опыты Е.Смирнова с сотрудницами были позднее раскритикованы, а результаты объяснены накоплением мутаций под действием отбора.
В экспериментах С.Г.Шапошникова на одном из видов тлей, обычно обитающих на купыре, эти тли были искусственно перенесены на бутень клубненосный – растение, на котором данный вид в природной среде обитает крайне редко и которым питается с затруднённым усвоением. Несколько поколений тлей, размножающихся бесполым путём (партеногенезом), Шапошников продержал на бутене клубненосном, а когда они наконец адаптировались к этому неспецифическому для них питанию, пересадил их на бутень пятнистый.
Питаться этим растением тли этого вида без тренировки, проведенной в течение ряда поколений на бутене клубненосном, были абсолютно неспособны. Теперь же они были достаточно подготовлены и стали, хотя и с большим трудом, поддерживать свою жизнедеятельность на этом ранее несъедобном растении. Однако через 10–15 поколений экспериментальная популяция полностью освоила бутень пятнистый и уже не могла жить на купыре.
Более того, у всех организмов этой популяции произошли морфологические перестройки, в ходе которых они обрели фенотипическое сходство с видом тлей, постоянно обитающим на бутне пятнистом. И не только фенотипическое, но и генотипическое. Об этом говорит тот факт, что после получения особей, способных к половому размножению, они без затруднений спаривались с особями вида, сформировавшегося на пятнистом бутне в естественных условиях, и производили плодовитое потомство, способное питаться только пятнистым бутнем.
Хотя этот чрезвычайно важный для усовершенствования теории биологической эволюции эксперимент был искусственно прерван и не был воспроизведён в экспериментах других ученых, есть серьёзные основания считать, что С.Г.Шапошникову удалось экспериментально воспроизвести начальный период формирования нового вида и даже воссоздать существование вида, ранее существовавшего в данной природной среде (см.: Гродницкий Д.Л. Две теории биологической эволюции – Красноярск, 2000 – 180с., с. 39–40).
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.